ON SKEW ARMENDARIZ AND SKEW QUASI-ARMENDARIZ MODULES

A. ALHEVAZ AND A. MOUSSAVI∗

Communicated by Omid Ali Shehni Karamzadeh

ABSTRACT. Let α be an endomorphism and δ an α-derivation of a ring R. In this paper we study the relationship between an R-module M_R and the general polynomial module $M[x]$ over the skew polynomial ring $R[x; \alpha, \delta]$. We introduce the notions of skew-Armendariz modules and skew quasi-Armendariz modules which are generalizations of α-Armendariz modules and extend the classes of non-reduced skew-Armendariz modules. An equivalent characterization of an α-skew Armendariz module is given. Some properties of this generalization are established, and connections of properties of a skew-Armendariz module M_R with those of $M[x]_{R[x; \alpha, \delta]}$ are investigated. As a consequence we extend and unify several known results related to Armendariz modules.

1. Introduction

Throughout this paper R denotes an associative ring with unity, α is a ring endomorphism and δ an α-derivation of R, that is, δ is an additive map such that $\delta(ab) = \delta(a)b + \alpha(a)\delta(b)$, for all $a, b \in R$. We denote $R[x; \alpha, \delta]$ the Ore extension (skew polynomial ring) whose elements are the polynomials over R, the addition is defined as usual and the multiplication subject to the relation $xa = \alpha(a)x + \delta(a)$ for any $a \in R$.

Keywords: Skew polynomial ring, Baer module, Quasi-Baer module, Skew-Armendariz module, Skew quasi-Armendariz module.
Received: 20 June 2009, Accepted: 23 August 2010.
∗Corresponding author
© 2012 Iranian Mathematical Society.
A ring R is called Baer (respectively, quasi-Baer) if the right annihilator of every nonempty subset (respectively, right ideal) of R is generated, as a right ideal, by an idempotent of R. Kaplansky [23], introduced the Baer rings to abstract various properties of rings of operators on a Hilbert space. Clark [13] introduced the quasi-Baer rings and used them to characterize a finite dimensional twisted matrix units semigroup algebra over an algebraically closed field. All modules are assumed to be unitary right modules. Let $ann_R(X) = \{ r \in R \mid Xr = 0 \}$, where X is a subset of a module M_R.

In [29], Lee and Zhou introduced Baer, quasi-Baer and p.p.-modules as follows:

1. M_R is called Baer (respectively, quasi-Baer) if, for any subset (respectively, submodule) X of M, $ann_R(X) = eR$ where $e^2 = e \in R$.
2. M_R is called principally projective (or simply p.p.) module (respectively, principally quasi-Baer (or simply p.q.-Baer) module) if, for any element $m \in M$, $ann_R(m) = eR$ (respectively, $ann_R(mR) = eR$) where $e^2 = e \in R$.

Clearly, a ring R is Baer (respectively, p.p. or quasi-Baer) if and only if R_R is Baer (respectively, p.p. or quasi-Baer) module. If R is a Baer (respectively, p.p. or quasi-Baer) ring, then for any right ideal I of R, I_R is Baer (respectively, p.p. or quasi- Baer) module. It is clear that R is a right p.q.-Baer ring if and only if R_R is a p.q.-Baer module. Every submodule of a p.q.-Baer module is p.q.-Baer and every Baer module is quasi-Baer.

A ring is called reduced if it has no nonzero nilpotent elements and M_R is called reduced by Lee and Zhou [29] if, for any $m \in M$ and $a \in R$, $ma = 0$ implies $mR \cap Ma = 0$. Lee and Zhou have extended various results of reduced rings to reduced modules and Agayev et al. [1] introduced and studied abelian modules as a generalization of abelian rings.

Zhang and Chen [43] introduced the notion of α-skew Armendariz modules. Namely, an R-module M_R is called α-skew Armendariz, if for polynomials $m(x) = m_0 + m_1x + \cdots + m_kx^k \in M[x]$ and $f(x) = b_0 + b_1x + \cdots + b_nx^n \in R[x; \alpha]$, $m(x)f(x) = 0$ implies $m_i\alpha^j(b_j) = 0$ for each $0 \leq i \leq k$ and $0 \leq j \leq n$. According to Lee and Zhou [29], a module M_R is called α-Armendariz if M_R is α-compatible and α-skew-Armendariz. If α is equal to the identity, then the above definition boils down to the standard notion of Armendariz module. Moreover, they proved that R is an α-skew Armendariz ring if and only if every...
flat right \(R \)-module is \(\alpha \)-skew Armendariz. By [29], a module \(M_R \) is \(\alpha \)-reduced if \(M_R \) is \(\alpha \)-compatible and reduced.

The polynomial extensions of Baer, quasi-Baer, right p.q.-Baer and p.p.-rings and modules have been investigated by many authors [5-10, 15-21, 34-43]. Most of these have worked either with the case \(\delta = 0 \) and \(\alpha \) an automorphism or the case where \(\alpha \) is the identity. With the impetus of quantized derivations, renewed interest in the general Ore extension \(R[x; \alpha, \delta] \) has arisen during the last few years.

In this paper, we study the relationship between an \(R \)-module \(M_R \) and the general polynomial module \(M[x] \) over the skew polynomial ring \(R[x; \alpha, \delta] \). We introduce the notions of skew-Armendariz modules and skew quasi-Armendariz modules which are generalizations of \(\alpha \)-skew Armendariz modules [43] and \(\alpha \)-reduced modules [29]. An equivalent characterization of an \(\alpha \)-skew-Armendariz module is given, which is useful to simplify the proofs. Also new families of non-reduced skew-Armendariz modules are presented. Among other results, we show that there is a strong connection of the Baer, quasi-Baer and the p.p.-property of the two modules, respectively.

Furthermore, we show that for an endomorphism \(\alpha \) and an \(\alpha \)-derivation \(\delta \) of a ring \(R \), (1) A right \(R \)-module \(M_R \) is \(\alpha \)-skew-Armendariz if and only if for polynomials \(m(x) = m_0 + m_1x + \cdots + m_kx^k \in M[x] \) and \(f(x) = a_0 + a_1x + \cdots + a_nx^n \in R[x; \alpha] \), \(m(x)f(x) = 0 \) implies \(m_0b_j = 0 \) for each \(0 \leq j \leq n \); (2) An \(\alpha \)-compatible module \(M_R \) is reduced if and only if \(M[x]/M[x](x^n) \) is an \(\alpha \)-skew Armendariz module over \(R[x]/(x^n) \) for any integer \(n \geq 2 \). This result shows that \(\alpha \)-compatible reduced modules play so important roles in the study of skew-Armendariz modules (and hence skew-Armendariz rings) as that of reduced modules in the study of Armendariz modules. (3) An \((\alpha, \delta) \)-compatible module \(M_R \) is quasi-Baer (respectively, p.q.-Baer) if and only if \(M[x] \) is a quasi-Baer (respectively, p.q.-Baer) module over \(R[x; \alpha, \delta] \); (4) If \(M_R \) is skew-Armendariz with \(R \subseteq M \), then \(M_R \) is Baer (respectively, p.p.) if and only if \(M[x] \) is a Baer (respectively, p.p.-) module over \(R[x; \alpha, \delta] \); (5) A necessary and sufficient condition for the trivial extension \(T(R, R) \) to be skew quasi-Armendariz is obtained. Examples to illustrate the concepts and results are included.

We also study the relations between the set of annihilators in \(M \) and the set of annihilators in \(M[x]_{R[x; \alpha, \delta]} \). We give a sufficient condition for a module to be skew quasi-Armendariz and study the structure of the skew quasi-Armendariz modules. This work extends and unifies several
known results related to Armendariz rings and modules, in particular the landmark results of Hong et al. [20, 21], parallels results of the second author and A.R. Nasr-Isfahani [35] on Ore extensions, and complements later results of E. Hashemi [16] and Zhang and Chen [43] to general polynomial modules over Ore polynomial extension $R[x; \alpha, \delta]$.

2. Skew-Armendariz Modules

In this section the notion of a skew-Armendariz module is introduced as a generalization of skew-Armendariz rings to modules and its properties are studied. We prove that many results of skew-Armendariz rings can be extended to modules with this general settings. We show that the notion of skew-Armendariz module generalizes that of α-skew Armendariz modules of Zhang and Chen [43] as well as α-Armendariz modules and α-reduced modules of Lee and Zhou [29]. Moreover we extend the classes of skew-Armendariz modules.

We will be working here with general right modules M_R rather than just R_R, and the restrictions on α and δ we require are best phrased as conditions on the module M_R that arise from the use of general α and δ. Let us formally define these conditions here:

From the Ore commutation law, an inductive argument can be made to calculate an expression for $x^j a$, for all $j \in \mathbb{N}$ and $a \in R$. To record this result, we shall use some convenient notation introduced in [3, 27]:

Notation. Given α and δ as above and integers $j \geq i \geq 0$, let us write f^j_i for the sum of all "words" in α and δ in which there are i factors of α and $j - i$ factors of δ. For instance, $f^j_j = \alpha^j$, $f^0_0 = \delta^0$, and $f^j_{j-1} = \alpha^{j-1} \delta + \alpha^{j-2} \delta \alpha + \cdots + \delta \alpha^{j-1}$.

Using recursive formulas for the f^j_i's and induction, as done in [27], one can show with a routine computation that

\[x^j a = \sum_{i=0}^{j} f^j_i(a)x^i, \tag{2.1} \]

for all $a \in R$, where $j \geq i \geq 0$. This formula uniquely determines a general product of (left) polynomials in $S = R[x; \alpha, \delta]$ and will be used freely in what follows. More generally, given a right R-module M_R, we
can form the polynomial module $M[x]_S$ over S as follows. Elements of $M[x]$ have the form $\sum m_i x^i$ ($m_i \in M$), and the action of S on such elements is basically dictated by (2.1), since it suffices to define the action of monomials of S on monomials in $M[x]_S$ via

$$(mx^j)(ax^l) = m \sum_{i=0}^j f_i^j (a)x^{i+l}$$

for all $a \in R$ and $j, l \in \mathbb{N}$. It is readily verified that this makes $M[x]$ into an S-module.

A ring R is called Armendariz if whenever polynomials $f(x) = a_0 + a_1 x + \cdots + a_n x^n$, $g(x) = b_0 + b_1 x + \cdots + b_m x^m \in R[x]$ satisfy $f(x)g(x) = 0$, then $a_i b_j = 0$ for each i,j. Following Anderson and Camillo [2], a module M_R is called Armendariz if, whenever $m(x)f(x) = 0$, where $m(x) = \sum_{i=0}^s m_i x^i \in M[x]$ and $f(x) = \sum_{j=0}^t a_j x^j \in R[x]$, we have $m_ia_j = 0$ for all i,j.

The term Armendariz was introduced by Rege and Chhawchharia [41]. This nomenclature was used by them since it was Armendariz [5], who initially showed that a reduced ring always satisfies this condition.

The more comprehensive study of Armendariz rings was carried out recently (see, e.g., [1,2,5-6,11-12,15-22,28-29]). The interest of this notion lies in its natural and useful role in understanding the relation between the annihilators of the ring R and the annihilators of the polynomial ring $R[x]$. The reason behind these is the fact that there is a natural bijection between the set of annihilators of R and the set of annihilators of $R[x]$ (see Hirano, [19]).

In [21], C.Y. Hong, N.K. Kim and T.K. Kwak extended the Armendariz property of rings to skew polynomial rings $R[x; \alpha]$: For an endomorphism α of a ring R, R is called an α-skew Armendariz ring (or, a skew-Armendariz ring with the endomorphism α) if for polynomials $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ and $g(x) = b_0 + b_1 x + \cdots + b_m x^m$ in $R[x; \alpha]$, $f(x)g(x) = 0$ implies $a_i \alpha^i(b_j) = 0$ for each $0 \leq i \leq n$ and $0 \leq j \leq m$.

