ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 1, pp. 137-145

Title:

Local tracial C^* -algebras

Author(s):

J. Yang and Q. Fan

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 43 (2017), No. 1, pp. 137–145 Online ISSN: 1735-8515

LOCAL TRACIAL C*-ALGEBRAS

J. YANG* AND Q. FAN

(Communicated by Hamid Reza Ebrahimi Vishki)

ABSTRACT. Let Ω be a class of unital C^* -algebras. We introduce the notion of a local tracial Ω -algebra. Let A be an α -simple unital local tracial Ω -algebra. Suppose that $\alpha : G \to \operatorname{Aut}(A)$ is an action of a finite group G on A which has a certain non-simple tracial Rokhlin property. Then the crossed product algebra $C^*(G, A, \alpha)$ is a unital local tracial Ω -algebra.

Keywords: C*-algebra, local tracial algebra, tracial Rokhlin property. MSC(2010): Primary: 46L05; Secondary: 46L80, 46L35.

1. Introduction

The Rokhlin property in ergodic theory was adapted to the context of von Neumann algebras by Connes in [2]. It was adapted by Hermann and Ocneanu for UHF-algebras in [15]. Rordam [25] and Kishimoto [17] introduced the Rokhlin property to a much more general context of C^* -algebras. More recently, Phillips and Osaka studied finite group actions which satisfy a certain type of Rokhlin property on some simple C^* -algebras in [21–23] and [24].

N. C. Phillips raised the question how to introduce an appropriate Rokhlin property for non-simple C^* -algebras. In [16] J. Hua introduced a certain Rokhlin property for non-simple C^* -algebras. When the C^* -algebra is simple, this Rokhlin property is weaker than the Rokhlin property in [21].

Let Ω be a class of separable unital C^* -algebras. In this paper, we introduce the notion of a local tracial Ω -algebra. When A is a simple unital local tracial Ω -algebra, then the definition we give is equivalent to the definition given by Yang and Fang, in [26]. We prove that if A is a unital local tracial local tracial Ω -algebra, then A is a unital local tracial Ω -algebra. Using this result, we show that if A is an α -simple unital local tracial Ω -algebra with the property SP, and if $\alpha : G \to \operatorname{Aut}(A)$ is an action of a finite group G on A which has a

O2017 Iranian Mathematical Society

Article electronically published on February 22, 2017.

Received: 2 May 2015, Accepted: 21 October 2015.

^{*}Corresponding author.

¹³⁷

certain non-simple tracial Rokhlin property, then the crossed product algebra $C^*(G, A, \alpha)$ is a unital local tracial Ω -algebra.

2. Preliminaries and definitions

Let a and b be two positive elements in a C^* -algebra A. We write $[a] \leq [b]$ (cf Definition 3.5.2 of [19]), if there exists a partial isometry $v \in A^{**}$ such that, for every $c \in \text{Her}(a), v^*c, cv^* \in A, vv^* = P_a$, where P_a is the range projection of a in A^{**} , and $v^*cv \in \text{Her}(b)$. We write [a] = [b] if $v^*\text{Her}(a)v = \text{Her}(b)$. Let n be a positive integer. We write $n[a] \leq [b]$, if there are n mutually orthogonal positive elements $b_1, b_2, \cdots, b_n \in \text{Her}(b)$ such that $[a] \leq [b_i], i = 1, 2, \ldots, n$.

Let $0 < \sigma_1 < \sigma_2 \leq 1$ be two positive numbers. Definie

$$f_{\sigma_1}^{\sigma_2}(t) = \begin{cases} 1 & \text{if } t \ge \sigma_2 \\ \frac{t - \sigma_1}{\sigma_2 - \sigma_1} & \text{if } \sigma_1 \le t \le \sigma_2 \\ 0 & \text{if } 0 < t \le \sigma_1 \end{cases}$$

We say a C^* -algebra A has the property SP, if every nonzero hereditary C^* -subalgebra of A contains a nonzero projection.

