EPI-RETRACTABLE MODULES AND SOME APPLICATIONS

A. GHOORBANI* AND M.R. VEDADI

Abstract. Generalizing concepts “right Bezout” and “principal right ideal” of a ring R to modules, an R-module M is called n-epi-retractable (resp. epi-retractable) if every n-generated submodule (resp. submodule) of M_R is a homomorphic image of M. It is shown that if M_R is finitely generated quasi-projective 1-epi-retractable, then $\text{End}_R(M)$ is a right Bezout (resp. principal right ideal) ring if and only if M_R is n-epi-retractable for all $n \geq 1$ (resp. epi-retractable). For a ring R and an infinite ordinal $\beta \geq |R|$, the R-module $M = F \oplus N$ is epi-retractable where F is a free R-module with a basis set of cardinality β and N is a γ-generated R-module with $\gamma \leq \beta$. A ring R is quasi Frobenius if every injective R-module is epi-retractable. Injective modules in $\sigma[M_R]$ are epi-retractable for every $N \in \sigma[M_R]$ if and only if every non-zero factor ring of S is a quasi Frobenius ring where S is an endomorphism ring of a progenerator in $\sigma[M_R]$.

1. Introduction

All rings are associative with unit elements and all modules are unitary right modules. Let R be a ring. The ring R is said to be a principal right ideal ring (pri) if every right ideal of R is principal. Also, R is said to be a right Bezout ring if every finitely generated right ideal of

MSC(2000): 16D10, 16S50, 16L60
Keywords: Bezout ring, epi-retractable module, pri ring.
This research was partially supported by IPM, grant no. 84160035.
Received: 17 May 2008. Accepted: 26 July 2008
*Corresponding author
© 2009 Iranian Mathematical Society.
R is principal. Generalizing these concepts to modules, an R-module M is called epi-retractable (resp. n-epi-retractable) if every submodule (resp. n-generated submodule) of M is a homomorphic image of M_R. Therefore, R is a pri (resp. right Bezout) ring if and only if R_R is epi-retractable (resp. n-retractable $\forall n \geq 1$). In [5], morphic modules are introduced and shown to have internal cancellation property by investigating the epi-retractable condition for such modules ([5], Theorem 15). If M_R is n-epi-retractable for some $n \geq 1$, then it is retractable (i.e., $\text{Hom}_R(M,N) \neq 0$ for any non-zero submodule $N \leq M_R$). Retractable modules have been investigated by several authors; see for example, [2], [3], [6], [8]. Here, we reveal some applications of projective, nonsingular, injective epi-retractable modules regarding the characterization of Bezout, pri, quasi Frobenius, rings. Examples are also given where (n)-epi-retractable modules appear. A brief description of the content of the paper will now follow.

In Section 2, it is proved in Theorem 2.2 that if M is a non-zero finitely generated quasi-projective 1-epi-retractable R-module, then:

(i) $\text{End}_R(M)$ is a right Bezout ring if and only if M_R is n-epi-retractable, for all $n \geq 1$.

(ii) $\text{End}_R(M)$ is a pri ring if and only if M_R is epi-retractable.

In particular, the matrix ring $\text{Mat}_{m \times m}(R)$ is pri (resp. right Bezout) if and only if $R_R^{(m)}$ is epi-retractable (resp. $R_R^{(m)}$ is n-epi-retractable $\forall n \geq m$).

Projective epi-retractable modules are investigated and it is shown that for a ring R and an infinite ordinal $\beta \geq |R|$, the R-module $M = F \oplus N$ is epi-retractable where F is a free R-module with a basic set of cardinality β and N is a γ-generated R-module with $\gamma \leq \beta$ (Theorem 2.8). Over a ring in which principal right ideals are projective, finite dimensional torsionfree epi-retractable modules are characterized and shown to be projective. It also shown that a ring R is a pri domain if and only if R_R is uniform and there exists a uniform nonsingular epi-retractable R-module (Proposition 2.16). If every injective R-module is epi-retractable, then R is a quasi Frobenius ring (Proposition 3.2). We end up with Theorem 3.5 that states: For any module M_R with a progenerator $P \in \sigma[M_R]$, any non-zero factor ring of $\text{End}_R(P)$ is a quasi Frobenius ring if and only if for any $N \in \sigma[M_R]$, every injective module in $\sigma[N_R]$ is epi-retractable. Recall that a ring R is said to be a quasi Frobenius ring if it is a (left) right self injective Noetherian ring. Any unexplained terminology, and
all the basic results on rings and modules that are used in the sequel can be found in [4] and [7].

