TY - JOUR
ID - 422
TI - Localization operators on homogeneous spaces
JO - Bulletin of the Iranian Mathematical Society
JA - BIMS
LA - en
SN - 1017-060X
AU - Kamyabi Gol, R.
AU - Esmaeelzadeh, F.
AU - Raisi Tousi, R.
AD - Ferdowsi University of Mashhad
Y1 - 2013
PY - 2013
VL - 39
IS - 3
SP - 455
EP - 467
KW - Homogenous space
KW - square integrable representation
KW - n localization operator
KW - Schatten $p$-class operator
DO -
N2 - Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localization operator is in Schatten $p$-class and also it is a compact operator for $ 1leq p leqinfty$.
UR - http://bims.iranjournals.ir/article_422.html
L1 - http://bims.iranjournals.ir/article_422_8480c0250cbcd89dcc3dc2b6983c19d5.pdf
ER -