Definition 2.1. ([21]) Let Ω be a class of separable unital C^* -algebras. Then Ω is finitely saturated if the following closure conditions holds:

- (1) If $A \in \Omega$ and $B \cong A$, then $B \in \Omega$.
- (2) If $A_1, A_2, \ldots A_n \in \Omega$, then $\bigoplus_{k=1}^n A_n \in \Omega$.
- (3) If $A \in \Omega$ and $n \in \mathbb{N}$, then $M_n(A) \in \Omega$.
- (4) If $A \in \Omega$ and $p \in A$ is a nonzero projection, then $pAp \in \Omega$.

Definition 2.2. ([21]) Let Ω be a class of separable unital C^* -algebras. A unital local Ω -algebra is a separable unital C^* -algebra A such that for every finite set $S \subseteq A$ and every $\varepsilon > 0$, there is a C^* -algebra B in the finite saturation of Ω and a unital *-homomorphism $\varphi : B \to A$ (not necessarily injective) such that dist $(a, \varphi(B)) < \varepsilon$ for all $a \in S$.

Let A be a C^* -algebra, and let F be a subset of A, $a, b, x \in A, \varepsilon > 0$. If $||a - b|| < \varepsilon$; then we write $a \approx_{\varepsilon} b$. If there exists an element $y \in F$ such that $||x - y|| < \varepsilon$, then we write $x \in_{\varepsilon} F$.

Definition 2.3. ([26]) Let Ω be a class of separable unital C^* -algebras. A unital C^* -algebra A is said to be a unital local tracial Ω -algebra if for any $\varepsilon > 0$ and any finite subset $F \subseteq A$, any nonzero positive element b, there exist a nonzero projection $p \in A$ and a C^* -algebra B in the finite saturation of Ω and a unital *-homomorphism $\varphi : B \to A$ (not necessarily injective) and $\varphi(1_B) = p$ such that

- (1) $||xp px|| < \varepsilon$ for all $x \in F$,
- (2) $pxp \in_{\varepsilon} \varphi(B)$ for all $x \in F$,
- (3) $[1-p] \le [p].$

Yang and Fan

Definition 2.4. Let Ω be a class of separable unital C^* -algebras. A unital C^* -algebra A is said to be a unital local tracial Ω -algebra if for any positive numbers $0 < \sigma_3 < \sigma_4 < \sigma_1 < \sigma_2 < 1$, any $\varepsilon > 0$, any finite subset $F \subseteq A$, any nonzero positive element b, and any integer n > 0, there exist a nonzero projection $p \in A$, and a C^{*}-algebra B in the finite saturation of Ω and a unital *-homomorphism $\varphi: B \to A$ (not necessarily injective) and $\varphi(1_B) = p$ such that

- (1) $||xp px|| < \varepsilon$ for all $x \in F$,
- (2) $pxp \in_{\varepsilon} \varphi(B)$ for all $x \in F$,
- (3) $n[1-p] \leq [p], n[f_{\sigma_1}^{\sigma_2}((1-p)b(1-p))] \leq [f_{\sigma_3}^{\sigma_4}(pbp)].$

We will prove that if A is a simple unital local tracial Ω -algebra, then Definition 2.3 is equivalent to Definition 2.4 given by Yang and Fang.

Definition 2.5. ([12]) A unital C^* -algebra A is said to belong to the class $TA\Omega$ if for any positive numbers $0 < \sigma_3 < \sigma_4 < \sigma_1 < \sigma_2 < 1$, any $\varepsilon > 0$, any finite subset $F \subseteq A$ containing a nonzero positive element b, any integer n > 0, there exist a nonzero projection $p \in A$, and a C^* -subalgebra B of A with $B \in \Omega$ and $1_B = p$ such that

- (1) $||xp px|| < \varepsilon$ for all $x \in F$,
- (2) $pxp \in_{\varepsilon} B$ for all $x \in F$,
- (2) pup $\in \mathcal{E}$ D for all $x \in [\tau]$, (3) $n[1-p] \le [p], n[f_{\sigma_1}^{\sigma_2}((1-p)b(1-p))] \le [f_{\sigma_3}^{\sigma_4}(pbp)].$

When a unital C^* -algebra A is a unital local tracial Ω -algebra and each $\varphi(B) \in \Omega$, then A belong to the class $TA\Omega$.

