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Abstract. Let Ω be a class of unital C∗-algebras. We introduce the

notion of a local tracial Ω-algebra. Let A be an α-simple unital local
tracial Ω-algebra. Suppose that α : G →Aut(A) is an action of a finite
group G on A which has a certain non-simple tracial Rokhlin property.
Then the crossed product algebra C∗(G,A, α) is a unital local tracial Ω-

algebra.
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1. Introduction

The Rokhlin property in ergodic theory was adapted to the context of von
Neumann algebras by Connes in [2]. It was adapted by Hermann and Oc-
neanu for UHF-algebras in [15]. Rordam [25] and Kishimoto [17] introduced
the Rokhlin property to a much more general context of C∗-algebras. More
recently, Phillips and Osaka studied finite group actions which satisfy a certain
type of Rokhlin property on some simple C∗-algebras in [21–23] and [24].

N. C. Phillips raised the question how to introduce an appropriate Rokhlin
property for non-simple C∗-algebras. In [16] J. Hua introduced a certain
Rokhlin property for non-simple C∗-algebras. When the C∗-algebra is sim-
ple, this Rokhlin property is weaker than the Rokhlin property in [21].

Let Ω be a class of separable unital C∗-algebras. In this paper, we introduce
the notion of a local tracial Ω-algebra. When A is a simple unital local tracial
Ω-algebra, then the definition we give is equivalent to the definition given by
Yang and Fang, in [26]. We prove that if A is a unital local tracial local tracial
Ω-algebra, then A is a unital local tracial Ω-algebra. Using this result, we
show that if A is an α-simple unital local tracial Ω-algebra with the property
SP, and if α : G →Aut(A) is an action of a finite group G on A which has a
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Local tracial C∗-algebras 138

certain non-simple tracial Rokhlin property, then the crossed product algebra
C∗(G,A, α) is a unital local tracial Ω-algebra.

2. Preliminaries and definitions

Let a and b be two positive elements in a C∗-algebra A. We write
[a] ≤ [b](cf Definition 3.5.2 of [19]), if there exists a partial isometry v ∈
A∗∗ such that, for every c ∈ Her(a), v∗c, cv∗ ∈ A, vv∗ = Pa, where Pa is
the range projection of a in A∗∗, and v∗cv ∈ Her(b). We write [a] = [b] if
v∗Her(a)v = Her(b). Let n be a positive integer. We write n[a] ≤ [b], if there
are n mutually orthogonal positive elements b1, b2, · · · , bn ∈ Her(b) such that
[a] ≤ [bi], i = 1, 2, . . . , n.

Let 0 < σ1 < σ2 ≤ 1 be two positive numbers. Definie

fσ2
σ1

(t) =


1 if t ≥ σ2
t−σ1

σ2−σ1
if σ1 ≤ t ≤ σ2

0 if 0 < t ≤ σ1

We say a C∗-algebra A has the property SP, if every nonzero hereditary C∗-
subalgebra of A contains a nonzero projection.

Definition 2.1. ([21]) Let Ω be a class of separable unital C∗-algebras. Then
Ω is finitely saturated if the following closure conditions holds:

(1) If A ∈ Ω and B ∼= A, then B ∈ Ω.
(2) If A1, A2, . . . An ∈ Ω, then ⊕n

k=1An ∈ Ω.
(3) If A ∈ Ω and n ∈ N, then Mn(A) ∈ Ω.
(4) If A ∈ Ω and p ∈ A is a nonzero projection, then pAp ∈ Ω.

Definition 2.2. ( [21]) Let Ω be a class of separable unital C∗-algebras. A
unital local Ω-algebra is a separable unital C∗-algebra A such that for every
finite set S ⊆ A and every ε > 0, there is a C∗-algebra B in the finite saturation
of Ω and a unital ∗-homomorphism φ : B → A(not necessarily injective) such
that dist(a, φ(B)) < ε for all a ∈ S.

Let A be a C∗-algebra, and let F be a subset of A, a, b, x ∈ A, ε > 0. If
∥a− b∥ < ε; then we write a ≈ε b. If there exists an element y ∈ F such that
∥x− y∥ < ε, then we write x ∈ε F .

