APPLICATIONS OF EPI-RETRACTABLE MODULES

B. M. PANDEYA, A. K. CHATURVEDI* AND A. J. GUPTA

Communicated by Siamak Yassemi

Abstract. An R-module M is called epi-retractable if every submodule of M_R is a homomorphic image of M. It is shown that if R is a right perfect ring, then every projective slightly compressible module M_R is epi-retractable. If R is a Noetherian ring, then every epi-retractable right R-module has direct sum of uniform submodules. If endomorphism ring of a module M_R is von-Neumann regular, then M is semi-simple if and only if M is epi-retractable. If R is a quasi Frobenius ring, then R is a right hereditary ring if and only if every injective right R-module is semi-simple. A ring R is semi-simple if and only if R is pri and von-Neumann regular.

1. Introduction

All rings are associative with unit elements and all modules are unitary right modules. Let R be a ring. The ring R is said to be a principal right ideal (pri) ring if every right ideal of R is principal. Ghorbani and Vedadi [3] generalized this concept to modules. An R-module M is called epi-retractable if every submodule of M_R is a homomorphic image of M. Therefore, R is a pri ring if and only if R_R is epi-retractable. An
R-module N is called \textit{M-cyclic} if it is isomorphic to M/L, for some submodule L of M (see [10]). Note that M_R is epi-retractable if and only if every submodule of M is M-cyclic. Here, we shall investigate epi-retractable modules in terms of M-cyclic submodules and also provide those properties of epi-retractable modules which have not been studied earlier.

By [2, 6.9.3], an R-module M is called \textit{compressible} if for every non-zero submodule N of M there exists a monomorphism from M to N. The concept of epi-retractable modules is dual to the concept of compressible modules. There exist some epi-retractable modules which are not compressible. For example, semi-simple modules are epi-retractable but not compressible.

In Section 2, we study two important properties of epi-retractable modules. We observe that every epi-retractable module is a \textit{slightly compressible module} (see [6]), but the converse need not be true. In Theorem 2.2, we provide a sufficient condition for slightly compressible modules to be epi-retractable. We show that if R is a right perfect ring, then every projective slightly compressible module M_R is epi-retractable. This is a well known problem in the theory of rings and modules when a module has direct sum of uniform submodules. In Theorem 2.3, we show that if R is a Noetherian ring, then every epi-retractable right R-module has direct sum of uniform submodules.

In Section 3, we study the semi-simplicity of epi-retractable modules and pri rings. Note that every semi-simple module is epi-retractable, but the converse need not be true. In some results of that section, we provide sufficient conditions for the epi-retractable modules to be semi-simple by injective modules, projective modules, right hereditary rings, von-Neumann regular rings. We show that if endomorphism ring of a module M is von-Neumann regular, then M is semi-simple if and only if M is an epi-retractable module. If R is a quasi Frobenius ring, then R is a right hereditary ring if and only if every injective R-module is semi-simple. We characterize semi-simple rings by epi-retractable modules so that a ring R is semi-simple if and only if R is right hereditary and every epi-retractable R-module is projective. We end up with a result that states: A ring R is semi-simple if and only if R is pri and von-Neumann regular.

We refer to [10] and [1] for all undefined notions used in the text.
2. Epi-retractable modules

Let \(R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix} \) and \(M_R = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix}, N_R = \begin{pmatrix} 0 & 0 \\ 0 & F \end{pmatrix}, P_R = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix} \) are right \(R \)-modules. It is clear that \(R_R, N_R, P_R \) and \((M/P)_R\) are epi-retractable \(R \)-modules. \(M_R \) is not an epi-retractable module. Moreover, submodules of an epi-retractable module need not be epi-retractable and also factors of an epi-retractable module need not be epi-retractable. We begin with the observation that the class of epi-retractable modules is closed under direct sums.