Let A be a C^{*}-algebra and α either a single automorphism of A or a group action on A. We shall say A is α -simple if A does not have any non-trivial α -invariant closed two-sided ideals.

In [16], J. Hua introduced a certain tracial Rokhlin property for non-simple C^* -algebras with an action of the group Z. X. Yang and X. Fang in [27] given the analogous tracial Rokhlin property for non-simple C^* -algebras to that defined by Hua for an action of a finite group.

Definition 2.6. ([27]) Let A be a finite unital C^{*}-algebra and let $\alpha : G \to$ $\operatorname{Aut}(A)$ be an action of a finite group G on A. We say α has the tracial Rokhlin property if for any finite set $F \subseteq A$, any $\varepsilon > 0$, any nonzero positive element $b \in A$, and any element $x \in A$, there exist $g_i, g_i \in G$ and mutually orthogonal projections $e_g \in A$ for $g \in G$ such that

- (1) $\|\alpha_g(e_h) e_{gh}\| < \varepsilon$ for all $g, h \in G$,
- (2) $\|e_q a a e_q\| < \varepsilon$ for all $g \in G$ and all $a \in F$,
- (3) $||e_{g_i} x e_{g_i}|| \ge ||x|| \varepsilon,$ (4) with $e = \sum_{g \in G} e_g, \ [\alpha_{g_j}(1-e)] \le [b].$

Theorem 2.7. ([16,27]) Let A be a unital C^{*}-algebra. Let $\alpha : G \to Aut(A)$ be an action of a finite group G on A which has the tracial Rokhlin property.

139

Suppose that A is α -simple. Then the crossed product C^* -algebra $C^*(G, A, \alpha)$ is a simple C^* -algebra.

Theorem 2.8. ([16,27]) Let A be a unital C^* -algebra with the property SP and let $\alpha : G \to \operatorname{Aut}(A)$ be an action of a finite group G on A which has the tracial Rokhlin property. Then any non-zero hereditary C^* -subalgebra of the crossed product algebra $C^*(G, A, \alpha)$ has a nonzero projection which is equivalent to a projection in A.

Theorem 2.9. ([18]) For any $0 < \delta_1 < \delta_2 < \sigma_1 < \sigma_2 < 1$, there exists $\eta = \eta(\delta_1, \delta_2) > 0$ such that for any positive elements a and b with $||a - b|| < \eta$ and $||a||, ||b|| \le 1$ we have $[f_{\sigma_1}^{\sigma_2}(a)] \le [f_{\delta_1}^{\delta_2}(b)] \le [b]$.

Theorem 2.10. ([24]) Let $n \in \mathbb{N}$, and $(e_{i,j})_{1 \leq j, k \leq n}$ be a system of matrix units for M_n . For every $\varepsilon > 0$, there is a $\delta > 0$ such that whenever B is a unital C^{*}-algebra and $w_{j,k}$, for $1 \leq j, k \leq n$, are elements of B such that

(1) $||w_{j,k}^* - w_{k,j}|| < \delta$ for $1 \le j, k \le n$,

(2) $||w_{j_1,k_1}w_{j_2,k_2} - \delta_{j_2,k_1}w_{j_1,k_2}|| < \delta$ for $1 \le j_1, \ j_2, \ k_1, \ k_2 \le n$,

(3) $w_{j,j}$ are orthogonal projections with $\sum_{j=1}^{n} w_{j,j} = 1$, there exists a unital homomorphism $\varphi : M_n \to B$ such that $\varphi(e_{j,j}) = w_{j,j}$ for $1 \leq j \leq n$ and $\|\varphi(e_{j,k}) - w_{j,k}\| < \varepsilon$ for $1 \leq j, k \leq n$.

The proof of the following theorem is similar to [12]. We do not give a proof.