M. Başer in [6] studied relations between the set of annihilators in M_R and the set of annihilators in $M[x]$. In [43], Zhang and Chen extended a result of [42] and they showed that, a ring R is α-skew Armendariz if and only if every flat right R-module is α-skew Armendariz. Some other properties of Armendariz rings and modules have been studied in Armendariz [5], Rege and Chhawchharia [41], Rege and Buhphang [42], Anderson and Camillo [2], Hong et al. [20, 21], Kim and Lee
According to Krempa [26], an endomorphism α of a ring R is called to be rigid if $a\alpha(a) = 0$ implies $a = 0$ for $a \in R$. A ring R is said to be α-rigid if there exists a rigid endomorphism α of R. Hong et al. [20], studied Ore extensions of Baer rings over α-rigid rings, and show that a ring R is α-rigid if and only if $R[x; \alpha, \delta]$ is reduced. Clearly a reduced ring is Baer if and only if it is quasi-Baer.

In [35], the second author and A.R. Nasr-Isfahani, introduced the concept of a skew-Armendariz ring and studied its properties. Our focus in this section is to introduce the concept of a skew-Armendariz module and study its properties. We prove that the notion of skew-Armendariz module generalizes that of α-skew Armendariz rings of Hong et al. [21] and Krempa’s α-rigid rings [26] as well as that of the second author and A.R. Nasr-Isfahani’s skew-Armendariz rings [35] to general polynomial modules over Ore polynomial extension $R[x; \alpha, \delta]$.

Definition 2.1. (Zhang and Chen [43]) Let R be a ring with an endomorphism α and M_R an R-module. A module M_R is called an α-skew Armendariz module, if for polynomials $m(x) = m_0 + m_1 x + \cdots + m_k x^k \in M[x]$ and $f(x) = b_0 + b_1 x + \cdots + b_n x^n \in R[x; \alpha]$, $m(x)f(x) = 0$ implies $m_i \alpha^i(b_j) = 0$ for each $0 \leq i \leq k$ and $0 \leq j \leq n$.

Definition 2.2. Let R be a ring with an endomorphism α and α-derivation δ. Let M_R be an R-module. We say that M_R is an (α, δ)-skew Armendariz module if, for polynomials $m(x) = m_0 + m_1 x + \cdots + m_k x^k \in M[x]$ and $f(x) = b_0 + b_1 x + \cdots + b_n x^n \in R[x; \alpha, \delta]$, $m(x)f(x) = 0$ implies $m_i x^i b_j x^j = 0$ for each $0 \leq i \leq k$ and $0 \leq j \leq n$.

Notice that in the case when $\delta = 0$, the above definition boils down to the notion of α-skew Armendariz of Zhang and Chen [43].

Definition 2.3. Let R be a ring with an endomorphism α and α-derivation δ. Let M_R be an R-module. We say that M_R is a skew-Armendariz module, if for polynomials $m(x) = m_0 + m_1 x + \cdots + m_k x^k \in M[x]$ and $f(x) = b_0 + b_1 x + \cdots + b_n x^n \in R[x; \alpha, \delta]$, $m(x)f(x) = 0$ implies $m_0 b_j = 0$ for each $0 \leq j \leq n$.
It is clear that (α, δ)-skew Armendariz modules are skew-Armendariz, and each Armendariz module is α-skew Armendariz, where $\alpha = id_R$, and every submodule of a skew-Armendariz module is skew-Armendariz. It is also clear that R is a skew-Armendariz ring if R_R is an skew-Armendariz module. In [35], the second author and A.R. Nasr-Isfahani provided numerous examples of non-semiprime (and hence non-reduced) skew-Armendariz rings.

The following equivalent characterization of an α-skew-Armendariz module is useful to simplify the proofs of results in the context of Armendariz rings and modules. It is shown that our definition of a skew-Armendariz module is a generalization of Hong et al.’s α-skew Armendariz ring [21] and Zhang and Chen’s α-skew Armendariz module [43], for the more general setting.

The following result shows that our definition of a skew-Armendariz module is a generalization of the notion of an α-skew-Armendariz module for the more general setting:

Theorem 2.4. Let M_R be a module and α an endomorphism of R. Then M_R is α-skew Armendariz if and only if for every polynomials $m(x) = m_0+m_1x+\cdots+m_kx^k \in M[x]$ and $f(x) = b_0+b_1x+\cdots+b_nx^n \in R[x; \alpha]$, $m(x)f(x) = 0$ implies $m_0b_j = 0$ for each $0 \leq j \leq n$.

Proof. The forward direction is clear that if M_R is an α-skew Armendariz, then for every polynomials $m(x) = m_0+m_1x+\cdots+m_kx^k \in M[x]$ and $f(x) = b_0+b_1x+\cdots+b_nx^n \in R[x; \alpha]$, $m(x)f(x) = 0$ implies $m_0b_j = 0$ for each $0 \leq j \leq n$. For the backward direction, suppose that for every polynomials $m(x) = m_0+m_1x+\cdots+m_kx^k \in M[x]$ and $f(x) = b_0+b_1x+\cdots+b_nx^n \in R[x; \alpha]$, $m(x)f(x) = 0$ implies $m_0b_j = 0$ for each $0 \leq j \leq n$. We show that M_R is α-skew Armendariz. We have, $0 = (m_0 + m_1x + \cdots + m_kx^k)(b_0 + b_1x + \cdots + b_nx^n) = m_0(b_0+b_1x+\cdots+b_nx^n)+(m_1+m_2x+\cdots+m_kx^{k-1})x(b_0+b_1x+\cdots+b_nx^n)$. So $(m_1+m_2x+\cdots+m_kx^{k-1})(\alpha(b_0)x+\alpha(b_1)x^2+\cdots+\alpha(b_n)x^{n+1}) = 0$. Hence $m_1\alpha(b_j) = 0$ for each $0 \leq j \leq n$. Inductively, we can see that $m_i\alpha^i(b_j) = 0$ for each $0 \leq i \leq k$ and $0 \leq j \leq n$ and the result follows.

Corollary 2.5. A ring R with an endomorphism α is α-skew Armendariz if and only if for every polynomials $f(x) = a_0 + a_1x + \cdots +
If we take \(\alpha = id_R \), we deduce the following equivalent condition for a module to be Armendariz.

Corollary 2.6. A module \(M_R \) is Armendariz if and only if for every polynomials \(m(x) = m_0 + m_1x + \cdots + m_kx^k \in M[x] \) and \(f(x) = b_0 + b_1x + \cdots + b_nx^n \in R[x] \), \(m(x)f(x) = 0 \) implies \(m_0b_j = 0 \) for each \(0 \leq j \leq n \).

Corollary 2.7. A ring \(R \) is Armendariz if and only if for every polynomials \(f(x) = a_0 + a_1x + \cdots + a_nx^n \), \(g(x) = b_0 + b_1x + \cdots + b_mx^m \in R[x] \), \(f(x)g(x) = 0 \) implies \(a_0b_j = 0 \) for each \(0 \leq j \leq m \).

Definition 2.8. Let \(R \) be a ring with an endomorphism \(\alpha \) and an \(\alpha \)-derivation \(\delta \). We say that \(M_R \) is a linearly skew-Armendariz module, if for linear polynomials \(m(x) = m_0 + m_1x \in M[x] \) and \(g(x) = b_0 + b_1x + \cdots + b_nx^n \in R[x] \), \(m(x)g(x) = 0 \) implies \(m_0b_0 = m_0b_1 = 0 \).

It is clear that each skew-Armendariz module is linearly skew-Armendariz and that every submodule of a linearly skew-Armendariz module is also linearly skew-Armendariz.

By [12, Example 2.2], there exists an \(\alpha \)-skew Armendariz ring \(R \) such that \(\alpha \) is not a monomorphism and \(R \) is not a reduced ring.

Example 2.9. Let \(D \) be a domain and \(R_n(D) \) a subring of \(M_n(D) \), where \(n \geq 2 \) and

\[
R_n(D) := \left\{ \begin{pmatrix}
a & a_{12} & a_{13} & \cdots & a_{1n} \\
0 & a & a_{22} & \cdots & a_{2n} \\
0 & 0 & a & \cdots & a_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a
\end{pmatrix} \mid a, a_{ij} \in D \right\}.
\]

Let \(\alpha \) be an endomorphism of \(R_n(D) \) such that
\[\alpha \begin{pmatrix} a & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a & a_{22} & \cdots & a_{2n} \\ 0 & 0 & a & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a \end{pmatrix} = \begin{pmatrix} a & 0 & 0 & \cdots & 0 \\ 0 & a & 0 & \cdots & 0 \\ 0 & 0 & a & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a \end{pmatrix}. \]

Clearly, \(\alpha \) is not a monomorphism and \(R_n(D) \) is not a reduced ring. In [12, Example 2.2] it is proved that \(R_n(D) \) is an \(\alpha \)-skew Armendariz ring.

Let \(R \) be a subring of a ring \(S \) with \(1_S \in R \) and \(M_R \subseteq L_S \). Let \(\alpha \) be an endomorphism and \(\delta \) an \(\alpha \)-derivation of \(S \) such that \(\alpha(R) \subseteq R \) and \(\delta(R) \subseteq R \). If \(L_S \) is \((\alpha, \delta) \)-skew Armendariz, then \(M_R \) is also \((\alpha, \delta) \)-skew Armendariz.

We can deduce the following result, using the definition of skew-Armendariz modules.

Proposition 2.10. Let \(\alpha \) be an endomorphism and \(\delta \) an \(\alpha \)-derivation of a ring \(R \). The class of skew-Armendariz modules is closed under submodules, direct products and direct sums.

\section*{Definition 2.11.} (Annin, [3]) Given a module \(M_R \), an endomorphism \(\alpha : R \to R \) and an \(\alpha \)-derivation \(\delta : R \to R \), we say that \(M_R \) is \(\alpha \)-compatible if for each \(m \in M \) and \(r \in R \), we have \(mr = 0 \iff m\alpha(r) = 0 \). Moreover, we say \(M_R \) is \(\delta \)-compatible if for each \(m \in M \) and \(r \in R \), we have \(mr = 0 \Rightarrow m\delta(r) = 0 \). If \(M_R \) is both \(\alpha \)-compatible and \(\delta \)-compatible, we say that \(M_R \) is \((\alpha, \delta) \)-compatible.

The \((\alpha, \delta) \)-compatibility condition on \(M_R \) is a natural, independently interesting condition from which we can derive a number of interesting properties, and it will be of invaluable service in the proof of our main results. After a few quick remarks about Definition 2.11, we will present some results on modules and annihilators in Ore extension rings that can be deduced for these \((\alpha, \delta) \)-compatible modules. These fundamental properties of \((\alpha, \delta) \)-compatible modules will lay the groundwork for our main results.
Remark 2.12. (a) It is important to note that the α-compatibility assumption requires an “if and only if” while the δ-compatibility assumption is only a one-sided implication. The reason for the stronger assumption on α is that we will often need to consider the leading coefficient of an expression $m(x)r$, where $m(x) \in M[x]$ and $r \in R$, where by (2.1) will involve powers of α but will be free of δ. Finally, observe that in the classical case where $\delta = 0$, one never has the reverse implication to the δ-compatibility condition for a nonzero module M_R, so we certainly do not expect a two-sided implication for the condition on δ.

(b) If M_R is α-compatible (respectively, δ-compatible), then so is any submodule of M_R.

