TY - JOUR
ID - 769
TI - The unit sum number of Baer rings
JO - Bulletin of the Iranian Mathematical Society
JA - BIMS
LA - en
SN - 1017-060X
AU - Ashrafi, N.
AU - Pouyan, N.
AD - Semnan UniversityFaculty of Mathematics, Statistics and
Computer Science,
Semnan University, Semnan, Iran.
AD - Faculty of Mathematics, Statistics and Computer Science,
Semnan
University, Semnan, Iran.
Y1 - 2016
PY - 2016
VL - 42
IS - 2
SP - 427
EP - 434
KW - unit sum number
KW - regular Baer ring
KW - $\pi$-regular Baer ring
KW - right perpetual ideal
DO -
N2 - In this paper we prove that each element of any regular Baer ring is a sum of two units if no factor ring of $R$ is isomorphic to $Z_2$ and we characterize regular Baer rings with unit sum numbers $\omega$ and $\infty$. Then as an application, we discuss the unit sum number of some classes of group rings.
UR - http://bims.iranjournals.ir/article_769.html
L1 - http://bims.iranjournals.ir/article_769_b7f142c271337a1f63d0a503031cec1d.pdf
ER -