Theorem 2.11. Let Ω be a class of separable unital C^* -algebras. If A is a unital local tracial Ω -algebra, then pAp and $M_n(A)$ are unital tracial Ω -algebras for any projection $p \in A$ and positive integer n.

3. The main results

The proof of the following theorem is similar to [11].

Theorem 3.1. Let Ω be a class of unital C^* -algebras. The Definition 2,3 and Definition 2.4 are equivalent for any unital simple C^* -algebra A.

Proof. Firstly we prove that Definition 2.3 implies Definition 2.4. We need to show that for any $\varepsilon > 0$, any finite subset $F \subseteq A$, any nonzero positive element b, any $0 < \sigma_3 < \sigma_4 < \sigma_1 < \sigma_2 < 1$, and any integer n > 0, there exist a projection $p \in A$ and a C^* -algebra B in the finite saturation of Ω and unital *-homomorphism $\varphi: B \to A$ with $\varphi(1_B) = p$, such that

(1) $||px - xp|| < \varepsilon$ for any $x \in F$,

(2) $pxp \in_{\varepsilon} \varphi(B)$ for any $x \in F$,

(3) $n[1-p] \le [p], n[f_{\sigma_1}^{\sigma_2}((1-p)b(1-p))] \le [f_{\sigma_3}^{\sigma_4}(pbp)].$

Since A satisfies Definition 2.3, there exist a projection $p_1 \in A$ and a C^* algebra A_1 in the finite saturation of Ω and unital *-homomorphism $\varphi : A_1 \to A$ with $\varphi(1_{A_1}) = p_1$ such that

(1') $||p_1x - xp_1|| < \varepsilon$ for any $x \in F$,

(2') $p_1 x p_1 \in_{\varepsilon} \varphi(A_1)$ for any $x \in F$,

 $(3') [1-p_1] \le [b].$

We may assume that A has the property SP. Since A has the property SP, there exist a nonzero projection $e' \in \operatorname{Her}(f_{\sigma_1}^{\sigma_2}(p_1bp_1))$ and there exist projections $e \in \operatorname{Her}(f_{\sigma_1}^{\sigma_2}(p_1bp_1))$, $f \in (1-p_1)A(1-p_1)$ such that $[e] \leq [e']$ and [f] = [e].

By Theorem 2.11, $(1 - p_1)A(1 - p_1)$ is a local Ω -algebra, there exist a projection $p_2 \in (1-p_1)A(1-p_1)$ and a C*-algebra A_2 in the finite saturation of Ω and unital *-homomorphism $\varphi': A_2 \to (1-p_1)A(1-p_1)$ with $\varphi(1_{A_2}) = p_2$ such that

 $(1'') ||p_2(1-p_1)x(1-p_1) - (1-p_1)x(1-p_1)p_2|| < \varepsilon \text{ for any } x \in F,$ (2'') $p_2(1-p_1)x(1-p_1)p_2 \in_{\varepsilon} \varphi(A_2)$ for any $x \in F$,

 $(3'') [1 - p_1 - p_2] \le [f].$

Take $B = A_1 \bigoplus A_2$ and $p = p_1 + p_2$. Then B is in the finite saturation of Ω , we have a unital *-homomorphism $(\varphi + \varphi') : B \to A$ with $(\varphi + \varphi')(1_B) = p_1 + p_2$ such that

(1) $||x(p_1 + p_2) - (p_1 + p_2)x|| \le ||xp_1 - p_1x + xp_2 - p_2x|| \le ||p_1x - xp_1|| +$ $||p_2x - p_2xp_1 - xp_2 + p_1xp_2|| + ||p_2xp_1 - p_1xp_2|| \le 4\varepsilon$ for any $x \in F$.