(c) If M_R is α-compatible (respectively, δ-compatible), then for all $i \geq 1$, M_R is α^i-compatible (respectively, δ^i-compatible).

The following lemma shows that the (α, δ)-compatibility property on a module M_R is inherited by the polynomial module $M[x]$.

Lemma 2.13. [3, Lemma 2.16] A module M_R is (α, δ)-compatible if and only if the polynomial extension $M[x]_R$ is (α, δ)-compatible.

Lemma 2.14. The following are equivalent for a module M_R.

(i) M_R is reduced and (α, δ)-compatible;

(ii) The following conditions hold. For any $m \in M$ and $a \in R$,

(a) $ma = 0$ implies $mRa = 0$,

(b) $ma = 0$ implies $m\delta(a) = 0$,

(c) $ma = 0$ if and only if $ma(a) = 0$,

(d) $ma^2 = 0$ implies $ma = 0$.

Proof. The proof is straightforward.

Lemma 2.15. Let M_R be an (α, δ)-compatible module. Let $m \in M$ and $a, b \in R$. Then we have the following:

(i) If $ma = 0$, then $ma^j(a) = 0 = m\delta^j(a)$ for any positive integer j;

(ii) If $mab = 0$, then $ma(\delta^j(a)\delta(b) = 0 = ma(\delta(a))\delta^j(b)$, and hence $ma\delta^j(b) = 0 = m\delta^j(a)b$ for any positive integer i, j;

(iii) $\operatorname{ann}_R(ma) = \operatorname{ann}_R(ma(a)) \subseteq \operatorname{ann}_R(m\delta(a))$.

Proof. (i) This follows from section (c) of Remark 2.12.

(ii) Suppose that $mab = 0$. Since M_R is δ-compatible, $ma\delta^j(b) = 0$ for each j.

Let \(\alpha \)-compatibility of \(M_R \), \(m\alpha(ab) = 0 \), so \(m\alpha(a)b = 0 \). Since \(M_R \) is \(\delta \)-compatible, \(m\alpha(a)\delta(b) = 0 \).

Since \(M_R \) is \(\delta \)-compatible, \(mab = 0 \) implies \(0 = m\delta(a)b + m\alpha(a)\delta(b) \).

By above, we deduce \(m\delta(a)b = 0 \).

Using \(\alpha \)-compatibility of \(M_R \), \(m\alpha(\delta(a)b) = 0 \) if and only if \(m\alpha(\delta(a))\alpha(b) = 0 \) if and only if \(m\alpha(\delta(a))b = 0 \). By \(\delta \)-compatibility of \(M_R \), we have \(m\alpha(\delta(a))\delta(b) = 0 \).

By above calculations, \(m\delta(a)b = 0 \) and by \(\delta \)-compatibility of \(M_R \), \(0 = m\delta(\delta(a)b) = m\delta^2(a)b + m\alpha(\delta(a))\delta(b) \). So, \(m\delta^2(a)b = 0 \).

Therefore, inductively we get \(m\delta^j(a)b = 0 \) for each \(j \). So, \(m\delta^j(b) = 0 \). Also, we can similarly deduce that \(m\alpha(\delta^j(a))\delta(b) = 0 \).

Now we show that \(mab = 0 \) implies that \(m\alpha(\delta(a))\delta^j(b) = 0 \). By above, \(m\delta(a)b = 0 \), and then \(\alpha \)-compatibility of \(M_R \) implies \(m\alpha(\delta(a)b) = 0 \) and hence \(m\alpha^j(\delta(a))\alpha^j(b) = 0 \). Also using \(\alpha \)-compatibility of \(M_R \), it implies \(m\alpha^j(\delta(a))b = 0 \). Since \(M_R \) is \(\delta \)-compatible, \(m\alpha^j(\delta(a))\delta^j(b) = 0 \).

These computations imply the result.

(iii) Note that \(\alpha \)-compatibility of \(M_R \) yields \(m\alpha(ab) = 0 \) \(\iff \) \(m\alpha(a)\alpha(b) = 0 \) \(\iff \) \(m\alpha(ab) = 0 \) \(\iff \) \(mab = 0 \) for all \(a, b \in R \). It remains only to show that \(\text{ann}_R(m\alpha) \subseteq \text{ann}_R(m\delta(a)) \). To see this, let \(mab = 0 \) for some \(b \in R \). Using \(\delta \)-compatibility, we get \(0 = m\delta(ab) = m(\delta(a)b + \alpha(a)\delta(b)) = 0 \).

Since we have already concluded that \(m\alpha(ab) = 0 \), \(\delta \)-compatibility implies that \(m\alpha(a)\delta(b) = 0 \), and hence \(m\delta(a)b = 0 \), as desired.

\(\Box \)

Lemma 2.16. Let \(M_R \) be an \((\alpha, \delta) \)-compatible module and \(m(x) = m_0 + \cdots + m_k x^k \in M[x] \) and \(r \in R \). Then \(m(x)r = 0 \) if and only if \(m_ir = 0 \) for all \(0 \leq i \leq k \).

Proof. Assume \(m_ir = 0 \) for all \(0 \leq i \leq k \). An easy calculation using (2.1) shows that

\[
(2.2) \quad m(x)r = \sum_{i=0}^{k} \left(\sum_{j=i}^{k} m_{j} f_{i}^{j}(r) \right) x^i.
\]

By \((\alpha, \delta) \)-compatibility of \(M_R \), we have \(m_j f_{i}^{j}(r) = 0 \), for all \(i, j \). Thus (2.2) yields \(m(x)r = 0 \). Conversely, assume that \(m(x)r = 0 \). We deduce from (2.2) that,
(2.3) \[\sum_{j=i}^{k} m_j f_i^j(r) = 0, \]

for each \(i \leq k \).

Starting with \(i = k \), Eq. (2.3) yields \(m_k \alpha^k(r) = 0 \) and hence \(m_j f_i^j(r) = 0 \), for each \(j > i \), by \((\alpha, \delta)\)-compatibility of \(M_R \). Using (2.3) again, we deduce that \(m_i \alpha^i(r) = 0 \), and that \(m_i r = 0 \) as desired. \(\square \)

Proposition 2.17. A module \(M_R \) is \(\alpha \)-reduced if and only if the polynomial extension \(M[x]_R \) is an \(\alpha \)-reduced module.

Proof. It is enough to prove the forward direction. By Lemma 2.13, \(M_R \) is \(\alpha \)-compatible if and only if \(M[x]_R \) is \(\alpha \)-compatible. Now assume that, \(M_R \) is reduced, to show that \(M[x]_R \) is reduced, using Lemma 2.14, we only need to show that \(m(x) a = 0 \) implies \(m(x) Ra = 0 \) and \(m(x) a^2 = 0 \) implies \(m(x) a = 0 \), where \(m(x) = \sum_{i=0}^{k} m_i x^i \in M[x] \) and \(a \in R \). First let \(m(x) a = 0 \). Since \(M_R \) is reduced and \(m_i a = 0 \) for each \(i \), \(m_i Ra = 0 \) for each \(i \) and hence \(m(x) Ra = 0 \). Now suppose \(m(x) a^2 = 0 \). Since \(M_R \) is reduced and \(m_i a^2 = 0 \) for each \(i \), \(m_i a = 0 \) for each \(i \) and hence \(m(x) a = 0 \). Thus \(M[x]_R \) is reduced and the result follows by Lemma 2.14. \(\square \)

Notice that, the concept of \(\alpha \)-reduced for the regular module \(R_R \) coincides with that of reduced and \(\alpha \)-compatible ring \(R \), which in this case \(R \) is indeed an \(\alpha \)-rigid ring; and note also that, a ring \(R \) is \(\alpha \)-rigid if and only if \(R \) is reduced and \((\alpha, \delta)\)-compatible. So we deduce the following:

Corollary 2.18. A ring \(R \) is \(\alpha \)-rigid if and only if \(R[x]_R \) (\(R[x; \alpha] \) or \(R[x; \alpha, \delta] \)) is an \(\alpha \)-reduced \(R \)-module.

Theorem 2.19. Every \((\alpha, \delta)\)-compatible and reduced module is skew-Armendariz.

Proof. Let \(m(x) = m_0 + \cdots + m_k x^k \in M[x] \), \(f(x) = a_0 + \cdots + a_n x^n \in R[x; \alpha, \delta] \) and \(m(x) f(x) = 0 \). So \(m_k \alpha^k(a_n) = 0 \), because it is the leading coefficient of \(m(x) f(x) \). By \(\alpha \)-compatibility of \(M_R \), we have \(m_k a_n = 0 \). By Lemma 2.14, \(m_k Ra_n = 0 \), and by \((\alpha, \delta)\)-compatibility of \(M_R \), \(m_k f_i^j(a_n) = 0 \). Thus the coefficient of \(x^{k+n-1} \) in the equation \(m(x) f(x) = 0 \) is \(m_k \alpha^k(a_{n-1}) + m_{k-1} \alpha^{k-1}(a_n) = 0 \). Multiplying by \(a_n \) from right we
get \(m_{k-1} \alpha^{k-1} (a_n) a_n = 0 \). Using \(\alpha \)-compatibility repeatedly we obtain \(m_{k-1} a_n^2 = 0 \). Hence \(m_{k-1} a_n = 0 \), by Lemma 2.14. So \(m_{k-1} R a_n = 0 \), by Lemma 2.14 and by \((\alpha, \delta)\)-compatibility of \(M_R \), \(m_{k-1} f^j_i (a_n) = 0 \). Therefore \(m_{k-1} a_{n-1} = 0 \). Continuing this process and using \((\alpha, \delta)\)-compatibility of \(M_R \), we obtain \(m_i x^j a_j x^j = 0 \) for each \(0 \leq i \leq k \) and \(0 \leq j \leq n \). Since \((\alpha, \delta)\)-skew Armendariz modules are skew Armendariz, the result follows. \(\square \)

Zhang and Chen [43] proved that, for an endomorphism \(\alpha \) of a ring \(R \) and \(\alpha^\ell = id_R \) for some positive integer \(\ell \), \(M_R \) is \(\alpha \)-reduced if and only if \(M[x]/M[x](x^n) \) is an \(\alpha \)-skew Armendariz module over \(R[x]/(x^n) \) for integer \(n \geq 2 \). They also asked if the condition \(\alpha^\ell = id_R \) superfluous.

For a right \(R \)-module \(M_R \) and \(A = (a_{ij}) \in M_n(R) \), let \(MA = \{ (ma_{ij}) \mid m \in M \} \). For \(n \geq 2 \), let \(V = \sum_{i=1}^{n-1} E_{i,i+1} \) where \(\{ E_{i,j} \mid 1 \leq i,j \leq n \} \) are the matrix units, and set \(T(R, n) = R I_n + RV + \cdots + R V^{n-1} \), \(T(M, n) = M I_n + MV + \cdots + M V^{n-1} \). Then \(T(R, n) \) is a ring and \(T(M, n) \) becomes a right module over \(T(R, n) \) under usual addition and multiplication of matrices. There is a ring isomorphism \(\psi : T(R, n) \rightarrow R[x]/(x^n) \) given by \(\psi(r_0 I_n + r_1 V + \cdots + r_{n-1} V^{n-1}) = r_0 + r_1 x + \cdots + r_{n-1} x^{n-1} + (x^n) \) and an Abelian group isomorphism \(\phi : T(M, n) \rightarrow M[x]/M[x](x^n) \) given by \(\phi(m_0 I_n + m_1 V + \cdots + m_{n-1} V^{n-1}) = m_0 + m_1 x + \cdots + m_{n-1} x^{n-1} + M[x](x^n) \) such that \(\phi(W A) = \phi(W) \psi(A) \) for all \(W \in T(M, n) \) and \(A \in T(R, n) \).

