Local tracial C*-algebras

Document Type: Research Paper

Authors

Department of Mathematics‎, ‎Shanghai Maritime University‎, ‎Shanghai 200135‎, ‎China.

Abstract

‎Let $\Omega$ be a class of unital‎ ‎$C^*$-algebras‎. ‎We introduce the notion of a local tracial $\Omega$-algebra‎. ‎Let $A$ be an $\alpha$-simple unital local tracial $\Omega$-algebra‎. ‎Suppose that $\alpha:G\to $Aut($A$) is an action of a finite group $G$ on $A$‎ ‎which has a certain non-simple tracial Rokhlin property‎. ‎Then the crossed product algebra‎ ‎$C^*(G,A,\alpha)$ is a unital local tracial $\Omega$-algebra.

Keywords

Main Subjects


B. Blackadar, K-Theory for Operator Algebras, Springer-Verlag, New York, 1986.

A. Connes, Outer conjugacy class of automorphisms of factors, Ann. Sci. Ec. Norm. Super. 8 (1975) 383--420.

G. A. Elliott, On the classification of the inductive limts of sequences of semisimple finite dimensional algebras, J. Algebra 38 (1976), no. 1, 29--44.

G. A. Elliott, Some simple C-algebras constructed as crossed products with discrete automophism groups, Publ. RIMS, Kyoto Univ. 16 (1980) 299--311.

 G. A. Elliott, On the classification of C-algebras of real rank zero, J. Reine Angew. Math. 443 (1993) 179--219.

 G. A. Elliott, A classification of certain simple C-algebras, II, J. Ramanujan Math. Soc. 12 (1997), no. 1, 97--134.

G. A. Elliott and G. Gong, On the classification of C-algebras of real rank zero II, Ann. of Math. (2) 144 (1996), no. 3, 497--610.

G. A. Elliott and Z. Niu, On tracial approximation, J. Funct. Anal. 254 (2008), no. 2, 396--440.

Q. Fan, Classification of certain simple C-algebras, J. Ramanujan Math. Soc. 26 (2011) 99-105.

Q. Fan, Some C-algebras properties preserved by tracial approximation, Israel J. Math. 195 (2013) 545--563.

Q. Fan, Crossed products by finite group actions with certain tracial Rokhlin property, preprint.

Q. Fan and X. Fang, Non-simple tracial approximation, Houston J. Math. 37 (2011), no. 4, 1249--1263.

Q. Fan and X. Fang, Stable rank one and real rank zero for crossed products by automorphisms with the tracial Rokhlin property, Chin. Ann. Math. Ser. B 30 (2009) 179--186.

X. Fang and Q. Fan, Certain properties for crossed product by automorphisms with certain non-simple tracial Rokhlin property, Ergodic Theory Dynam. Systems, 33 (2013), no. 5, 1391-1400.

R. Herman and A. Ocneanu, Stability for integer actions on UHF C-algebras, J. Funct. Anal. 59 (1984) 132--144.

 J. Hua, The tracial Rokhlin property for automorphisms of non-simple C-algebras, Chin. Ann. Math. Ser. B 31 (2010) 191--200.

 A. Kishimoto, The Rohlin property for shifts on UHF algebras, J. Reine Angew. Math. 465 (1995) 183--196.

H. Lin, The tracial topological rank of C


-algebras, Proc. Lond. Math. Soc. 83 (2001) 199--234.

 

H. Lin, An Introduction to the Classification of Amenable C-algebras, World Scientific, New Jersey, London, Singapore, Hong Kong, 2001.

H. Osaka, SP-property for a pair of C-algebras, J. Opertaor theory 46 (2001), no. 1, 159--171.

 H. Osaka and N. C. Phillips, Stable and real rank for crossed products by  automorphisms with the tracial Rokhlin property, Ergodic Theory Dynam. Systems 26 (2006), no. 5, 1579--1621.

H. Osaka and N. C. Phillips, Crossed products by finite group actions with the Rokhlin property, Math. Z. 270 (2012), no. 1-2, 19--42.

N. C. Phillips, Crossed products by finite cyclic group actions with the tracial Rokhlin property, ArXiv: 0306410 [math. OA].

N. C. Phillips, The tracial Rokhlin property for actions of finite groups on C_algebras, Amer. J. Math. 133 (2011) 581--636.

M. Rordam, Classification of certain infinite simple C-algebras, J. Funct. Anal. 131 (1995) 415--458.

X. Yang and X. Fang, The tracial class property for crossed producted by finite group action, Abstr. Appl. Anal. 2012 (2012), Article ID 745369, 10 pages.

X. Yang and X. Fang, The tracial rank for crossed products by finite group actions, Rocky Mountain J. Math. 42 (2012) 339--352.

 


Volume 43, Issue 1
January and February 2017
Pages 137-145
  • Receive Date: 02 May 2015
  • Revise Date: 12 October 2015
  • Accept Date: 14 February 2017