(2) $||(p_1+p_2)x(p_1+p_2)-p_1xp_1-p_2xp_2|| < 2\varepsilon, (p_1+p_2)x(p_1+p_2) \in_{2\varepsilon} B$ for any $x \in F$,

 $\begin{array}{l} (3) \left[f_{\sigma_1}^{\sigma_2} ((1-p_1-p_2)b(1-p_1-p_2)) \right] \leq \left[1-p_1-p_2 \right] \leq \left[f \right] \leq \left[e \right] \leq \left[f_{\sigma_1}^{\sigma_2} (p_1bp_1) \right] \\ \left[f_{\sigma_1}^{\sigma_2} (p_1bp_1) \right] + \left[f_{\sigma_1}^{\sigma_2} (p_2bp_2) \right] \leq \left[f_{\sigma_3}^{\sigma_4} ((p_1+p_2)b(p_1+p_2)) \right]. \\ \text{Using the same method as in [12], we can prove that Definition 2.4 holds.} \end{array}$

Secondly we prove that Definition 2.4 implies Definition 2.3. For any $\varepsilon > 0$, and finite subset $F \subseteq A$, any nonzero element $a \ge 0$, any integer n > 0, since A is a simple unital C^* -algebra, there are $x_i \in A$ (i = 1, 2, ..., k) such that $\Sigma_{i=1}^k(x_i a x_i^*) = 1$. Take $0 < d_1 < d_2 < 1$ such that $\|\Sigma_{i=1}^k x_i a^{1/2} f_{d_1}^{d_2}(a) a^{1/2} x_i^* - 1\| < 1$. Put $z = (\Sigma_{i=1}^k x_i a^{1/2} f_{d_1}^{d_2}(a) a^{1/2} x_i^*)^{-1}$, $y_i = z^{-1/2} x_i a^{1/2}$. Then we have $\sum_{i=1}^{k} y_i f_{d_1}^{d_2}(a) y_i^* = 1$. We may assume that $\sigma_4 < d_3 < d_4 < d_1 < d_2 < \sigma_1$ and $||a|| \leq 1$. Since A satisfies Definition 2.4, there exist a nonzero projection $r \in A$ and a C^* -algebra C in the finite saturation of Ω and a unital *-homomorphism $\varphi: C \to A$ with $\varphi(1_C) = r$ such that

 $(1''') ||xr - rx|| < \varepsilon$ for all $x \in F'$.

(2''') $rxr \in_{\varepsilon} \varphi(C)$ for all $x \in F'$ and

 $(3''') \ nk[f_{d_1}^{d_2}((1-r)a(1-r))] \le [f_{d_3}^{d_4}(rar)].$

where $F' = \{y_i, y_i^*, f_{d_1}^{d_2}(a), a, 1_A\} \cup F.$

By functional calculus, there are $z_i \in (1-r)A(1-r)$ such that $\sum_{i=1}^k z_i f_{d_i}^{d_2}((1-r)A(1-r))$ $r)a(1-r)z_{i}^{*} = 1 - r$. We have

$$[1-r] \le k[f_{d_1}^{d_2}((1-r)a(1-r))].$$

141

Therefore we have

$$n[1-r] \leq nk[f_{d_1}^{d_2}((1-r)a(1-r))] \leq [f_{d_3}^{d_4}(rar)] + [f_{d_3}^{d_4}((1-r)a(1-r))] \leq [f_{\sigma_3}^{\sigma_4}(a)] \leq [a].$$

The method and technique of the following theorem is similar to [10].

Theorem 3.2. Let Ω be a class of unital C^* -algebras. If A is a unital local tracial local tracial Ω -algebra, then A is a unital local tracial Ω -algebra.

Proof. Since A is a unital local tracial local tracial Ω -algebra, for any $\delta > 0$ and any finite subset $G \subseteq A$, there exist a projection $p \in A$ and a C^* -algebra B in the finite saturation of local tracial Ω and a unital *-homomorphism $\varphi' : B \to A$ with $\varphi(1_B) = r$ such that

 $(1)' ||xp - px|| < \delta \text{ for all } x \in G,$

(2)' $pxp \in_{\delta} \varphi'(B)$ for all $x \in G$,

 $(3)' \ 2[1_A - p] \le [a].$

Suppose that $[1_A - p] \neq 0$. By (3)', there exist partial isometries $v_1, v_2 \in A$ such that $v_1^*v_1 = 1_A - p$, $v_2^*v_2 = 1_A - p$, $v_1v_1^*$, $v_2v_2^* \in \text{Her}(a)$ and $(v_1v_1^*)(v_2v_2^*) = 0$. Set $a_1 = v_1v_1^*$, $a_2 = v_2v_2^*$. Then we have $a_1 \neq 0$, $a_2 \neq 0$, a_1 , $a_2 \in \text{Her}(a)$, $a_1a_2 = 0$.