Notice that

\[
T(R, n) := \left\{ \begin{pmatrix} a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} \\ 0 & a_0 & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & a_0 \end{pmatrix} \mid a_i \in R \right\},
\]

with \(n \geq 2 \), is a ring with point-wise addition and usual matrix multiplication. We can denote elements of \(T(R, n) \) by \((a_0, a_1, \ldots, a_{n-1}) \).

Lee and Zhou [29] proved that for each integer \(n \geq 2 \), \(M[x]/M[x](x^n) \) is an Armendariz right module over \(R[x]/(x^n) \) if and only if \(M_R \) is reduced. In the following we generalize this to \(\alpha \)-reduced modules.

Let \(\alpha \) be an endomorphism of a ring \(R \). Then the map \(T(R, n) \rightarrow T(R, n) \) defined by \(a_0 I_n + a_1 V + \cdots + a_{n-1} V^{n-1} \rightarrow \alpha(a_0) I_n + \alpha(a_1) V + \cdots + \alpha(a_{n-1}) V^{n-1} \) is an endomorphism of \(T(R, n) \). Similarly it is easy to see that the map \(R[x]/(x^n) \rightarrow R[x]/(x^n) \) defined by \(a_0 + a_1 x + \cdots + \)
\[a_{n-1}x^{n-1} + (x^n) \to \alpha(a_0) + \alpha(a_1)x + \cdots + \alpha(a_{n-1})x^{n-1} + (x^n) \] is an endomorphism of \(R[x]/(x^n) \). We will also denote the two maps above by \(\alpha \).

The following result shows that \(\alpha \)-compatible reduced modules play so important roles in the study of skew-Armendariz modules (and hence skew-Armendariz rings) as that of reduced rings in the study of Armendariz rings.

Theorem 2.20. An \(\alpha \)-compatible module \(M_R \) is reduced if and only if \(M[x]/M[x](x^n) \) is an \(\alpha \)-skew Armendariz module over \(R[x]/(x^n) \) for integer \(n \geq 2 \).

Proof. First assume that \(T(M, n) \) is an \(\alpha \)-skew Armendariz module over \(T(R, n) \) and let \(ma = 0 \) for \(a \in R \) and \(m \in M \). Let \(p(x) = (m, 0, \ldots, 0) + (0, 0, \ldots, m \alpha)x \in T(M, n)[x; \alpha] \), \(q(x) = (a, 0, \ldots, 0) - (0, 0, \ldots, r\alpha(a))x \in T(R, n)[x; \alpha] \) with \(p(x)q(x) = 0 \). Since \(T(M, n) \) is \(\alpha \)-skew Armendariz, \((m, 0, \ldots, 0)(0, 0, \ldots, r\alpha(a)) = 0 \) implies \(m\alpha(a) = 0 \) for each \(r \in R \). Hence \(m\alpha(a) = 0 \) yields \(m\alpha = 0 \), because \(M_R \) is \(\alpha \)-compatible. Thus \(M_R \) is reduced. Conversely, assume that \(M_R \) is reduced. Consider the following mapping

\[
\varphi_1 : T(M, n)[x; \alpha] \to T(M[x; \alpha], n), \text{ given by } \varphi_1(A_0 + A_1x + \cdots + A_kx^k) = (f_1, f_2, \ldots, f_n), \text{ where } A_i = (a_{i1}, a_{i2}, \ldots, a_{in}) \in T(M, n), f_i' = a_{i0} + a_{i1}x + \cdots + a_{ik}x^k \in M[x], 0 \leq i \leq k \text{ and } 1 \leq i' \leq n. \]

\[
\varphi_2 : T(R, n)[x; \alpha] \to T(R[x; \alpha], n), \text{ given by } \varphi_2(B_0 + B_1x + \cdots + B_lx^l) = (g_1, g_2, \ldots, g_n), \text{ where } B_j = (b_{j1}, b_{j2}, \ldots, b_{jn}) \in T(R, n), f_j' = b_{j0} + b_{j1}x + \cdots + b_{jl}x^l \in R[x; \alpha], 0 \leq j \leq l \text{ and } 1 \leq j' \leq n. \]

It is easy to see that \(\varphi_1, \varphi_2 \) are isomorphisms. Suppose that \(p = A_0 + A_1x + \cdots + A_tx^t \in T(M, n)[x; \alpha] \) and \(q = B_0 + B_1x + \cdots + B_mx^m \in T(R, n)[x; \alpha] \), where \(A_i = (a_{i1}, a_{i2}, \ldots, a_{in}) \in T(M, n) \), for each \(0 \leq i \leq t \) and \(B_j = (b_{j1}, b_{j2}, \ldots, b_{jn}) \in T(R, n) \) for each \(0 \leq j \leq m \) and let \(p(x)q(x) = 0 \). Suppose that \(p_i = a_{i0} + a_{i1}x + \cdots + a_{it}x^t \in M[x; \alpha] \) and \(q_j = b_{0j} + b_{1j}x + \cdots + b_{mj}x^m \in R[x; \alpha] \), then \(p_iq_j = 0 \) for \(1 \leq i \leq n \) and \(1 \leq j \leq n - i + 1 \). We then have the system of equations

\[
\begin{align*}
(A_0) & \quad a_{00}b_{0j} = 0, \\
(A_1) & \quad a_{00}b_{1j} + a_{1j} \alpha(b_{0j}) = 0, \\
(A_2) & \quad a_{00}b_{2j} + a_{1j} \alpha(b_{1j}) + a_{2j} \alpha^2(b_{2j}) = 0, \\
& \quad \vdots \\
(A_{t+m-1}) & \quad a_{(t-1)j}b_{mj} + a_{tj} \alpha(b_{(m-1)j}) = 0, \\
(A_{t+m}) & \quad a_{tj} \alpha^t(b_{mj}) = 0.
\end{align*}
\]
Let (A_{t+m}), we have \(a_t \alpha^t(b_{mj}) = 0\), which implies \(a_t b_{mj} = 0\), by \(\alpha\)-compatibility of \(M_R\). Hence \(a_t R b_{mj} = 0\). Multiplying \((A_{t+m-1})\) by \(b_{mj}\) from the right, \((A_{t+m-1})\) becomes \(a_{(t-1)} b_{mj}^2 + a_t \alpha^t(b_{(m-1)j}) b_{mj} = 0\).

Since \(a_t R b_{mj} = 0\), we get \(a_{(t-1)} b_{mj}^2 = 0\). But \(M_R\) is reduced, so \(a_{(t-1)} b_{mj} = 0\). Continuing this process, we have \(a_0 b_{lj} = 0\), where \(0 \leq l \leq m\), \(1 \leq i \leq n\) and \(1 \leq j \leq n - i + 1\). This shows that \(A_0 B_s = 0\) for \(0 \leq s \leq m\), proving that \(T(M, n)\) is \(\alpha\)-skew Armendariz module over \(T(R, n)\).

Corollary 2.21. [29, Theorem 1.9] A module \(M_R\) is reduced if and only if \(M[x]/M[x](x^n)\) is an Armendariz module over \(R[x]/(x^n)\) for an integer \(n \geq 2\).

Next we recall a well-known result.

Proposition 2.22. Suppose that \(M\) is a flat right \(R\)-module. Then for every exact sequence \(0 \to K \to F \to M \to 0\), where \(F\) is \(R\)-free, we have \((FI) \cap K = KI\) for each left ideal \(I\) of \(R\); in particular, we have \(Fa \cap K = Ka\) for each element \(a\) of \(R\).

Proposition 2.23. Let \(\alpha\) be an endomorphism of a ring \(R\) and \(\delta\) an \(\alpha\)-derivation. Then \(R\) is a skew-Armendariz ring if and only if every flat \(R\) module \(M\) is skew-Armendariz.

Proof. Let \(M\) be a flat \(R\)-module. Suppose \(0 \to K \to F \to M \to 0\) is an exact sequence with \(F\) free over \(R\). For an element \(y \in F\), we denote \(\bar{y} = y + K\) in \(M\). Suppose that \(f(x) = \sum_{i=0}^{t} \bar{y}_i x^i \in M[x]\) and \(g(x) = \sum_{j=0}^{n} a_j x^j \in R[x; \alpha, \delta]\) with \(f(x)g(x) = 0\). We show that \(\bar{y}_0 a_j = 0\) for \(0 \leq j \leq n\). We have \(f(x)g(x) = 0\), so we get,

The constant term: \(\bar{y}_0 a_0 + \bar{y}_1 \delta(a_0) + \bar{y}_2 \delta^2(a_0) + \cdots = 0\);

The coefficient of \(x\): \(\bar{y}_0 a_1 + \bar{y}_1 \alpha(a_0) + \bar{y}_1 \delta(a_1) + \cdots = 0\);

\(\vdots\)

The coefficient of \(x^{t+n}\): \(\bar{y}_t \alpha^t(a_n) = 0\).

Since \(M\) is a flat \(R\)-module, there exists an \(R\)-module homomorphism \(\beta: F \to K\) such that \(\beta\) fixes these coefficients. Write \(w_i := \beta(y_i) - y_i\) for \(i = 0, 1, \ldots, t\). Each \(w_i\) is an element of \(F\), therefore the polynomial \(h(x) = \sum_{j=0}^{t} w_j x^j \in F[x]\) and \(h(x)g(x) = 0\). Since \(R\) is skew-Armendariz and \(F\) is a free \(R\)-module, \(F\) is skew-Armendariz by Proposition 2.10. Thus, we have \(w_0 a_j = 0\) for all \(j\). It follows that \(y_0 a_j \in K\) for all \(j\), so \(\bar{y}_0 a_j = 0\).
in M, proving that M is skew-Armendariz.

\[\square \]

Put $\text{Ann}_R(2^{M_R}) = \{\text{Ann}_R(U) \mid U \subseteq M_R\}$, where M_R is an R-module.

Theorem 2.24. Let M_R be an (α, δ)-compatible module and $S = R[x; \alpha, \delta]$. Then the following statements are equivalent:

1. M_R is a skew-Armendariz module;
2. The map $\psi : \text{Ann}_R(2^{M_R}) \rightarrow \text{Ann}_S(2^{M[x]_S})$, defined by $A \mapsto AS$ for all $A \in \text{Ann}_R(2^{M_R})$, is bijective.

Proof. (1) \Rightarrow (2). Consider the maps $\psi : \{\text{Ann}_R(U) \mid U \subseteq M_R\} \rightarrow \{\text{Ann}_S(U) \mid U \subseteq M[x]_S\}$ defined by $A \mapsto AS$ for every $A \in \{\text{Ann}_R(U) \mid U \subseteq M_R\}$, and $\psi' : \{\text{Ann}_S(U) \mid U \subseteq M[x]_S\} \rightarrow \{\text{Ann}_R(U) \mid U \subseteq M_R\}$ defined by $B \mapsto B \cap R$. It is clear that ψ is well defined, because $\text{Ann}_R(U)S = \text{Ann}_S(U)$ for each $U \subseteq M_R$. Since M_R is (α, δ)-compatible, we see that $\text{Ann}_S(V) \cap R = \text{Ann}_R(V_0)$ for each $V \subseteq M[x]_S$, where V_0 is the set of coefficients of all elements of V. Hence ψ' is also well defined. Since $\psi' \psi = \text{id}$, ψ is injective. Assume that $B \in \{\text{Ann}_S(U) \mid U \subseteq M[x]_S\}$, then $B = \text{Ann}_S(J)$ for some $J \subseteq M[x]_S$. Let B_1 and J_1 denote the set of coefficients of elements of B and J, respectively. We claim that $\text{Ann}_R(J_1) = B_1R$. Let $m(x) = m_0 + m_1x + \cdots + m_kx^k \in J$ and $f(x) = b_0 + b_1x + \cdots + b_nx^n \in B$. Then $m(x)f(x) = 0$. Since M_R is skew-Armendariz and (α, δ)-compatible, $m_ib_j = 0$ for all i and j. Thus $J_1B_1 = 0$, hence $B_1R \subseteq \text{Ann}_R(J_1)$. Since M_R is (α, δ)-compatible, $\text{Ann}_R(J_1) \subseteq B_1R$. Thus $\text{Ann}_R(J_1) = B_1R$, and hence $\text{Ann}_S(J) = B_1RS$. Therefore ψ is surjective.