2. Epi-Retractable condition for projective modules

We begin with the following observation.

Proposition 2.1. Let M be a non-zero quasi-projective 1-epi-retractable R-module with $\text{End}_R(M) = S$. If S is an n-epi-retractable right S-module (resp. a pri ring), then M_R is n-epi-retractable (resp. epi-retractable).

Proof. Let $X = x_1R + \cdots + x_nR$ be an n-generated submodule of M. Then, by hypothesis, M is $(x_1R \oplus \cdots \oplus x_nR)$-projective. Thus, for every $h \in \text{Hom}_R(M, X)$, there exists $\bar{h} : M \rightarrow (x_1R \oplus \cdots \oplus x_nR)$ such that $h = \mu \bar{h}$ where $\mu : (x_1R \oplus \cdots \oplus x_nR) \rightarrow X$ is the natural surjective homomorphism. It follows that $\text{Hom}_R(M, X) = \sum_{i=1}^n \text{Hom}_R(M, x_iR)$. Now, since M_R is 1-epi-retractable, then each x_iR is equal to $f_i(M)$ for some $f_i \in S$ and we have $\text{Hom}_R(M, x_iR) = f_iS$ ($1 \leq i \leq n$), by the quasi-projective condition on M_R. Hence, by the hypothesis on S, $\text{Hom}_R(M, X) = \sum_{i=1}^n f_iS = gS$ for some $g \in S$. We now show that $X = g(M)$. Clearly, $g(M) \subseteq X$. Let x be an element in X. Then, there exists $\theta \in S$ such that $\theta(M) = xR$ and we have $\theta S = \text{Hom}_R(M, \theta(M)) \subseteq \text{Hom}_R(M, X) = gS$. Hence, $\theta = gt$ for some $t \in S$ and so $\theta(M) \subseteq g(M)$. It follows that $x \in g(M)$. Consequently, $X = g(M)$ is a homomorphic image of M_R, proving that M_R is n-epi-retractable. The other case of the result is proved similarly. \qed

Theorem 2.2. If M is a non-zero quasi-projective 1-epi-retractable finitely generated R-module, then:

(i) $\text{End}_R(M)$ is a right Bezout ring if and only if M_R is n-epi-retractable, $\forall n \geq 1$.

(ii) $\text{End}_R(M)$ is a pri ring if and only if M_R is epi-retractable.

Proof. We prove (i). One direction follows from Proposition 2.1. Conversely, set $\text{End}_R(M) = S$ and let I be a finitely generated right ideal of S. Because M_R is finitely generated, then IM is a finitely generated R-submodule of M. Since M_R is n-epi-retractable for all $n \geq 1$, then
we must have \(IM = f(M) \) for some \(f \in S \). Hence, by hypothesis,
\[
 fS = \text{Hom}_R(M, f(M)) = I.
\]

Corollary 2.3. Let \(m \) be a positive integer. Then, the following statements are equivalent on a ring \(R \).

(i) \(R^{(m)}_R \) is epi-retractable (resp. \(R^{(m)}_R \) is \(n \)-epi-retractable \(\forall n \geq m \)).

(ii) The matrix ring \(\text{Mat}_{m \times m}(R) \) is pri (resp. right Bezout).

Proof. Apply Theorem 2.2 for \(M = R^{(m)} \), and note that \(M_R \) is a \(k \)-epi-retractable \(R \)-module for any \(k < m \).

Examples 2.4. (1) Let \(I \) be a right ideal in a regular ring \(R \). Then \(I_R \) is \(n \)-epi-retractable for every \(n \geq 1 \). In fact, if \(I \) contains a finitely generated right ideal \(J \) of \(R \), then \(J \) is a direct summand of \(I_R \). It follows that \(J \) is a homomorphic image of \(I_R \).

(2) For any non-zero \(R \)-module \(X \), the \(R \)-module \(M = R/\text{ann}_R(X) \oplus X \) is 1-epi-retractable. Note that for any \(m \in M \), we have \(\text{ann}_R(X) \subseteq \text{ann}_R(m) \). Hence, \(mR \simeq R/\text{ann}_R(m) \) is a homomorphic image of \(R/\text{ann}_R(X) \) and so of \(M_R \).