For $H = F \cup \{a_1\}$ and $\varepsilon > 0$, there exist a projection $t \in A$ and a C^* -algebra C in the finite saturation of local tracial Ω and a unital *-homomorphism $\varphi'': C \to A$ with $\varphi''(1_C) = t$ such that

- $(1)'' ||xt tx|| < \varepsilon \text{ for all } x \in H,$
- (2)" $txt \in_{\varepsilon} \varphi''(C)$ for all $x \in H$, and $||ta_1t|| \ge ||a_1|| \varepsilon$,
- $(3)'' [1_A t] \le [a_2].$

By (1)" and (2)", there exist $a'_1 \in C$ and $a''_1 \in (1_A - t)A(1_A - t)$ such that $||a_1 - a'_1 - a''_1|| < 2\varepsilon$. We have $a'_1 \neq 0$ and $[a'_1] \leq [a_1]$.

For any $\varepsilon > 0$ and finite subset $H = \{tx_1t, tx_2t, \ldots, tx_nt, a'_1\}$, since C is in finite local finite saturation of Ω , there exist a projection $r \in A$ and a C^* algebra in the finite saturation of Ω and a unital *-homomorphism $\varphi : D \to A$ with $\varphi(1_D) = r$ such that

 $\begin{aligned} (1)''' & \|txtr - rtxt\| < \varepsilon \text{ for all } x \in F, \\ (2)''' & rtxtr \in_{\varepsilon} D \text{ for all } x \in F, \\ (3)''' & [t-r] \leq [a'_1]. \end{aligned}$ Therefore we have $(1) & \|xr - rx\| < 3\varepsilon \text{ for all } x \in F, \\ (2) & rxr \in_{3\varepsilon} D \text{ for all } x \in F, \\ (3) & [1_A - r] \leq [1_A - t] + [t-r] \leq [a_2] + [a'_1] \leq [a_2] + [a_1] \leq [a]. \end{aligned}$

Theorem 3.3. Let Ω be a class of unital C^* -algebras. Let A be a local Ω algebra and α -simple unital C^* -algebra with the property SP. Suppose that α : $G \to \operatorname{Aut}(A)$ is an action of a finite group G on A which has the tracial Rokhlin property. Then the crossed product algebra $C^*(G, A, \alpha)$ is a local Ω -algebra.

Proof. $C^*(G, A, \alpha)$ is a simple C^* -algebra by Theorem 2.7. suppose F is a finite subset of the unit ball of A, and $G = \{g_1, g_2, \ldots, g_m\}$, and g_1 is the unit of G and $u_{g_i} \in C^*(G, A, \alpha)$ is the canonical unitary implementing of the automorphism α_{g_i} . For any finite subset G of the form $G = F \cup \{u_{g_i} : 1 \leq i \leq m\}$, any $\varepsilon > 0$, any nonzero positive element $b \in C^*(G, A, \alpha)$, we need to show that there exist a nonzero projection $e \in A$, and a C^* -algebra B in the finite saturation of Ω and a unital *-homomorphism $\varphi : B \to A$ with $\varphi(1_B) = e$ such that

- (1) $||ex xe|| < \varepsilon$ for any $x \in G$,
- (2) $exe \in_{\varepsilon} \varphi(B)$ for any $x \in G$,
- (3) $[1_A e] \le [b].$

By Theorem 2.8, there exists a nonzero projection $p \in A$ which is Murrayvon Neumann equivalent to a projection in $\overline{bC^*(G, A, \alpha)b}$, i.e., $[p] \leq [b]$.