\[\text{Proposition 2.1.} \text{ Let } \{M_i\}_{i \in I} \text{ be a family of epi-retractable modules. Then, } M = \bigoplus_{i \in I} M_i \text{ is an epi-retractable module.} \]

\[\text{Proof.} \text{ Let } K \text{ be a submodule of } M. \text{ Then, } K \cap M_i \text{ is a submodule of } M_i, \text{ for each } i \in I. \text{ Since each } M_i \text{ is an epi-retractable module, there exists an epimorphism } \alpha_i : M_i \to K \cap M_i. \text{ Define } \alpha = \sum_{i \in I} \alpha_i : M \to K. \text{ Then, clearly } \alpha \text{ is a surjective homomorphism. Hence, } \bigoplus_{i \in I} M_i \text{ is an epi-retractable module.} \]

A projective \(R \)-module \(P \) together with a small epimorphism \(\pi : P \to M \) is called a \textit{projective cover of } \(M \). A ring \(R \) is said to be \textit{right perfect} if every \(R \)-module has a projective cover. In [6], Smith calls an \(R \)-module \(M \) \textit{slightly compressible} if, for every non-zero submodule \(N \) of \(M \), there exists a non-zero homomorphism from \(M \) to \(N \). An \(R \)-module \(M \) is called to be \textit{self-generator} if, for each submodule \(N \) of \(M \), there exists an index set \(J \) and an epimorphism \(\theta : M^{(J)} \to N \). It is clear that every epi-retractable module is self-generator. Moreover, every self-generator is slightly compressible. Then, epi-retractable modules are slightly compressible. In general, every slightly compressible module is not a self-generator (see [6, Proposition 3.1]). Therefore, every slightly compressible module need not be epi-retractable.

The following result shows a sufficient condition for slightly compressible modules to be epi-retractable.

\[\text{Theorem 2.2.} \text{ Let } R \text{ be a right perfect ring. Then, every projective slightly compressible } R \text{-module is epi-retractable.} \]

\[\text{Proof.} \text{ Assume that } M \text{ is a projective and slightly compressible module. Let } K \text{ be a submodule of } M. \text{ Since } R \text{ is right perfect, there is a projective cover } P \text{ of } K \text{ with a small } Ker(\pi), \text{ where } \pi : P \to K \text{ is an epimorphism.} \]
Then, there exists a non-zero homomorphism \(f : M \to K \). Consider the following diagram:

\[
\begin{array}{ccc}
M & \xrightarrow{h} & P \\
\downarrow f & & \downarrow \pi \\
K & & \\
\end{array}
\]

Since \(M \) is projective, \(f \) can be lifted to a homomorphism \(h \) from \(M \) to \(P \) such that the above diagram is commutative, that is, \(f = \pi h \). It follows that \(P = \text{Im}(h) + \text{Ker}(\pi) \). Then, \(P = \text{Im}(h) \), because \(\text{Ker}(\pi) \) is small. This implies that \(h \) is surjective. Therefore, \(f \) is also surjective, and hence \(M \) is an epi-retractable module.

A ring \(R \) is called a right \(V \)-ring if every simple \(R \)-module is injective. Moreover, if \(R \) is a right \(V \)-ring, then every projective \(R \)-module is slightly compressible (see [6, Theorem 1.5]). Theorem 2.2 has the following consequence.

Corollary 2.3. Let \(R \) be a right perfect and right \(V \)-ring. Then, every projective \(R \)-module is epi-retractable.

Proof. This follows from [6, Theorem 1.5] and Theorem 2.2.

Following [9], an \(R \)-module \(M \) is called quasi-polysimple if every non-zero submodule of \(M \) contains a uniform submodule of \(M \). Note that over a Noetherian ring \(R \), every \(R \)-module is quasi-polysimple (see [5, Theorem 2.2]).

We shall now investigate when a epi-retractable module has direct sum of uniform submodules.

Theorem 2.4. Let \(R \) be a Noetherian ring. If \(M \) is an epi-retractable \(R \)-module, then \(M \) has direct sum of uniform submodules of \(M \).

Proof. It is clear that \(M \) is quasi-polysimple. Therefore, \(M \) is an essential extension of the direct sum \(\oplus_{i \in J} K_i \), where each \(K_i \) is the uniform submodule of \(M \) and \(J \) is some index set (see [5, Lemma 2.1]). Since \(M \) is epi-retractable, there exists an endomorphism \(f \in S \) such that \(f(M) = \oplus_{i \in J} K_i \).