(2) \Rightarrow (1). Let $m(x) = m_0 + m_1x + \cdots + m_kx^k \in M[x]_S$ and $f(x) = b_0 + b_1x + \cdots + b_nx^n \in S = R[x; \alpha, \delta]$ satisfy $m(x)f(x) = 0$. Then $f(x) \in \text{Ann}_S(m(x)) = AS$, where $A = \text{Ann}_R(U)$ and $U \subseteq M_R$. Hence $b_0, \ldots, b_n \in A$ and so $m(x)b_j = 0$ for $0 \leq j \leq n$. Hence $m_0b_j = 0$ for each $0 \leq j \leq n$, and the result follows.

\[\square \]

Theorem 2.25. If M_R is a linearly skew-Armendariz module with $R \subseteq M$, then for each idempotent $e \in R$, $\alpha(e) = e$ and $\delta(e) = 0$.

Proof. Since M_R is a linearly skew-Armendariz module with $R \subseteq M_R$, then R_R is also linearly skew-Armendariz. Hence by [35, Theorem 3.1], the result follows.

\[\square \]
N. Agayev et al. [1] introduced and studied the notion of abelian modules:
A module M_R is called abelian if, for any $m \in M$ and any $a \in R$, any idempotent $e \in R$, $mae = mea$. It is proved in [1] that every Armendariz module and hence every reduced module is abelian. The class of abelian modules is closed under direct sums, and a ring R is abelian if and only if every flat R-module is abelian.

Theorem 2.26. If M_R is a linearly skew-Armendariz module with $R \subseteq M$, then M_R is an abelian module.

Proof. Let M_R be a linearly skew-Armendariz module. Consider the polynomials $m_1(x) = me - mer(1-e)x$ and $m_2(x) = m(1-e) - m(1-e)rex \in M[x]_{R[x;\alpha,\delta]}$ and $f_1(x) = (1-e) + er(1-e)x$ and $f_2(x) = e + (1-e)rex \in R[x;\alpha,\delta]$, where e is an idempotent in R, $r \in R$ and $m \in M$. Since $\alpha(e) = e$ and $\delta(e) = 0$, we have $m_1(x)f_1(x) = 0$ and $m_2(x)f_2(x) = 0$. Since M_R is linearly skew-Armendariz, we get $mere = mer$ and $mere = mre$. Thus $mere = mre$ for each $r \in R$, and hence M_R is an abelian module.

Corollary 2.27. If M_R is a skew-Armendariz module with $R \subseteq M$, then M_R is an abelian module.

Theorem 2.28. Let M_R be a reduced module. Then M_R is a p.p.-module if and only if M_R is a p.q.-Baer module.

Proof. Since M_R is reduced, by Lemma 2.14, for each $m \in M$ and $a \in R$, $ma = 0$ implies $mRa = 0$. So $ann_R(m) \subseteq ann_R(mR)$ and hence $ann_R(m) = ann_R(mR)$.

Theorem 2.29. Let M_R be an (α,δ)-compatible and skew-Armendariz module with $R \subseteq M$. Then M_R is p.p. if and only if $M[x]_{R[x;\alpha,\delta]}$ is p.p.

Proof. Suppose that M_R is a p.p.-module and $m(x) = m_0 + m_1x + \cdots + m_kx^k \in M[x]$. So $ann_R(m_i) = e_iR$ for idempotents $e_i \in R$ with $0 \leq i \leq k$. Set $e = e_0e_1\cdots e_k$, then e is an idempotent, this is because M_R is abelian by Corollary 2.27. Hence $eR = \cap_{i=0}^{k}ann_R(m_i)$. By Theorem 2.25, $\alpha(e) = e$ and $\delta(e) = 0$. Thus $m(x)e = 0$ and hence $eS \subseteq ann_S(m(x))$, where $S = R[x;\alpha,\delta]$. Next, assume that $q(x) =$
\[\sum_{j=0}^{n} b_j x^j \in \text{ann}_S(m(x)) \]. Since \(M_R \) is skew-Armendariz, \(m_0b_j = 0 \) for \(0 \leq j \leq n \). So \(b_j \in eR \) and hence \(q(x) \in eS \), so \(\text{ann}_S(m(x)) = eS \). This shows that \(M[x] \) is a p.p.-module over \(R[x; \alpha, \delta] \).

Conversely, suppose that \(M[x] \) is a p.p.-module over \(R[x; \alpha, \delta] \) and \(m \in M \). Let \(e(x) = e_0 + e_1 x + \cdots + e_n x^n \) be an idempotent in \(R[x; \alpha, \delta] \). Then from \(e(1-e) = 0 = (1-e)e \), we get \((e_0 + e_1 x + \cdots + e_n x^n)(1-e_0 - e_1 x - \cdots - e_n x^n) = 0 \) and \((1-e_0 - e_1 x - \cdots - e_n x^n)(e_0 + e_1 x + \cdots + e_n x^n) = 0 \). Since \(M_R \) is skew-Armendariz, \(e_0(1-e_0) = 0 \), \((1-e_0)e_i = 0 \). So \(e_0e_i = 0 \), \(e_i = e_0e_i \), and hence \(e_i = 0 \). Thus \(e(x) = e_0^2 = e_0 \in R \), and \(\text{ann}_S(m) = eS \), which yields \(\text{ann}_R(m) = eR \) and the result follows.

\[\text{Theorem 2.30.} \text{ Let } M_R \text{ be an } (\alpha, \delta) \)-compatible skew-Armendariz module with } R \subseteq M. \text{ Then } M_R \text{ is Baer if and only if } M[x]_{R[x; \alpha, \delta]} \text{ is Baer.} \]

\[\text{Proof.} \text{ Assume that } M_R \text{ is a Baer module and } J \subseteq M[x]. \text{ First suppose } J_0 = \{ m \in M | m \text{ is a leading coefficient of some non-zero element of } J \}. \text{ Clearly, } J_0 \text{ is a subset of } M. \text{ Since } M_R \text{ is Baer, there exists } e^2 = e \in R \text{ such that } \text{ann}_R(J_0) = eR. \text{ Hence } eS \subseteq \text{ann}_S(J) \text{ by Lemma 2.15. Let } f(x) = b_0 + b_1 x + \cdots + b_n x^n \in \text{ann}_S(J). \text{ Then } J_0b_j = 0 \text{ for each } j = 0, \ldots, n, \text{ because } M_R \text{ is skew-Armendariz. Hence } b_j = eb_j \text{ for each } j = 0, \ldots, n \text{ and } f(x) = ef(x) \in eS. \text{ Thus } \text{ann}_S(J) = eS \text{ and } M[x]_S \text{ is a Baer module. Conversely, assume that } M[x]_S \text{ is a Baer module and } A \subseteq M. \text{ Then } A[x] \subseteq M[x]. \text{ Since } M[x] \text{ is Baer, there exists an idempotent } e(x) = e_0 + \cdots + e_n x^n \in S \text{ such that } \text{ann}_S(A[x]) = e(x)S. \text{ Hence } Ae_0 = 0 \text{ and } e_0 R \subseteq \text{ann}_R(A). \text{ Next, let } t \in \text{ann}_R(A). \text{ Then } A[x]t = 0 \text{ by Lemma 2.16. Hence } t = e(x)t \text{ and so } t = e_0 t \in e_0 R. \text{ Thus } \text{ann}_R(A) = e_0 R \text{ and } M_R \text{ is a Baer module.} \]

\[\text{Example 2.31.} \text{ Let } F \text{ be a field and } R = \left(\begin{array}{cc} F & 0 \\ 0 & F \end{array} \right) \text{ and let } M_R = \left(\begin{array}{cc} F & 0 \\ F & 0 \end{array} \right) \text{ be a right } R \text{-module. Let } \alpha : R \rightarrow R \text{ be the automorphism given by } \alpha \left(\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right) = \left(\begin{array}{cc} b & 0 \\ 0 & a \end{array} \right), \text{ for each } a,b \in F. \text{ Note that } R \text{ is an abelian ring and } M_R \text{ is an abelian module. But we see that } M_R \text{ is not } \alpha\text{-skew Armendariz. For this let } m(x) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) + \left(\begin{array}{cc} -2 & 0 \\ 0 & 0 \end{array} \right) x \in \text{ann}_R(m(x)). \]
Let $M[x]$ and $f(x) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} x \in R[x; \alpha]$. Then, we can easily see that $m(x)f(x) = 0$. But we have, $m_0a_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \neq 0$.

McCoy [31, Theorem 2] proved that if R is a commutative ring, then whenever $g(x)$ is a zero-divisor in $R[x]$ there exists a nonzero $c \in R$ such that $cg(x) = 0$. We shall extend this result as follows.

Proposition 2.32. Let M_R be an (α, δ)-compatible and reduced module. If $m(x)$ is a torsion element in $M[x]$ (i.e., $m(x)h(x) = 0$ for some $0 \neq h(x) \in R[x; \alpha, \delta]$), then there exists a non-zero element c of R such that $m(x)c = 0$.

Proof. Let $m(x) = \sum_{i=0}^n m_i x^i \in M[x]$ and $h(x) = \sum_{j=0}^s h_j x^j \in R[x; \alpha, \delta]$ and $m(x)h(x) = 0$. Then $m_n \alpha^n(h_s) = 0$, and since M is α-compatible, we have $m_n h_s = 0$. By Lemma 2.14, we get $m_n Rh_s = 0$. Since M_R is (α, δ)-compatible, it is (α^i, δ^j)-compatible for each i, j and hence $m_n f_j^i(h_s) = 0$ for each $j \geq i \geq 0$. Hence the coefficient of x^{n+i-1} in $m(x)h(x) = 0$ is $m_n \alpha^n(h_{s-1}) + m_{n-1} \alpha^{n-1}(h_s) = 0$.

Multiply the above equation from right by h_s, we get $m_{n-1} \alpha^{n-1}(h_s)h_s = 0$. Using α-compatibility repeatedly, we obtain $m_{n-1} h_s^2 = 0$, and then by Lemma 2.14, we have $m_{n-1} h_s = 0$. Using Lemma 2.14 again, we have $m_{n-1} Rh_s = 0$, and by (α, δ)-compatibility of M_R, $m_{n-1} f_j^i(h_s) = 0$ for each $j \geq i \geq 0$. Hence the coefficient of x^{n+i-2} in $m(x)h(x) = 0$ is $m_n \alpha^n(h_{s-2}) + m_{n-1} \alpha^{n-1}(h_{s-1}) + m_n f_{n-1}^n(h_{s-1}) + m_{n-2} \alpha^{n-2}(h_s) = 0$.

Multiplying the above equation from right by h_s, we get $m_{n-2} \alpha^{n-2}(h_s)h_s = 0$. Using α-compatibility repeatedly we obtain $m_{n-2} h_s^2 = 0$, and then by Lemma 2.14, we have $m_{n-2} h_s = 0$. Continuing this process we deduce that $m_j h_s = 0$ for each j. Since $h(x) \neq 0$ we may assume that $c = h_s \neq 0$. Then by Lemma 2.16, we get $m(x)c = 0$.

\[\square \]

Corollary 2.33. Let M_R be an (α, δ)-compatible and reduced module. Then M_R is Baer (respectively, p.p.) if and only if so is $M[x]_{R[x; \alpha, \delta]}$.