Definition 2.3. ( [26]) Let Ω be a class of separable unital C∗-algebras. A
unital C∗-algebra A is said to be a unital local tracial Ω-algebra if for any
ε > 0 and any finite subset F ⊆ A, any nonzero positive element b, there exist
a nonzero projection p ∈ A and a C∗-algebra B in the finite saturation of Ω and
a unital ∗-homomorphism φ : B → A (not necessarily injective) and φ(1B) = p
such that

(1) ∥xp− px∥ < ε for all x ∈ F ,
(2) pxp ∈ε φ(B) for all x ∈ F ,
(3) [1− p] ≤ [p].
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Definition 2.4. Let Ω be a class of separable unital C∗-algebras. A unital
C∗-algebra A is said to be a unital local tracial Ω-algebra if for any positive
numbers 0 < σ3 < σ4 < σ1 < σ2 < 1, any ε > 0, any finite subset F ⊆ A,
any nonzero positive element b, and any integer n > 0, there exist a nonzero
projection p ∈ A, and a C∗-algebra B in the finite saturation of Ω and a unital
∗-homomorphism φ : B → A (not necessarily injective) and φ(1B) = p such
that

(1) ∥xp− px∥ < ε for all x ∈ F ,
(2) pxp ∈ε φ(B) for all x ∈ F ,
(3) n[1− p] ≤ [p], n[fσ2

σ1
((1− p)b(1− p))] ≤ [fσ4

σ3
(pbp)].

We will prove that if A is a simple unital local tracial Ω-algebra, then Defi-
nition 2.3 is equivalent to Definition 2.4 given by Yang and Fang.

Definition 2.5. ( [12]) A unital C∗-algebra A is said to belong to the class
TAΩ if for any positive numbers 0 < σ3 < σ4 < σ1 < σ2 < 1, any ε > 0, any
finite subset F ⊆ A containing a nonzero positive element b, any integer n > 0,
there exist a nonzero projection p ∈ A, and a C∗-subalgebra B of A with B ∈ Ω
and 1B = p such that

(1) ∥xp− px∥ < ε for all x ∈ F ,
(2) pxp ∈ε B for all x ∈ F ,
(3) n[1− p] ≤ [p], n[fσ2

σ1
((1− p)b(1− p))] ≤ [fσ4

σ3
(pbp)].

When a unital C∗-algebra A is a unital local tracial Ω-algebra and each
φ(B) ∈ Ω, then A belong to the class TAΩ.

Let A be a C∗-algebra and α either a single automorphism of A or a group
action on A. We shall say A is α-simple if A does not have any non-trivial
α-invariant closed two-sided ideals.

In [16], J. Hua introduced a certain tracial Rokhlin property for non-simple
C∗-algebras with an action of the group Z. X. Yang and X. Fang in [27]
given the analogous tracial Rokhlin property for non-simple C∗-algebras to
that defined by Hua for an action of a finite group.

Definition 2.6. ( [27]) Let A be a finite unital C∗-algebra and let α : G →
Aut(A) be an action of a finite group G on A. We say α has the tracial Rokhlin
property if for any finite set F ⊆ A, any ε > 0 , any nonzero positive element
b ∈ A, and any element x ∈ A, there exist gi, gj ∈ G and mutually orthogonal
projections eg ∈ A for g ∈ G such that

(1) ∥αg(eh)− egh∥ < ε for all g, h ∈ G,
(2) ∥ega− aeg∥ < ε for all g ∈ G and all a ∈ F ,
(3) ∥egixegi∥ ≥ ∥x∥ − ε,
(4) with e = Σg∈Geg, [αgj (1− e)] ≤ [b].

Theorem 2.7. ([16, 27]) Let A be a unital C∗-algebra. Let α : G → Aut(A)
be an action of a finite group G on A which has the tracial Rokhlin property.



Local tracial C∗-algebras 140

Suppose that A is α-simple. Then the crossed product C∗-algebra C∗(G,A, α)
is a simple C∗-algebra.

Theorem 2.8. ([16,27]) Let A be a unital C∗-algebra with the property SP and
let α : G→ Aut(A) be an action of a finite group G on A which has the tracial
Rokhlin property. Then any non-zero hereditary C∗-subalgebra of the crossed
product algebra C∗(G,A, α) has a nonzero projection which is equivalent to a
projection in A.

Theorem 2.9. ([18]) For any 0 < δ1 < δ2 < σ1 < σ2 < 1, there exists
η = η(δ1, δ2) > 0 such that for any positive elements a and b with ∥a− b∥ < η

and ∥a∥, ∥b∥ ≤ 1 we have [fσ2
σ1

(a)] ≤ [fδ2δ1 (b)] ≤ [b].