3. **Semi-simplicity of epi-retractable modules**

A ring \(R \) is called right hereditary if every right ideal is projective. Moreover, \(R \) is right hereditary if and only if every submodule of every
projective R-module is projective and if and only if quotients of injective, R-modules are injective (see [4, Corollary 2.26] and [4, Theorem 3.22]). There are some modules which are injective, but not epi-retractable. For example, the set of rational numbers \mathbb{Q} is an injective module, but is not epi-retractable. Note that every semi-simple module is epi-retractable, but in general the converse is not true.

In the following, we investigate when an epi-retractable module is semi-simple.

Proposition 3.1. Let R be a right hereditary ring. Then, the followings hold:

1. Every injective epi-retractable R-module is semi-simple.
2. Every projective epi-retractable R-module is semi-simple.

Proof. (1). Assume that R is a right hereditary ring and K is submodule of an epi-retractable injective R-module M. Since M is epi-retractable, $K \cong M/L$, for some submodule L of M. It follows that K is injective. Suppose I is the identity map from K to K. Therefore, I can be extended to a homomorphism from M to K. Hence, K is a direct summand of M. This implies that M is semi-simple.

(2). This is clear. □

Recall that a ring R is said to be a quasi Frobenius ring if it is a (left) right self injective Noetherian ring. Note that if R is a ring such that every injective R-module is epi-retractable, then R is a quasi Frobenius ring (see [3, Proposition 3.2]). In the following, we characterize right hereditary rings.

Proposition 3.2. Let R be a quasi Frobenius ring. Then, R is a right hereditary ring if and only if every injective R-module is semi-simple.

Proof. Assume R is a right hereditary ring. Let M be an injective R-module. By [3, Proposition 3.2], M is an epi-retractable module. By Proposition 3.1, it is clear that M is a semi-simple module.

Conversely, assume that every injective R-module is semi-simple. Suppose that K is the homomorphic image of an injective R-module M. Then, K is a direct summand of M, because M is semi-simple. Therefore, K is also injective. This implies that quotients of injective R-modules are injective. This proves that R is a right hereditary ring. □

Theorem 3.3. If the endomorphism ring S of a module M is von-Neumann regular, then M is semi-simple if and only if M is an epi-retractable module.
Proof. Suppose M is an epi-retractable module and K is a submodule of M. Then, there is an epimorphism f from M to K. Since $S = \text{End}(M)$ is von-Neumann regular, $f(M) = K$ is a direct summand of M. Hence, M is a semi-simple module. The converse is obvious. \qed

Let R be a ring and M be an R-module. We denote $r(x) = \{s \in R : xs = 0\}$, for some $x \in M$. Note that $r(x)$ is a right ideal of R and $R/r(x) \cong xR$, for all $x \in M$. In the following, we characterize semi-simple ring.

Theorem 3.4. A ring R is semi-simple if and only if R is right hereditary and every epi-retractable R-module is projective.

Proof. Assume that R is a right hereditary ring and every epi-retractable R-module is projective. Let M be a simple R-module. It follows that M is epi-retractable and projective. For any $x \in M$, $xR \cong R/r(x)$. Then, xR (and hence $R/r(x)$) is projective, because R is a right hereditary ring. Therefore, the exact sequence $0 \to r(x) \to R \to R/r(x) \to 0$ splits. This implies that $r(x)$ is a direct summand of M. Since $r(x)$ is a maximal right ideal, R is a semi-simple ring. The converse is obvious. \qed

An R-module M is said to satisfy (**)-property if every non-zero endomorphism of M is an epimorphism (see [11]). In general, epi-retractable modules do not satisfy (**)-property. For example, Z as Z-module is epi-retractable, but it does not satisfy (**)-property. The following result shows that epi-retractable module with (**)-property is simple.

Proposition 3.5. An R-module M is simple if and only if M is epi-retractable with (**)-property.