Proof. This follows from Theorems 2.19, 2.29 and 2.30. \[\square \]
Corollary 2.34. Let \(R \) be an \(\alpha \)-compatible and reduced ring. Then \(R \) is Baer (respectively, p.p.) if and only if \(R[x; \alpha, \delta] \) is Baer (respectively, p.p.).

Proof. Since \(R_R \) is \(\alpha \)-compatible and reduced, by definition, \(R \) is an \(\alpha \)-rigid ring. Hence the result follows by Theorems 11 and 14 of [20].

Example 2.35. Let \(R_0 \) be a domain with characteristic 0 and let \(R \) be the polynomial ring \(R_0[t] \). Let \(\alpha \) be the automorphism of \(R \) which is invariant on \(R_0 \) and \(\alpha(t) = -t \). For each fixed element \(a \in R_0 \), let \(\delta \) be the derivation on \(R \) given by \(\delta(at^n) = \begin{cases} at^{n-1} & \text{if } n \text{ is odd,} \\ 0 & \text{if } n \text{ is even.} \end{cases} \)

Assume that \(M := R_0 \oplus R_0 \oplus \cdots \). Then \(M \) is a right \(R \) module given by \((m_0, m_1, \cdots)^r = (0, m_0 k_0, m_1 k_1, \cdots) \) for each \((m_0, m_1, \cdots) \in M \) and \(r \in R \) and fixed non-zero integers \(k_0, k_1, k_2, \cdots \). First we show that \(M_R \) is \((\alpha, \delta)\)-compatible. It is enough to show that for each \(0 \neq m \in M \), \(\text{ann}(m) = 0 \). Suppose that \((a_0, a_1, a_2, \cdots)(b_0 t^r + b_{r+1} t^{r+1} + \cdots) = 0 \), where \(a_i, b_i \in R_0 \) for each \(i \in \mathbb{N}_0 \) and \(b_r \neq 0 \). So we have \((0, 0, \cdots, 0, a_0 k_0 k_1 \cdots k_{r-1}, a_1 k_1 k_2 \cdots k_r, \cdots)(b_0 + b_r t + \cdots) = 0 \).

This implies that \(a_0 k_0 k_1 \cdots k_{r-1} b_r = 0 \). Since \(R_0 \) is of characteristic 0, \(R \) is a domain. Since \(b_r \neq 0 \) and hence \(k_0 k_1 \cdots k_{r-1} b_r \neq 0 \), we get \(a_0 = 0 \). By induction we can see that \(a_i = 0 \) for each \(i \). Now we show that \(M_R \) is \((\alpha, \delta)\)-skew Armendariz. To see this let \(m(x) = m_0 + m_1 x + \cdots + m_k x^k \in M[x] \) and \(f(x) = b_0 + b_1 x + \cdots + b_n x^n \in R[x; \alpha, \delta] \) with \(0 = m(x) f(x) = \sum_{p=0}^{k+n} \left(\sum_{i+l=p} \sum_{j=i}^k \alpha^j f_i^j(b_l) \right) x^p \). So \(m_k \alpha^k(a_n) = 0 \). By \(\alpha \)-compatibility of \(M_R \), we have \(m_k a_n = 0 \). Since \(M_R \) is reduced module, \(m_k R a_n = 0 \). On the other hand, by \((\alpha, \delta)\)-compatibility of \(M_R \), \(m_k f_i^j(a_n) = 0 \). Thus the coefficient of \(x^{k+n-1} \) in equation \(m(x) f(x) = 0 \) is \(m_k \alpha^k(a_{n-1}) + m_{k-1} \alpha^{k-1}(a_n) = 0 \). Multiplying by \(a_n \) from right we get \(m_k-1 \alpha^{k-1}(a_n) a_n = 0 \). Using \(\alpha \)-compatibility repeatedly we obtain \(m_k-1 a_n^2 = 0 \). Hence \(m_k-1 a_n = 0 \). Since \(M_R \) is reduced, \(m_k R a_n = 0 \), and by \((\alpha, \delta)\)-compatibility of \(M_R \), \(m_k f_i^j(a_n) = 0 \). Therefore \(m_k a_n = 0 \). Continuing this process and using \((\alpha, \delta)\)-compatibility of \(M_R \), we obtain \(m_i x^i a_j x^j = 0 \) for each \(0 \leq i \leq k \) and \(0 \leq j \leq n \), as desired.

In the following, we show by an example that the “\((\alpha, \delta)\)-compatibility condition” in Lemma 2.16, is not superfluous.
Example 2.36. Let R_0 be a domain and $R = R_0[t_1, t_2]$, where t_1, t_2 are commuting indeterminates. Let α be the R_0-automorphism defined by $\alpha(t_1) = t_2$ and $\alpha(t_2) = t_1$. Let M be the polynomial ring $R_0[t_1]$. Consider M to be a right R-module given by ordinary polynomial multiplication subject to the condition $Mt_2 = 0$. Then it is easy to see that M_R is not α-compatible. Now take $0 \neq m(x) = g_0(t_1) + g_1(t_1)x + \cdots + g_r(t_1)x^r \in M[x]$ and $t_2 \in R$. Then $0 = m(x)t_2 = g_0(t_1)t_2 + g_1(t_1)xt_2 + \cdots + g_r(t_1)x^rt_2 = g_1(t_1)t_1x + g_3(t_1)t_1x^3 + \cdots$. Thus for odd integers i, $g_i(t_1)t_1 = 0$ which implies that $g_i(t_1) = 0$, as R_0 is a domain. But $0 \neq m(x)$, so for some even number j, $0 \neq g_j(t_1)$ and hence $g_j(t_1)t_2 \neq 0$ for some j.

3. Skew Quasi-Armendariz Modules

Following Hirano [19], a module M_R is called quasi-Armendariz if, whenever $m(x)R[x]f(x) = 0$, where $m(x) = \sum_{i=0}^{t} m_i x^i \in M[x]$ and $f(x) = \sum_{j=0}^{l} a_j x^j \in R[x]$, we have $m_i Ra_j = 0$ for all i, j.

In this section, we generalize the notions of quasi-Armendariz rings and quasi-Armendariz modules and consider the relations between the set of annihilators in M_R and the set of annihilators in $M[x]_{R[x, \alpha, \delta]}$.

We give a sufficient condition for a module to be skew quasi-Armendariz and study the structure of the skew quasi-Armendariz modules.

By Hirano in [19], a ring R is called a quasi-Armendariz ring if, whenever $f(x)R[x]g(x) = 0$ where $f(x) = a_0 + a_1 x + \cdots + a_m x^m \in R[x]$ and $g(x) = b_0 + b_1 x + \cdots + b_n x^n \in R[x]$, it implies that $a_i Rb_j = 0$ for all i and j. Every semiprime ring is a quasi-Armendariz ring, by [19].

In [19], a module M_R is called a quasi-Armendariz module if whenever $m(x)R[x]f(x) = 0$, where $m(x) = m_0 + m_1 x + \cdots + m_k x^k \in M[x]$ and $f(x) = b_0 + b_1 x + \cdots + b_n x^n \in R[x]$, it implies that $m_i Rb_j = 0$ for all i and j.

Definition 3.1. Let M_R be a module, α an endomorphism of R and δ an α-derivation. We say M_R is skew quasi-Armendariz, if whenever $m(x) = \sum_{i=0}^{k} m_i x^i \in M[x]$, $f(x) = \sum_{j=0}^{n} b_j x^j \in R[x; \alpha, \delta]$ satisfy $m(x)R[x; \alpha, \delta]f(x) = 0$, we have $m_i R x^t b_j x^j = 0$ for $t \geq 0$, $i = 0, 1, \ldots, k$ and $j = 0, 1, \ldots, n$.
Theorem 3.2. Let M_R be an α-compatible module and $S = R[x;\alpha]$. Then,
(1) The following statements are equivalent:
(a) for any $m(x) \in M[x]_S$, $(\text{ann}_S(m(x)S) \cap R)[x;\alpha] = \text{ann}_S(m(x)S)$.
(b) for any $m(x) = \sum_{i=0}^{k} m_i x^i \in M[x]_S$ and $f(x) = \sum_{j=0}^{t} a_j x^j \in S$, $m(x)Sf(x) = 0$ implies $m_i R a_j = 0$, for each i, j.
(2) Let M_R be an skew quasi-Armendariz module and $m(x) \in M[x]_S$. If $\text{ann}_S(m(x)S) \neq 0$, then $\text{ann}_S(m(x)S) \cap R \neq 0$.

Proof. (1). (a) \Rightarrow (b) Let $m(x) = \sum_{i=0}^{k} m_i x^i \in M[x]_S$, $f(x) = \sum_{j=0}^{t} a_j x^j \in S$ and assume that $m(x)Sf(x) = 0$. By (a), $f(x) \in (\text{ann}_S(m(x)S) \cap R)[x;\alpha]$, and we deduce that $a_j \in \text{ann}_S(m(x)S) \cap R$ for each $0 \leq j \leq t$. So $m(x)Sa_j = 0$ and then by α-compatibility of M_R, we obtain $m_i R a_j = 0$ for each i, j.
(b) \Rightarrow (a) Let $g(x) = \sum_{j=0}^{s} b_j x^j \in (\text{ann}_S(m(x)S) \cap R)[x;\alpha]$, so $b_j \in \text{ann}_S(m(x)S) \cap R$. So $m(x)Sb_j = 0$ for each j and hence $m(x)Sg(x) = 0$. Thus $g(x) \in \text{ann}_S(m(x)S)$. Now assume that $h(x) = \sum_{j=0}^{k} c_j x^j \in \text{ann}_S(m(x)S)$. So $m(x)Sh(x) = 0$ and by (b) we get $m_i R c_j = 0$. By α-compatibility of M_R, $m(x)R c_j = 0$. So $c_j \in \text{ann}_S(m(x)S) \cap R$ for each j and hence $h(x) \in (\text{ann}_S(m(x)S) \cap R)[x;\alpha]$. So $\text{ann}_S(m(x)S) = (\text{ann}_S(m(x)S) \cap R)[x;\alpha]$.
(2). The proof follows by Lemma 2.15 and (1) (b) \Rightarrow (a).

In the following result, we give relations between the set of annihilators in M_R and the set of annihilators in $M[x]_{R[x;\alpha]}$.

Theorem 3.3. Let M_R be an α-compatible module and $S = R[x;\alpha]$. Then the following statements are equivalent:
(1) M_R is a skew quasi-Armendariz module;
(2) The map $\psi : \text{Ann}_R(\text{sub}(M_R)) \to \text{Ann}_S(\text{sub}(M[x]_S))$, defined by $\psi(\text{ann}_R(N)) = \text{ann}_S(N) = \text{ann}_S(N[x])$ for all $N \in \text{sub}(M_R)$, is bijective, where $\text{sub}(M_R)$ and $\text{sub}(M[x]_S)$ denote the sets of submodules.

