TY - JOUR
ID - 333
TI - RIGID DUALIZING COMPLEXES
JO - Bulletin of the Iranian Mathematical Society
JA - BIMS
LA - en
SN - 1017-060X
AU - NEEMAN, A.
AD -
Y1 - 2011
PY - 2011
VL - 37
IS - No. 2
SP - 273
EP - 290
KW - Dualizing complex
KW - Grothendieck duality
DO -
N2 - Let $X$ be a sufficiently nice scheme.
We survey some recent progress on dualizing complexes. It turns
out that a complex in $kinj X$ is dualizing if and only if
tensor product with it induces an equivalence of categories
from Murfet's new
category $kmpr X$ to the category
$kinj X$. In these terms, it
becomes interesting to wonder how to glue such equivalences.
UR - http://bims.iranjournals.ir/article_333.html
L1 - http://bims.iranjournals.ir/article_333_341c4f567b539260a85b4d60696ed342.pdf
ER -