(3) Over a PID, every finitely generated module is epi-retractable. To see this, let \(R \) be a PID and let \(M \) be a finitely generated \(R \)-module, and \(N \leq M \). Then, by a well known result, \(M \simeq (\bigoplus_{i=1}^n R_i) \oplus (\bigoplus_{i=1}^m R/(p^i_k)) \) and \(N \simeq (\bigoplus_{i=1}^t R_i) \oplus (\bigoplus_{s=1}^r R/(p^s_i)) \), where \(R_i = R, 0 \leq t \leq n, 0 \leq s \leq m \), and \(0 \leq s_i \leq k_i \). From this, we see that \(N \) is a homomorphic image of \(M_R \).

We shall now investigate when a projective module is epi-retractable and vice versa.

Proposition 2.5. Let \(R \) be a right hereditary ring. Then, \(R \) is a pri ring if and only if every free right \(R \)-module is epi-retractable.

Proof. \((\Leftarrow)\). This is obtained from the definitions.

\((\Rightarrow)\). By Kaplansky’s Theorem ([4], Theorem 2.24), any submodule \(N \) of a free right \(R \)-module \(F = \bigoplus_{\alpha \in \Omega} e_\alpha R \), is isomorphic to \(\bigoplus_{\alpha \in \Omega} J_\alpha \), where the \(J_\alpha \) are right ideals of \(R \). Thus, the result is proved by the fact that if \(f_\alpha : e_\alpha R \rightarrow J_\alpha \) is surjective \(R \)-homomorphism for all \(\alpha \in \Omega \), then the homomorphism \(\bigoplus_{\alpha \in \Omega} f_\alpha \) is also surjective. \(\square\)
The following Lemmas are needed.

Lemma 2.6. Let R be a ring of cardinality $|R| = \alpha$. Then any free R-module F with an infinite basis set X of cardinality $\beta \geq \alpha$ is an epi-retractable R-module.

Proof. We first show that $|F| = \beta$. Let $X_n = \{\sum_{i=1}^{n} x_i r_i \mid x_i \in X, r_i \in R\}$ where $n \geq 1$. Then, there naturally exist a surjective map $Y_n := (X \times R)^{(n)} \to X_n$ and an injective map $X \to X_n$. Consequently, $|X| \leq |X_n| \leq |Y_n| = \beta$ for any $n \geq 1$. It follows from $F = \bigcup_{n \in \mathbb{N}} X_n$ that $|F| = \beta$, as desired. Now, any submodule N of F_R is a homomorphic image of a free R-module G with a basic set of cardinality $\gamma \leq \beta$. Thus, G and hence N is a homomorphic image of F_R, proving that F_R is epi-retractable.

Lemma 2.7. The following statements are equivalent for a module M.

(i) M is epi-retractable.

(ii) There exist surjective homomorphisms $M \to N$ and $N \to M$ for some epi-retractable module N.

(iii) There exists a surjective homomorphism $M/K \to M$ for some epi-retractable factor module M/K.

Proof. (i)⇒(ii). This is clear.

(ii)⇒(iii). Suppose that there exist an epi-retractable module N and surjective homomorphisms $\alpha : M \to N$, $\beta : N \to M$. Let $K = \ker \alpha$. Then, α induces an isomorphism $\tilde{\alpha} : M/K \to N$. Thus, M/K is an epi-retractable module.

(iii)⇒(i). Let L be any submodule of M. By our assumption, there exists an isomorphism $\tilde{\phi} : M/K' \to M$ for some submodule K' of M with $K \subseteq K'$. Let $\tilde{\phi}(N/K') = L$ for some submodule N of M. Since M/K is assumed epi-retractable, then there exists a surjective homomorphism $\theta : M/K \to N/K$. Consider $\alpha : N/K \to N/K'$ with $\alpha(n + K) = n + K'$, and the canonical epimorphism $\pi : M \to M/K$. Then, $\tilde{\phi} \alpha \theta \pi : M \to L$ is a surjective homomorphism, proving that M is epi-retractable.

Theorem 2.8. Let R be a ring and β be an infinite ordinal $\geq |R|$. Suppose that $M = F \oplus N$ where F is a free R-module with a basic set of
cardinality β and N is a γ-generated R-module with $\gamma \leq \beta$. Then, M_R is epi-retractable.

Proof. By Lemma 2.6, F_R is epi-retractable. By hypothesis, N is a homomorphic image of F_R. Since $F \oplus F \simeq F$, there exist surjective homomorphisms $M \to F$ and $F \to M$. Thus, the result holds by Lemma 2.7.