Theorem 2.10. ( [24]) Let n ∈ N, and (ei,j)1≤j, k≤n be a system of matrix
units for Mn. For every ε > 0, there is a δ > 0 such that whenever B is a
unital C∗-algebra and wj,k, for 1 ≤ j, k ≤ n, are elements of B such that

(1) ∥wj,k
∗ − wk,j∥ < δ for 1 ≤ j, k ≤ n,

(2) ∥wj1,k1wj2,k2 − δj2,k1wj1,k2∥ < δ for 1 ≤ j1, j2, k1, k2 ≤ n,
(3) wj,j are orthogonal projections with Σn

j=1wj,j = 1, there exists a unital
homomorphism φ : Mn → B such that φ(ej,j) = wj,j for 1 ≤ j ≤ n and
∥φ(ej,k)− wj,k∥ < ε for 1 ≤ j, k ≤ n.

The proof of the following theorem is similar to [12]. We do not give a proof.

Theorem 2.11. Let Ω be a class of separable unital C∗-algebras. If A is a
unital local tracial Ω-algebra, then pAp and Mn(A) are unital tracial Ω-algebras
for any projection p ∈ A and positive integer n.

3. The main results

The proof of the following theorem is similar to [11].

Theorem 3.1. Let Ω be a class of unital C∗-algebras. The Definition 2,3 and
Definition 2.4 are equivalent for any untial simple C∗-algebra A.

Proof. Firstly we prove that Definition 2.3 implies Definition 2.4. We need to
show that for any ε > 0, any finite subset F ⊆ A, any nonzero positive element
b, any 0 < σ3 < σ4 < σ1 < σ2 < 1, and any integer n > 0, there exist a
projection p ∈ A and a C∗-algebra B in the finite saturation of Ω and unital
∗-homomorphism φ : B → A with φ(1B) = p, such that

(1) ∥px− xp∥ < ε for any x ∈ F ,
(2) pxp ∈ε φ(B) for any x ∈ F ,
(3) n[1− p] ≤ [p], n[fσ2

σ1
((1− p)b(1− p))] ≤ [fσ4

σ3
(pbp)].

Since A satisfies Definition 2.3, there exist a projection p1 ∈ A and a C∗-
algebra A1 in the finite saturation of Ω and unital ∗-homomorphism φ : A1 → A
with φ(1A1) = p1 such that

(1′) ∥p1x− xp1∥ < ε for any x ∈ F ,
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(2′) p1xp1 ∈ε φ(A1) for any x ∈ F ,
(3′) [1− p1] ≤ [b].
We may assume that A has the property SP. Since A has the property SP,

there exist a nonzero projection e′ ∈ Her(fσ2
σ1
(p1bp1)) and there exist projec-

tions e ∈ Her(fσ2
σ1
(p1bp1)), f ∈ (1 − p1)A(1 − p1) such that [e] ≤ [e′] and

[f ] = [e].
By Theorem 2.11, (1− p1)A(1− p1) is a local Ω-algebra, there exist a pro-

jection p2 ∈ (1 − p1)A(1 − p1) and a C∗-algebra A2 in the finite saturation of
Ω and unital ∗-homomorphism φ′ : A2 → (1− p1)A(1− p1) with φ(1A2) = p2
such that

(1′′) ∥p2(1− p1)x(1− p1)− (1− p1)x(1− p1)p2∥ < ε for any x ∈ F ,
(2′′) p2(1− p1)x(1− p1)p2 ∈ε φ(A2) for any x ∈ F ,
(3′′) [1− p1 − p2] ≤ [f ].
Take B = A1

⊕
A2 and p = p1+ p2. Then B is in the finite saturation of Ω,

we have a unital ∗-homomorphism (φ+φ′) : B → A with (φ+φ′)(1B) = p1+p2
such that

(1) ∥x(p1 + p2) − (p1 + p2)x∥ ≤ ∥xp1 − p1x + xp2 − p2x∥ ≤ ∥p1x − xp1∥ +
∥p2x− p2xp1 − xp2 + p1xp2∥+ ∥p2xp1 − p1xp2∥ ≤ 4ε for any x ∈ F .

(2) ∥(p1 + p2)x(p1 + p2) − p1xp1 − p2xp2∥ < 2ε, (p1 + p2)x(p1 + p2) ∈2ε B
for any x ∈ F ,

(3) [fσ2
σ1

((1−p1−p2)b(1−p1−p2))] ≤ [1−p1−p2] ≤ [f ] ≤ [e] ≤ [fσ2
σ1

(p1bp1)] ≤
[fσ2

σ1
(p1bp1)] + [fσ2

σ1
(p2bp2)] ≤ [fσ4

σ3
((p1 + p2)b(p1 + p2))].