Proof. (1) \Rightarrow (2) Assume that M_R is skew quasi-Armendariz. Obviously ψ is injective. Therefore, it is enough to show ψ is surjective. Let $V \in \text{sub}(M[x]_S)$ and C_V denotes the set of all coefficients of elements of V. Then for $\text{ann}_R(C_V R) \in \text{Ann}_R(\text{sub}(M))$, we have $\psi(\text{ann}_R(C_V R)) = \text{ann}_S(C_V R) = \text{ann}_S(V)$. In fact, let $f(x) \in \text{ann}_S(C_V R)$. Then $C_V R f(x) = 0$ and hence $V f(x) = 0$. So $f(x) \in \text{ann}_S(V)$. Conversely, let $g(x) = b_0 + \cdots + b_k x^k \in \text{ann}_S(V)$. Then $V g(x) = 0$. Since V is a submodule of $M[x]_S$, $V S g(x) = 0$. So $v(x) S g(x) = 0$ for all $v(x) =
\[v_0 + v_1 x + \cdots + v_t x^t \in V. \] Since \(M_R \) is \(\alpha \)-compatible and skew Armendariz, \(v_i R b_j = 0 \) for all \(i,j \). Hence \(C_V R g(x) = 0 \) and therefore \(g(x) \in \text{ann}_S(C_V R) \). Consequently \(\psi \) is surjective.

(2) \(\Rightarrow \) (1) Assume \(m(x)S f(x) = 0 \), where \(m(x) = m_0 + m_1 x + \cdots + m_t x^t \in M[x] \) and \(f(x) = a_0 + a_1 x + \cdots + a_k x^k \in S \). By hypothesis, \(\text{ann}_S(m(x)S) = \text{ann}_R(N)[x;\alpha] \) for some submodule \(N \) of \(M \). Then \(f(x) \in \text{ann}_R(N)[x;\alpha] \) and hence \(a_j \in \text{ann}_R(N) \) for all \(j \). So \(a_j \in \text{ann}_R(N) \subseteq \text{ann}_R(N)[x;\alpha] = \text{ann}_S(m(x)S) \) and then \(m(x)S a_j = 0 \).

In particular \(m(x)R a_j = 0 \) and hence \(m_i R a_j = 0 \) for all \(i,j \). Since \(M_R \) is \(\alpha \)-compatible, \(m_i x^i Rx^t a_j x^j = 0 \), for \(t \geq 0, i = 0,1,\ldots,t \) and \(j = 0,1,\ldots,k \). Therefore \(M_R \) is skew quasi-Armendariz.

Let \(R \) be a ring. The trivial extension of \(R \) is given by:

\[
T(R, R) = \left\{ \begin{pmatrix} a & r \\ 0 & a \end{pmatrix} \mid a, r \in R \right\}.
\]

Clearly, \(T(R, R) \) is a subring of the ring of \(2 \times 2 \) matrices over \(R \). The endomorphism \(\alpha \) of \(R \) and the \(\alpha \)-derivation \(\delta \) on \(R \) are extended to \(\bar{\alpha} : T(R, R) \to T(R, R) \) by:

\[
\bar{\alpha} \begin{pmatrix} a & r \\ 0 & a \end{pmatrix} = \begin{pmatrix} \alpha(a) & \alpha(r) \\ 0 & \alpha(a) \end{pmatrix}, \quad \bar{\delta} \begin{pmatrix} a & r \\ 0 & a \end{pmatrix} = \begin{pmatrix} \delta(a) & \delta(r) \\ 0 & \delta(a) \end{pmatrix}.
\]

One can show that \(\bar{\delta} \) is an \(\bar{\alpha} \)-derivation on \(T(R, R) \) and also we can see \(T(R, R)[x;\alpha, \delta] \cong T(R[x;\alpha, \delta], R[x;\alpha, \delta]) \).

Proposition 3.4. If the trivial extension of \(R \), \(T(R, R) \), is skew-quasi Armendariz, then so is \(R \).

Proof. Let \(f(x) = a_0 + \cdots + a_n x^n, g(x) = b_0 + \cdots + b_m x^m \in R[x;\alpha, \delta] \) and \(f(x)R(x;\alpha, \delta) g(x) = 0 \). For each \(a, r \in R \) and \(t \geq 0 \), we have the following equation:

\[
0 = \begin{pmatrix} f(x) & 0 \\ 0 & f(x) \end{pmatrix} \begin{pmatrix} a x^t & r x^t \\ 0 & a x^t \end{pmatrix} \begin{pmatrix} 0 & g(x) \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & f(x) a x^t g(x) \\ 0 & 0 \end{pmatrix}.
\]

Since \(T(R, R) \) is skew quasi-Armendariz, it implies that \(a_i x^i ax^t b_j x^j = 0 \), for each \(i, j, t \). Therefore \(R \) is skew quasi-Armendariz.

When the trivial extension \(T(R, R) \) is skew quasi-Armendariz?

Theorem 3.5. Let \(R \) be a ring such that

(i) \(R \) is skew quasi-Armendariz;

(ii) \(f(x)R(x;\alpha, \delta) g(x) = 0 \), then \(f(x)R(x;\alpha, \delta) \cap R(x;\alpha, \delta) g(x) = 0 \).

Then the trivial extension \(T = T(R, R) \) is skew quasi-Armendariz.

Proof. Suppose that \(\alpha(x)T[x;\bar{\alpha}, \bar{\delta}] \beta(x) = 0 \), where
\[\alpha(x) = \left(\begin{array}{cc} a_0 & r_0 \\ 0 & a_0 \end{array} \right) + \left(\begin{array}{cc} a_1 & r_1 \\ 0 & a_1 \end{array} \right) x + \ldots + \left(\begin{array}{cc} a_n & r_n \\ 0 & a_n \end{array} \right) x^n \]

and

\[\beta(x) = \left(\begin{array}{cc} b_0 & s_0 \\ 0 & b_0 \end{array} \right) + \left(\begin{array}{cc} b_1 & s_1 \\ 0 & b_1 \end{array} \right) x + \ldots + \left(\begin{array}{cc} b_m & s_m \\ 0 & b_m \end{array} \right) x^m \in T[x; \bar{\alpha}, \bar{\delta}] . \]

Let \(f(x) = a_0 + a_1 x + \ldots + a_n x^n, r(x) = r_0 + r_1 x + \ldots + r_n x^n, \)
\(g(x) = b_0 + b_1 x + \ldots + b_m x^m \) and \(s(x) = s_0 + s_1 x + \ldots + s_m x^m \in R[x; \alpha, \delta] . \)

For each \(\left(\begin{array}{ccc} a & r \\ 0 & a \end{array} \right) x^t \in T[x; \bar{\alpha}, \bar{\delta}] , \) it follows that

\[
0 = \left(\begin{array}{ccc} f(x) & r(x) & ax^t \\ f(x) & 0 & 0 \\ 0 & ax^t & 0 \end{array} \right) \left(\begin{array}{ccc} g(x) & 0 \\ 0 & g(x) \\ g(x) & 0 \end{array} \right) = \left(\begin{array}{ccc} f(x)ax^tg(x) & f(x)ax^ts(x) + f(x)rx^tg(x) + r(x)ax^tg(x) \\ 0 & f(x)ax^tg(x) \end{array} \right),
\]

Hence

\[(3.1) \quad f(x)ax^tg(x) = 0, \]

and

\[(3.2) \quad f(x)ax^ts(x) + f(x)rx^tg(x) + r(x)ax^tg(x) = 0. \]

Since \(\left(\begin{array}{ccc} a & r \\ 0 & a \end{array} \right) x^t \) is an arbitrary element of \(T(R, R)[x; \bar{\alpha}, \bar{\delta}] \) and
\(T(R, R)[x; \bar{\alpha}, \bar{\delta}] \cong T(R[x; \alpha, \delta], R[x; \alpha, \delta]) , \) by (3.1) we get

\[(3.3) \quad f(x)R[x; \alpha, \delta]g(x) = 0. \]

Since \(R \) is skew quasi-Armendariz, \(a_i x^i R x^t b_j x^j = 0, \) for all \(i, j, t. \) Thus
by (3.2), \(f(x)[ax^ts(x) + rx^tg(x)] + [r(x)ax^t]g(x) = 0. \) Hence by (3.2) and (3.3), we have
\(f(x)[ax^ts(x) + rx^tg(x)] = -[r(x)ax^t]g(x) \in f(x)R[x; \alpha, \delta] \cap R[x; \alpha, \delta]g(x) = 0. \) So \(f(x)[ax^ts(x) + rx^tg(x)] = 0 = r(x)ax^tg(x), \) and hence we have \(r(x)R[x; \alpha, \delta]g(x) = 0, \) since \(ax^t \) is an arbitrary element. Thus
\(r_i x^i R x^t b_j x^j = 0 \) for all \(i, j, t, \) since \(R \) is skew quasi-Armendariz. Also we have \(f(x)[ax^ts(x)] = -[f(x)rx^t]g(x) \in f(x)R[x; \alpha, \delta] \cap R[x; \alpha, \delta]g(x) = 0. \) Thus \(f(x)ax^ts(x) = 0. \) So we have \(f(x)R[x; \alpha, \delta]s(x) = 0. \) Since \(R \) is skew quasi-Armendariz, we deduce \(a_i x^i R x^t s_j x^j = 0 \) for all \(i, j, t. \) Hence
\[
\left(\begin{array}{cc} a_i & r_i \\ 0 & a_i \end{array} \right) x^t \left(\begin{array}{ccc} a & r \\ 0 & a \end{array} \right) x^t \left(\begin{array}{ccc} b_j & s_j \\ 0 & b_j \end{array} \right) x^j = 0.
\]
Assume that \(M \) is Armendariz, \(M \) Let \(a \) such that
\[
\begin{pmatrix}
 a_{i}x^{i}ax^{j}b_{j}x^{j} & a_{i}x^{i}rx^{t}b_{j}x^{j} + a_{i}x^{i}ax^{t}b_{j}x^{j} \\
 0 & a_{i}x^{i}ax^{t}b_{j}x^{j}
\end{pmatrix}
\]

= 0 for all \(i, j \) and each \(\begin{pmatrix}
 a \\
 0
\end{pmatrix} \)
\(x^{i} \in T(R, R) \). Therefore the trivial extension \(T(R, R) \) is skew quasi-Armendariz.

Kerr [24] constructed an example of a commutative Goldie ring \(R \) whose polynomial ring \(R[x] \) has an infinite ascending chain of annihilator ideals.

Theorem 3.6. Let \(M_{R} \) be an skew quasi-Armendariz module. If \(M_{R} \) is \((\alpha, \delta)\)-compatible, then \(M_{R} \) satisfies the ascending chain condition on annihilator of submodules if and only if so does \(M[x]_{S} \), where \(S = R[x; \alpha, \delta] \).