Corollary 2.9. Let R be an infinite ring. Then, every free R-module with a basic set of cardinality $\geq |R|$ is epi-retractable.

Proof. It follows from Theorem 2.8.

Proposition 2.10. Let R be a countable semiprime pri ring. Then, any free R-module is epi-retractable.

Proof. In view of Theorem 2.8, we need to show that any finitely generated free R-module is epi-retractable. Because R is a pri semiprime ring, then by a well known result $R = \bigoplus_{i=1}^{t} S_i$ is a finite product of prime pri rings. Hence, $\text{Mat}_{n \times n}(R) \simeq \bigoplus_{i=1}^{t} \text{Mat}_{n \times n}(S_i)$ and each $\text{Mat}_{n \times n}(S_i)$ is a pri ring; see [1]. The result now follows from Corollary 2.3.

We now investigate when a direct summand of an epi-retractable module is epi-retractable.

Proposition 2.11. Let M be an epi-retractable R-module. Then:

(i) M/N is epi-retractable for any fully invariant submodule N of M_R.

(ii) If $M = L \oplus N$ such that $\text{Hom}_R(L, N) = 0$, then N_R is epi-retractable.

Proof. (i) Let N be a fully invariant submodule of M, and let K/N be any submodule of M/N. There is a surjective homomorphism $\varphi : M \to K$. Now, $\varphi(N) \subseteq N$ by our assumption, and so $\bar{\varphi} : M/N \to K/N$, with $\bar{\varphi}(m + N) = \varphi(m) + N$ is a surjective homomorphism.

(ii) Note that $\text{End}_R(M) = \begin{bmatrix} \text{End}_R(L) & \text{Hom}_R(N, L) \\ 0 & \text{End}_R(N) \end{bmatrix}$. Hence, $\text{End}_R(M) \begin{bmatrix} L \\ 0 \end{bmatrix} \subseteq \begin{bmatrix} L \\ 0 \end{bmatrix}$. It follows that $(L \oplus 0)$ is a fully invariant submodule of M_R. Now, apply (i).
Remark 2.12. Let G be a free \mathbb{Z}-module with an infinite countable basic set and X be any countable \mathbb{Z}-module which is not epi-retractable (e.g., $X = \mathbb{Q}$). Then, the \mathbb{Z}-module $M = X \oplus G$ is epi-retractable by Theorem 2.8. This shows that a direct summand (and hence a submodule or a factor module) of an epi-retractable module need not be epi-retractable.

We are now going to investigate when an epi-retractable module is projective. A ring R is called right Rickart or right principally projective if every principal right ideal in R is projective (as a right R-module). Semi-hereditary rings and domains are clearly Rickart. A module M has a finite uniform dimension (or finite rank) if M contains no infinite direct sum of non-zero submodules or equivalently there exist independent uniform submodules U_1, \ldots, U_n in M such that $\bigoplus_{i=1}^n U_i$ is an essential submodule of M. In this case, it is written $u\dim(M) = n$.

Proposition 2.13. Let R be a right Rickart ring. Then, every finite dimensional nonsingular epi-retractable R-module M is isomorphic to a direct sum of principal right ideals of R. In particular, M_R is projective.

Proof. Let m be any non-zero element of M. Since M is nonsingular, then the right annihilator m in R is not an essential right ideal. Let $B = r.\text{ann}_R(m)$ and $B \cap A = 0$ for some non-zero principal right ideal A of R. Thus, $mA \simeq A$. It follows that every non-zero submodule of M_R isomorphically contains a non-zero principal right ideal of R. Now, let \mathcal{P} be a maximal independent family of elements in the set $\{N \leq M_R \mid N$ is isomorphic to a principal right ideal of $R\}$ and let $L = \bigoplus \mathcal{P}$. Then, L is an essential submodule of M_R. By the epi-retractable condition on M_R, there exists a surjective homomorphism from M to L. Also, by hypothesis on R, L_R is projective. Hence, L is isomorphic to a direct summand K of M_R. Now, $u\dim(K) = u\dim(L) = u\dim(M)$. It follows that $L \simeq K = M$, as desired. \qed

Corollary 2.14. Let R be a right and left Ore domain. Then, every finitely generated torsion free epi-retractable R-module is a free R-module.

Proof. This is obtained by Proposition 2.13 and the well known result from Gentile and Levy which states that over a semiprime right and left Goldie ring, finitely generated torsion free modules have finite ranks. \qed
We end this section with an application of nonsingular epi-retractable modules.