Using the same method as in [12], we can prove that Definition 2.4 holds.
Secondly we prove that Definition 2.4 implies Definition 2.3. For any ε > 0,

and finite subset F ⊆ A, any nonzero element a ≥ 0, any integer n > 0, since
A is a simple unital C∗-algebra, there are xi ∈ A (i = 1, 2, . . . , k) such that

Σk
i=1(xiax

∗
i ) = 1. Take 0 < d1 < d2 < 1 such that ∥Σk

i=1xia
1/2fd2

d1
(a)a1/2x∗i −

1∥ < 1. Put z = (Σk
i=1xia

1/2fd2

d1
(a)a1/2x∗i )

−1, yi = z−1/2xia
1/2. Then we have

Σk
i=1yif

d2

d1
(a)y∗i = 1. We may assume that σ4 < d3 < d4 < d1 < d2 < σ1 and

∥a∥ ≤ 1. Since A satisfies Definition 2.4, there exist a nonzero projection r ∈ A
and a C∗-algebra C in the finite saturation of Ω and a unital ∗-homomorphism
φ : C → A with φ(1C) = r such that

(1′′′) ∥xr − rx∥ < ε for all x ∈ F ′,
(2′′′) rxr ∈ε φ(C) for all x ∈ F ′ and

(3′′′) nk[fd2

d1
((1− r)a(1− r))] ≤ [fd4

d3
(rar)].

where F ′ = {yi, y∗i , f
d2

d1
(a), a, 1A} ∪ F .

By functional calculus, there are zi ∈ (1−r)A(1−r) such that Σk
i=1zif

d2

d1
((1−

r)a(1− r))z∗i = 1− r. We have

[1− r] ≤ k[fd2

d1
((1− r)a(1− r))].
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Therefore we have

n[1− r] ≤ nk[fd2

d1
((1− r)a(1− r))] ≤ [fd4

d3
(rar)] + [fd4

d3
((1− r)a(1− r))]

≤ [fσ4
σ3

(a)] ≤ [a].

□

The method and technique of the following theorem is similar to [10].

Theorem 3.2. Let Ω be a class of unital C∗-algebras. If A is a unital local
tracial local tracial Ω-algebra, then A is a unital local tracial Ω-algebra.

Proof. Since A is a unital local tracial local tracial Ω-algebra, for any δ > 0 and
any finite subset G ⊆ A, there exist a projection p ∈ A and a C∗-algebra B in
the finite saturation of local tracial Ω and a unital ∗-homomorphism φ′ : B → A
with φ(1B) = r such that

(1)′ ∥xp− px∥ < δ for all x ∈ G,
(2)′ pxp ∈δ φ

′(B) for all x ∈ G,
(3)′ 2[1A − p] ≤ [a].
Suppose that [1A − p] ̸= 0. By (3)′, there exist partial isometries v1, v2 ∈ A

such that v∗1v1 = 1A−p, v∗2v2 = 1A−p, v1v∗1 , v2v∗2 ∈ Her(a) and (v1v
∗
1)(v2v

∗
2) =

0. Set a1 = v1v
∗
1 , a2 = v2v

∗
2 . Then we have a1 ̸= 0, a2 ̸= 0, a1, a2 ∈

Her(a), a1a2 = 0.
For H = F ∪{a1} and ε > 0, there exist a projection t ∈ A and a C∗-algebra

C in the finite saturation of local tracial Ω and a unital ∗-homomorphism
φ′′ : C → A with φ′′(1C) = t such that

(1)′′ ∥xt− tx∥ < ε for all x ∈ H,
(2)′′ txt ∈ε φ

′′(C) for all x ∈ H, and ∥ta1t∥ ≥ ∥a1∥ − ε,
(3)′′ [1A − t] ≤ [a2].
By (1)′′ and (2)′′, there exist a′1 ∈ C and a′′1 ∈ (1A − t)A(1A − t) such that

∥a1 − a′1 − a′′1∥ < 2ε. We have a′1 ̸= 0 and [a′1] ≤ [a1].
For any ε > 0 and finite subset H = {tx1t, tx2t, . . . , txnt, a′1}, since C is

in finite local finite saturation of Ω, there exist a projection r ∈ A and a C∗-
algebra in the finite saturation of Ω and a unital ∗-homomorphism φ : D → A
with φ(1D) = r such that

