TY - JOUR
ID - 346
TI - 2-recognizability of the simple groups $B_n(3)$ and $C_n(3)$ by prime graph
JO - Bulletin of the Iranian Mathematical Society
JA - BIMS
LA - en
SN - 1017-060X
AU - Foroudi Ghasemabadi, M.
AU - Iranmanesh, A.
AU - Ahanjideh, N.
AD - Tarbiat Modares University
AD - University of Shahre-kord
Y1 - 2013
PY - 2013
VL - 39
IS - 6
SP - 1273
EP - 1281
KW - Prime graph
KW - classification of finite simple groups
KW - recognition
KW - spectrum
DO -
N2 - Let $G$ be a finite group and let $GK(G)$ be the prime graph of $G$. We assume that $ngeqslant 5 $ is an odd number. In this paper, we show that the simple groups $B_n(3)$ and $C_n(3)$ are 2-recognizable by their prime graphs. As consequences of the result, the characterizability of the groups $B_n(3)$ and $C_n(3)$ by their spectra and by the set of orders of maximal abelian subgroups are obtained. Also, we can conclude that the AAM's conjecture is true for the groups under study.
UR - http://bims.iranjournals.ir/article_346.html
L1 - http://bims.iranjournals.ir/article_346_1295fb2d30416b6530013ae8d990f863.pdf
ER -