Lemma 2.15. A non-zero module M_R is uniform nonsingular epi-retractable if and only if $Z(M) \neq M$ and $M \simeq N$, for all non-zero submodules N of M.

Proof. (\Rightarrow). We have $Z(M) \neq M$ and for each non-zero submodule N of M, there exists a surjective homomorphism $f : M \rightarrow N$, and so $M/\ker f \hookrightarrow M$. Since M_R is nonsingular, then $M/\ker f$ is nonsingular and hence $\ker f = 0$, because M is uniform. Thus, $M \simeq N$.

(\Leftarrow) By hypothesis, M_R is epi-retractable and if $Z(M) \neq 0$, then we must have $M \simeq Z(M)$. Consequently, $M = Z(M)$, which is a contradiction. Therefore $Z(M) = 0$. Also, for all $0 \neq x \in M$, $M \simeq xR$, and so M_R is Noetherian. Therefore, M_R has a uniform submodule U ([4], Proposition 6.4). It follows that $M \simeq U$ is uniform. □

Proposition 2.16. The following statement are equivalent for a ring R.

(i) R is a principal right ideal domain.

(ii) R_R is uniform and there exists a uniform nonsingular epi-retractable R-module.

Proof. (i)\Rightarrow(ii). Apply Lemma 2.15 for $M = R$.

(ii)\Rightarrow(i). Let M be a uniform nonsingular epi-retractable R-module. Since R_R is uniform and $Z(M) \neq M$, then there exists $x \in M$ such that $\ann_R(x) = 0$. Thus, R can be embedded in M_R and hence $M \simeq R$, by Lemma 2.15. It follows that R is a right nonsingular principal right ideal ring with uniform dimension 1. Now, if $ab = 0$ and $0 \neq b$ for some $a, b \in R$, then $0 \neq r.\ann_R(a)$ is an essential right ideal of R, which implies that $a \in Z(R_R) = 0$. The proof is now complete. □

3. Epi-Retractable condition for injective objects

By a class C of R-modules we mean a collection C of R-modules which contains a non-zero module and which is closed under taking isomorphisms. Let C be a class of modules. A module $X \in C$ is called an injective module in C, if every exact sequence $0 \rightarrow X \rightarrow A \rightarrow B \rightarrow 0$ with $A, B \in C$ splits. We denote by $\sigma[M_R]$, the full subcategory of mod-R whose objects are all R-submodules of M-generated modules. In this
section, we observe that every non-zero factor ring of a ring \(R \) is a quasi Frobenius ring if and only if for any \(R \)-module \(N \), in the class \(\sigma[N_R] \), injective \(R \)-modules are epi-retractable. It is well known that injective modules are continuous. We first record that continuous nonsingular epi-retractable modules are semisimple. Recall that an \(R \)-module \(M \) is said to be a continuous module if it satisfies the following conditions:

\((C_1)\) Every submodule of \(M \) is essential inside a direct summand of \(M_R \).

\((C_2)\) Every submodule of \(M \) that is isomorphic to a summand of \(M \) is itself a summand of \(M_R \).

Proposition 3.1. The following are equivalent for a nonsingular \(R \)-module \(M \).

(i) \(M_R \) is semisimple.

(ii) \(M_R \) is continuous epi-retractable.

Proof. (i) \(\Rightarrow \) (ii). This is clear.

(ii) \(\Rightarrow \) (i). Let \(N \) be a submodule of \(M_R \). By assumption, there exists an \(R \)-epimorphism \(f \) from \(M \) to \(N \). Because \(N \cong M/\ker f \) is nonsingular, then \(\ker f \) is an essentially closed submodule of \(M_R \). Then, by the \(C_1 \)-condition on \(M_R \), \(\ker f \) is a direct summand of \(M_R \). It follows that \(N \) is isomorphic to a direct summand of \(M_R \). Now, the \(C_2 \)-condition implies that \(N \) is a direct summand of \(M_R \), proving that \(M_R \) is semisimple. \(\square \)

Proposition 3.2. If \(R \) is a ring such that every injective \(R \)-module is epi-retractable, then \(R \) is a quasi Frobenius ring.