(1)′′′ ∥txtr − rtxt∥ < ε for all x ∈ F ,
(2)′′′ rtxtr ∈ε D for all x ∈ F ,
(3)′′′ [t− r] ≤ [a′1].
Therefore we have
(1) ∥xr − rx∥ < 3ε for all x ∈ F ,
(2) rxr ∈3ε D for all x ∈ F ,
(3) [1A − r] ≤ [1A − t] + [t− r] ≤ [a2] + [a′1] ≤ [a2] + [a1] ≤ [a]. □

Theorem 3.3. Let Ω be a class of unital C∗-algebras. Let A be a local Ω-
algebra and α-simple unital C∗-algebra with the property SP. Suppose that α :
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G→ Aut(A) is an action of a finite group G on A which has the tracial Rokhlin
property. Then the crossed product algebra C∗(G,A, α) is a local Ω-algebra.

Proof. C∗(G,A, α) is a simple C∗-algebra by Theorem 2.7. suppose F is a finite
subset of the unit ball of A, and G = {g1, g2, . . . gm}, and g1 is the unit of G and
ugi ∈ C∗(G,A, α) is the canonical unitary implementing of the automorphism
αgi . For any finite subset G of the form G = F ∪{ugi : 1 ≤ i ≤ m}, any ε > 0,
any nonzero positive element b ∈ C∗(G,A, α), we need to show that there exist
a nonzero projection e ∈ A, and a C∗-algebra B in the finite saturation of Ω
and a unital ∗-homomorphism φ : B → A with φ(1B) = e such that

(1) ∥ex− xe∥ < ε for any x ∈ G,
(2) exe ∈ε φ(B) for any x ∈ G,
(3) [1A − e] ≤ [b].
By Theorem 2.8, there exists a nonzero projection p ∈ A which is Murray-

von Neumann equivalent to a projection in bC∗(G,A, α)b, i.e., [p] ≤ [b].
Set δ = ε/(16m). Choose η > 0 according to Theorem 2.10 form given above

and δ in place of ε. Moreover we may require η < ε/[8m(m + 1)]. Applying
Definition 2.6 to α with F given above, η in place with ε, and p in place of b,
there are gk ∈ G and mutually orthogonal projections egi ∈ A for 1 ≤ i ≤ m,
such that

(1′) ∥αgi(egj )− egigj∥ < η for any 1 ≤ i, j ≤ m,
(2′) ∥egia− aegi∥ < η for any 1 ≤ i ≤ m and any a ∈ F ,
(3′) [αgk(1− e)] ≤ [p], with e = Σm

i=1egi .
By (1′) and (2′), we have ∥ea− ae∥ ≤ Σm

i=1∥egia− aegi∥ < mη.
Define wgi,gj = ugigj−1egj for every 1 ≤ i, j ≤ m.
Using the same methods as in [24], we can prove that the elements wgi,gj ∈

eC∗(G,A, α)e (1 ≤ i, j ≤ m) satisfy the conditions in Theorem 2.10.
Let (fij) (1 ≤ i, j ≤ m) be a system of matrix units for Mm. By Theorem

2.10, there exists a unital homomorphism φ0 :Mm → eC∗(G,A, α)e such that
∥φ0(fij)−wgi,gj∥ < δ for all 1 ≤ i, j ≤ m, and ψ0(fii) = egi for all 1 ≤ i ≤ m.
Now we define a unital homomorphism φ :Mm ⊗ eg1Aeg1 → eC∗(G,A, α)e by

φ(fij ⊗ a) = φ0(fi1)aφ0(fi1)

for all 1 ≤ i, j ≤ m and a ∈ eg1Aeg1 . Then

φ(fij ⊗ eg1) = φ0(fi1)eg1φ0(f1j) = φ0(fij) = egiφ0(fij)egj ,

and φ(1Mm
⊗ eg1) = e.

Take B =Mm ⊗ eg1Aeg1 . Then B is in the finite saturation of local tracial
Ω. By Theorem 2.7, we have B is in the finite saturation of local tracial Ω.

Using the same method as in [14], we can prove that
(1) ∥ae− ea∥ ≤ mη < ε, for any a ∈ G,
(2) exe ∈ε φ(Mm ⊗ eg1Aeg1) for any x ∈ G,
(3) [1A − e] = [αgk(1− e)] ≤ [p] ≤ [b]. □
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