Proof. Assume that \(M_{R} \) satisfies the ascending chain condition on annihilator of submodules. Let \(I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \ldots \) be a chain of annihilator of submodules of \(M[x]_{S} \). Then there exist submodules \(K_{i} \) of \(M[x]_{S} \) such that \(\text{ann}S(K_{i}) = I_{i} \), for all \(i \geq 1 \) and \(K_{1} \supseteq K_{2} \supseteq K_{3} \supseteq \cdots \). Let \(M_{i} = \{ \text{all coefficients of elements of } K_{i} \} \). Since \(M \) is skew quasi-Armendariz, \(M_{i} \) is submodule of \(M \) for all \(i \geq 1 \). Clearly \(M_{i} \supseteq M_{i+1} \) for all \(i \geq 1 \). Thus \(\text{ann}_{R}(M_{1}) \subseteq \text{ann}_{R}(M_{2}) \subseteq \text{ann}_{R}(M_{3}) \subseteq \cdots \). Since \(M_{R} \) satisfies the ascending chain condition on annihilator of submodules, there exists \(n \geq 1 \) such that \(\text{ann}_{R}(M_{i}) = \text{ann}_{R}(M_{n}) \) for all \(i \geq n \). We show that \(\text{ann}_{S}(K_{i}) = \text{ann}_{S}(K_{n}) \) for all \(i \geq n \). Let \(f(x) = a_{0} + a_{1}x + \cdots + a_{m}x^{m} \in \text{ann}_{S}(K_{i}) \). Then \(M_{i}a_{j} = 0 \) for \(j = 0, \ldots, m \), because \(M \) is skew quasi-Armendariz. Thus \(M_{n}a_{j} = 0 \) for \(j = 0, \ldots, m \) and so \(K_{n}f(x) = 0 \) by Lemma 2.16. Therefore \(\text{ann}_{S}(K_{i}) = \text{ann}_{S}(K_{n}) \) for all \(i \geq n \) and \(M[x]_{S} \) satisfies the ascending chain condition on annihilator of submodules. Now assume \(M[x]_{S} \) satisfies the ascending chain condition on annihilator of submodules. Let \(J_{1} \subseteq J_{2} \subseteq J_{3} \subseteq \ldots \) be a chain of annihilator of submodules of \(M_{R} \). Then there exist submodules \(M_{i} \) of \(M \) such that \(\text{ann}_{R}(M_{i}) = J_{i} \) and \(M_{1} \supseteq M_{2} \supseteq M_{3} \supseteq \cdots \) for all \(i \geq 1 \). Hence \(M_{i}[x] \) is a submodule of \(M[x] \) and \(M_{i}[x] \supseteq M_{i+1}[x] \) and \(\text{ann}_{S}(M_{i}[x]) \subseteq \text{ann}_{S}(M_{i+1}[x]) \) for all \(i \geq 1 \). Since \(M[x]_{S} \) satisfies the ascending chain condition on annihilator of submodules, there exists \(n \geq 1 \) such that \(\text{ann}_{S}(M_{i}[x]) = \text{ann}_{S}(M_{n}[x]) \) for all \(i \geq n \). Since \(M \) is skew quasi-Armendariz, by a similar argument as used in the previous paragraph, one can show that \(\text{ann}_{R}(M_{i}) = \text{ann}_{R}(M_{n}) \) for all \(i \geq n \).

\(\square \)
Following [3], the second author and E. Hashemi [17] introduced \((\alpha, \delta)\)-compatible rings and studied its properties. A ring \(R\) is \(\alpha\)-compatible if for each \(a, b \in R\), \(ab = 0\) if and only if \(a\alpha(b) = 0\). Moreover, \(R\) is said to be \(\delta\)-compatible if for each \(a, b \in R\), \(ab = 0\) implies \(\alpha\delta(b) = 0\). A ring \(R\) is \((\alpha, \delta)\)-compatible if it is both \(\alpha\)-compatible and \(\delta\)-compatible. In this case, clearly the endomorphism \(\alpha\) is injective. Also by [17, Lemma 2.2], a ring \(R\) is \((\alpha, \delta)\)-compatible and reduced if and only if \(R\) is \(\alpha\)-rigid in the sense of Krempa [26]. Thus the \(\alpha\)-compatible ring is a generalization of \(\alpha\)-rigid ring to the more general case where \(R\) is not assumed to be reduced.

Corollary 3.7. Let \(R\) be an \((\alpha, \delta)\)-compatible and skew quasi-Armendariz ring. Then \(R\) satisfies the ascending chain condition on right annihilators if and only if so does \(R[x; \alpha, \delta]\).

Corollary 3.8. [19, Corollary 3.3] Let \(R\) be an Armendariz ring. Then \(R\) satisfies the ascending chain condition on right annihilators if and only if so does \(R[x]\).

Theorem 3.9. Let \(M_R\) be an \((\alpha, \delta)\)-compatible module. Then \(M_R\) is quasi-Baer (respectively, p.q.-Baer) if and only if \(M[x]_{R[x; \alpha, \delta]}\) is quasi-Baer (respectively, p.q.-Baer). In this case \(M_R\) is skew quasi-Armendariz.

Proof. Assume \(M_R\) is quasi-Baer. First we shall prove that \(M_R\) is skew quasi-Armendariz. Suppose that \((m_0 + m_1 x + \cdots + m_k x^k)R[x; \alpha, \delta](b_0 + b_1 x + \cdots + b_n x^n) = 0\), with \(m_i \in M, b_j \in R\). In particular case we have

\[(3.4) \quad (m_0 + m_1 x + \cdots + m_k x^k)R(b_0 + b_1 x + \cdots + b_n x^n) = 0.\]

Thus \(m_k Rb_n = 0\) and \(b_n \in \text{ann}_R(m_k R)\). Then \(m_k x^k R x^i b_n x^n = 0\), by Lemma 2.15. Since \(M_R\) is quasi-Baer, there exists \(e_k^2 = e_k \in R\) such that \(\text{ann}_R(m_k R) = e_k R\) and so \(b_n = e_k b_n\). Replacing \(R\) by \(Re_k\) in \(3.4)\) and using Lemma 2.15, we obtain \((m_0 + m_1 x + \cdots + m_{k-1} x^{k-1})Re_k(b_0 + b_1 x + \cdots + b_n x^n) = 0\). Hence \(m_{k-1} Re_k b_n = m_{k-1} R b_n = 0\) and \(b_n \in \text{ann}_R(m_{k-1} R)\). Then \(m_{k-1} x^{k-1} Rx b_n x^n = 0\), by Lemma 2.15. Hence \(b_n \in \text{ann}_R(m_k R) \cap \text{ann}_R(m_{k-1} R)\). Since \(M_R\) is quasi-Baer, there exists \(f^2 = f \in R\) such that \(\text{ann}_R(m_k R) = fR\) and so \(b_n = fb_n\). If we put \(e_{k-1} = e_k f\), then \(e_{k-1} b_n = e_k f b_n = e_k b_n = b_n\) and \(e_{k-1} \in \text{ann}_R(m_k R) \cap \text{ann}_R(m_{k-1} R)\). Next, replacing \(R\) by \(Re_{k-1}\) in \(3.4)\), and using Lemma 2.15, we obtain \((m_0 + m_1 x + \cdots + m_{k-2} x^{k-2})Re_{k-1}(b_0 +\)
$b_1x + \cdots + b_nx^n = 0$. Hence we have $m_{k-2}Re_{k-1}b_n = m_{k-2}Rb_n = 0$
and that $b_n \in \text{ann}_R(m_{k-2}R)$ and so $m_{k-2}x^{k-2}Rx^ib_nx^n = 0$, by Lemma
2.15. Continuing this process, we get $m_ix^iRx^jb_nx^n = 0$ for $i = 0, \ldots, k$.
Using induction on $k+n$, we obtain $m_ix^iRx^jb_jx^j = 0$ for all i, j, t. Therefore
M_R is skew quasi-Armendariz. Let J be a S-submodule of $M[x]$. Let $N = \{m \in M \mid m$ is a leading coefficient of some non-zero element of $J\}$
$\cup \{0\}$. Clearly, N is a submodule of M. Since M_R is quasi-Baer, there exists $e^2 = e \in R$ such that $\text{ann}_R(N) = eR$. Hence $eS \subseteq \text{ann}_S(J)$ by Lemma 2.15. Let $f(x) = b_0 + b_1x + \cdots + b_nx^n \in \text{ann}_S(J)$. Then $Nb_j = 0$
for each $j = 0, \ldots, n$, because M_R is skew quasi-Armendariz. Hence
$b_j = eb_j$ for each $j = 0, \ldots, n$ and $f(x) = ef(x) \in eS$. Thus $\text{ann}_S(J) = eS$ and $M[x]_S$ is quasi-Baer. Now assume that $M[x]_S$ is quasi-Baer and
I is a submodule of M. Then $I[x]$ is a submodule of $M[x]$. Since $M[x]$ is quasi-Baer, there exists an idempotent $e(x) = e_0 + \cdots + e_nx^n \in S$
such that $\text{ann}_S(I[x]) = e(x)S$. Hence $Ie_0 = 0$ and $e_0R \subseteq \text{ann}_R(I)$. Let
t $t \in \text{ann}_R(I)$. Then $I[x]t = 0$, by Lemma 2.16. Hence $t = e(x)t$ and so
t $t = e_0t \in e_0R$. Thus $\text{ann}_R(I) = e_0R$ and M_R is quasi-Baer.

It is clear that R is a right p.q.-Baer ring if and only if R_R is a p.q.-
Baer module. But, there exists a p.q.-Baer right R-module such that R
is not right p.q.-Baer.

Example 3.10. Let $R = \mathbb{Z}_2[x]/(x^2)$, where $\mathbb{Z}_2[x]$ is the polynomial ring
over the field \mathbb{Z}_2 of two elements and (x^2) is the ideal of $\mathbb{Z}_2[x]$ generated
by x^2. It is easy to see that R is a quasi-Armendariz ring. Since right
annihilator of $x + (x^2)$ is not generated by any idempotent, R is not a
right p.q.-Baer ring. Now let $e = 1 + (x^2)$ and $I = ReR$. Then $e^2 = e$,
and for each $a \in R$, $\text{ann}_R((a + I)R) = eR$. Therefore R/I is p.q.-Baer
right R-module.

Corollary 3.11. [17, Corollary 2.8] Let R be an (α, δ)-compatible ring.
Then R is quasi-Baer (respectively, right p.q.-Baer) if and only if $R[x; \alpha, \delta]$
is quasi-Baer (respectively, right p.q.-Baer). In this case R is a skew
quasi-Armendariz ring.

Corollary 3.12. [9, Corollary 2.8] A ring R is quasi-Baer (respectively,
right p.q.-Baer) if and only if $R[x]$ is quasi-Baer (respectively, right p.q.-
Baer).
Corollary 3.13. [20, Theorems 12, 15] Let R be an α-rigid ring. Then R is quasi-Baer (respectively, right p.q.-Baer) if and only if $R[x;\alpha,\delta]$ is quasi-Baer (respectively, right p.q.-Baer).

The following example shows that “(α,δ)-compatibility condition” on M_R in Theorem 3.9 is not superfluous.

Example 3.14. [5, Example 11] There is a ring R and a derivation δ of R such that $R[x;\delta]$ is a Baer (hence quasi-Baer) ring, but R is not quasi-Baer. In fact let $R = \mathbb{Z}_2[t]/(t^2)$ with the derivation δ such that $\delta(t) = 1$ where $t = t + (t^2)$ in R and $\mathbb{Z}_2[t]$ is the polynomial ring over the field \mathbb{Z}_2 of two elements. Consider the Ore extension $R[x;\delta]$. If we set $e_{11} = tx, e_{12} = \bar{t}, e_{21} = \bar{tx}^2 + x$, and $e_{22} = 1 + \bar{tx}$ in $R[x;\delta]$, then they form a system of matrix units in $R[x;\delta]$. Now the centralizer of these matrix units in $R[x;\delta]$ is $\mathbb{Z}_2[x^2]$. Therefore $R[x;\delta] \cong M_2(\mathbb{Z}_2[x^2]) \cong M_2(\mathbb{Z}_2)[y]$, where $M_2(\mathbb{Z}_2)[y]$ is the polynomial ring over $M_2(\mathbb{Z}_2)$. So the ring $R[x;\delta]$ is a Baer ring, but R is not quasi-Baer.

Acknowledgments

We thank the referee for a very careful reading of the paper and many helpful comments and suggestions, which improved the presentation of the paper.

References

On skew Armendariz and skew quasi-Armendariz modules

Abdollah Alhevaz

Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P.O. Box 14115-134, Tehran, Iran

Email: a.alhevaz@yahoo.com and a.alhevaz@gmail.com.

Ahmad Moussavi

Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P.O. Box 14115-134, Tehran, Iran

Email: moussavi.a@modares.ac.ir and moussavi.a@gmail.com.