Proof. By Remark 15.10 in [4], we need to show that every projective \(R \)-module is injective. Now, let \(X \) be a projective \(R \)-module and let \(E \) be the injective hull of \(X_R \). Then, by our assumption, there exists a surjective \(R \)-homomorphism \(f \) from \(E \) to \(X \). Because \(X_R \) is projective, then the \(\ker f \) is a direct summand of \(E \). It follows that \(X = E \), as desired. \(\square \)

It is known that if \(R \) is a ring such that every non-zero factor ring of \(R \) is a quasi Frobenius ring, then every \(R \)-module is a direct sum of homo-uniserial modules. An \(R \)-module \(M \) is called homo-uniserial if for any non-zero finitely generated submodules \(K, L \subseteq M \), the factor modules \(K/J(K) \) and \(L/J(L) \) are simple and isomorphic. In particular, if \(M \neq \)
J(M) and Soc(M) \neq 0, then M_R is finitely generated and M/J(M) \cong Soc(M); see [7, 56].

Theorem 3.3. The following are equivalent on a ring R.

(i) Every non-zero factor ring of R is a quasi Frobenius ring.

(ii) For any R-module N, in the class \(\sigma[N_R] \), injective R-modules are epi-retractable.

Proof. (i) \(\Rightarrow \) (ii). Suppose that N is a non-zero R-module and set \(B = \text{ann}_R(N) \). Because R is an Artinian ring by (i), then it is well known that there are \(x_1, \ldots, x_t \in N \) such that \(B = \bigcap_{i=1}^t \text{ann}_R(x_i) \). Consequently, \(R/B \) embeds in \(N^{(0)} \). It follows that \(\sigma[N] = \text{Mod}-R/B \). Hence, it is enough to show that every injective \(R/B \)-module is epi-retractable. By hypothesis, if \(W \) is an \(R/B \)-module, then \(W = \bigoplus_{\lambda \in \Lambda} U_\lambda \) is a direct sum of homo-uniserial modules. Because \(R/B \) is an Artinian ring, then it is easy to verify that \(J(U_\lambda) \neq U_\lambda \) for each \(\lambda \in \Lambda \). Thus, by the above remarks \(W/J(W) \cong \text{Soc}(W) \). Now, let \(E \) be any injective \(R/B \)-module and \(Y \) be a submodule of \(E \). Because \(\text{Soc}(Y) \) is a direct summand of \(\text{Soc}(E) \), then there exists a surjective homomorphism \(f \) from \(E \) to \(Y/J(Y) \). On the other hand, the injective \(R/B \)-module \(E \) is also projective as an \(R/B \)-module. Hence, there exists a homomorphism \(g : E \to Y \) such that \(\pi g = f \) where \(\pi : Y \to Y/J(Y) \) is the canonical projection. Because \(\pi g \) is a surjective homomorphism, then we can conclude that \(g(E) + J(Y) = Y \). But, by hypothesis, \(J(Y) \) is a small submodule of \(Y \), and hence \(g(E) = Y \). This shows that \(E \) is an epi-retractable \(R/B \)-module, as desired.

(ii) \(\Rightarrow \) (i). Let \(A \) be a proper ideal of \(R \) and set \(N = R/A \). Then, \(\sigma[N_R] = \text{Mod}-R/A \). The result follows now Proposition 3.2.

Lemma 3.4. Being epi-retractable is a Morita invariant property.

Proof. In fact, a module \(M_R \) is epi-retractable if and only if for any \(X \in \text{Mod}-R \) with an injective homomorphism \(X_R \to M_R \) there exists a surjective homomorphism \(M_R \to X_R \). Thus, the result follows from the fact that any category equivalence preserves injective and surjective homomorphisms.

Theorem 3.5. Let \(M \) be an \(R \)-module and let \(S \) be the endomorphism ring of a progenerator in \(\sigma[M_R] \). Then, the following statements are equivalent.

(i) For any $N \in \sigma[M_R]$, in the class $\sigma[N_R]$, injective R-modules are epi-retractable.
(ii) Every non-zero factor ring of S is a quasi Frobenius ring.

Proof. By Theorem 46.2 in [7], there exists a category equivalence between $\sigma[M_R]$ and $\text{Mod-}S$. Hence, for any $X \in \text{Mod-}S$, the class $\sigma[X_S]$ corresponds to the class $\sigma[N_R]$ for some suitable $N \in \sigma[M_R]$ and vice versa. The result is then obtained by Lemma 3.4 and Theorem 3.3. □

Acknowledgments
Research of the authors was partially supported by IUT (CEAMA). The authors are grateful to the referee for his/her careful considerations.

References
A. Ghorbani,
Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111 Iran.
And
Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran.
Email: a.ghorbani@cc.iut.ac.ir

M. R. Vedadi,
Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111 Iran.
Email: mrvedadi@cc.iut.ac.ir