Proof. Assume that M is epi-retractable with (**)-property. Let K be a proper submodule of M. Then, there is an epimorphism $f : M \to K$. This implies that f is a non-zero endomorphism from M to M. Since M satisfies (**)-property, $f(M) = M = K$. Hence, M is simple. The converse is obvious. \qed

Corollary 3.6. If an R-module M is epi-retractable with (**)-property, then $\text{End}(M_R)$ is a division ring.

An R-module M is said to satisfy (*)-property if every non-zero endomorphism of M is a monomorphism (see [7]). This is dual to the concept of (**)-property defined earlier.

Proposition 3.7. Every epi-retractable module with (*)-property is a co-Hopfian module.
Proof. Straightforward.

Theorem 3.8. A ring R is semi-simple if and only if R is a pri and von-Neumann regular ring.

Proof. Assume that R is a pri ring. Then, every right ideal of ring R is a principal right ideal. This implies that every right ideal is a direct summand of R, because R is von-Neumann regular. It follows by [10, 20.7] that R is a semi-simple ring.

Proposition 3.9. Let R be a ring such that every slightly compressible R-module is pseudo-projective. Then, R is a right V-ring if and only if R is a semi-simple ring.

Proof. Let M be a slightly compressible R-module. Suppose there is a free R-module F with an epimorphism $g : F \to M$. By [6, Theorem 1.5], F is a slightly compressible module. Then, $F \oplus M$ is a slightly compressible module by [6, Proposition 1.4]. Consider the exact sequence $0 \to \text{Ker}(g) \xrightarrow{i} F \xrightarrow{g} M \to 0$. This sequence splits by [8, Lemma 1.3]. Therefore, M is a direct summand of F. Hence, M is projective. In particular, every simple R-module is projective. It follows by [10, 20.7] that R is a semi-simple ring.

Corollary 3.10. Over a right V-ring R, if every slightly compressible R-module is pseudo-projective, then every R-module is epi-retractable.

A ring R is called right semi-artinian if every non-zero R-module has non-zero socle.

Proposition 3.11. Let R be a right semi-artinian right V-ring. Then, R is semi-simple if and only if every R-module is pseudo-projective.

Proof. Assume that over a right semi-artinian right V-ring R, every R-module is pseudo-projective. By [6, Proposition 1.18], every right R-module is slightly compressible. It follows by Proposition 3.9 that R is semi-simple.

Corollary 3.12. Over a right semi-artinian right V-ring, every pseudo-projective module is an epi-retractable module.

Recall that a ring R is right PP-ring if every cyclic right ideal of R is projective. A ring R is called a regular if for any $a \in R$ there is an element $b \in R$ with $aba = a$. Note that R is regular if and only if every right principal ideal is a direct summand in R (see [10, 3.10]).
Proposition 3.13. The followings are equivalent for a pri ring R.

1. R is a right PP-ring.
2. R is a right hereditary ring.
3. R is a von-Neumann regular ring.

Proof. (1) \Rightarrow (2). Straightforward.

(2) \Rightarrow (3). Assume the condition (2). Let L be a principal right ideal of R. Then, L is projective, because R is a right hereditary ring. Suppose $\pi : R \to L$ is an epimorphism and $I : L \to L$ is the identity map. This implies that I can be lifted to a homomorphism f from L to R, that is, $I = \pi f$. It follows that L is a direct summand of R. Hence, R is a von-Neumann regular ring.

(3) \Rightarrow (1). Obvious. \square

Acknowledgments

The authors thank the referee for his/her careful considerations.

References

Applications of epi-retractable modules

Bashishth Muni Pandeya
Department of Applied Mathematics, Institute of Technology, Banaras Hindu University, P.O. Box 221005, Varanasi, India
Email: bmpandeya@bhu.ac.in; bmpandeya@gmail.com

Avanish Kumar Chaturvedi
Department of Mathematics, Jaypee Institute of Information Technology, P.O. Box 201307, Noida(UP), India
Email: akc99@rediffmail.com; akchaturvedi.math@gmail.com

Ashok Ji Gupta
Department of Applied Mathematics, Institute of Technology, Banaras Hindu University, P.O. Box 221005, Varanasi, India
Email: ashokg@bhu.ac.in