Set $\delta = \varepsilon/(16m)$. Choose $\eta > 0$ according to Theorem 2.10 for m given above and δ in place of ε . Moreover we may require $\eta < \varepsilon/[8m(m+1)]$. Applying Definition 2.6 to α with F given above, η in place with ε , and p in place of b, there are $g_k \in G$ and mutually orthogonal projections $e_{g_i} \in A$ for $1 \le i \le m$, such that

(1') $\|\alpha_{g_i}(e_{g_j}) - e_{g_ig_j}\| < \eta$ for any $1 \le i, j \le m$,

(2') $||e_{g_i}a - ae_{g_i}|| < \eta$ for any $1 \le i \le m$ and any $a \in F$,

(3') $[\alpha_{g_k}(1-e)] \leq [p]$, with $e = \sum_{i=1}^m e_{g_i}$.

By (1') and (2'), we have $||ea - ae|| \le \sum_{i=1}^{m} ||e_{g_i}a - ae_{g_i}|| < m\eta$.

Define $w_{g_i,g_j} = u_{g_ig_j^{-1}}e_{g_j}$ for every $1 \le i, j \le m$.

Using the same methods as in [24], we can prove that the elements $w_{g_i,g_j} \in eC^*(G, A, \alpha)e$ $(1 \leq i, j \leq m)$ satisfy the conditions in Theorem 2.10.

Let (f_{ij}) $(1 \leq i, j \leq m)$ be a system of matrix units for M_m . By Theorem 2.10, there exists a unital homomorphism $\varphi_0 : M_m \to eC^*(G, A, \alpha)e$ such that $\|\varphi_0(f_{ij}) - w_{g_i,g_j}\| < \delta$ for all $1 \leq i, j \leq m$, and $\psi_0(f_{ii}) = e_{g_i}$ for all $1 \leq i \leq m$. Now we define a unital homomorphism $\varphi : M_m \otimes e_{g_1}Ae_{g_1} \to eC^*(G, A, \alpha)e$ by

$$\varphi(f_{ij} \otimes a) = \varphi_0(f_{i1})a\varphi_0(f_{i1})$$

for all $1 \leq i, j \leq m$ and $a \in e_{g_1}Ae_{g_1}$. Then

$$\varphi(f_{ij} \otimes e_{g_1}) = \varphi_0(f_{i1})e_{g_1}\varphi_0(f_{1j}) = \varphi_0(f_{ij}) = e_{g_i}\varphi_0(f_{ij})e_{g_j}$$

and $\varphi(1_{M_m} \otimes e_{g_1}) = e$.

Take $B = M_m \otimes e_{g_1} A e_{g_1}$. Then B is in the finite saturation of local tracial Ω . By Theorem 2.7, we have B is in the finite saturation of local tracial Ω .

Using the same method as in [14], we can prove that

(1) $||ae - ea|| \le m\eta < \varepsilon$, for any $a \in G$,

(2) $exe \in_{\varepsilon} \varphi(M_m \otimes e_{g_1}Ae_{g_1})$ for any $x \in G$, (3) $[1_A - e] = [\alpha_{g_k}(1 - e)] \le [p] \le [b].$

Acknowledgements

This article is supported by the National Natural Science Foundation of China (11501357).

References

- [1] B. Blackadar, K-Theory for Operator Algebras, Springer-Verlag, New York, 1986.
- [2] A. Connes, Outer conjugacy class of automorphisms of factors, Ann. Sci. Éc. Norm. Supér. 8 (1975) 383-420.
- [3] G. A. Elliott, On the classification of the inductive limts of sequences of semisimple finite dimensional algebras, J. Algebra 38 (1976), no. 1, 29–44.
- [4] G. A. Elliott, Some simple C*-algebras constructed as crossed products with discrete outomophism groups, Publ. RIMS, Kyoto Univ. 16 (1980) 299–311.
- [5] G. A. Elliott, On the classification of C^{*}-algebras of real rank zero, J. Reine Angew. Math. 443 (1993) 179–219.
- [6] G. A. Elliott, A classification of certain simple C*-algebras, II, J. Ramanujan Math. Soc. 12 (1997), no. 1, 97–134.
- [7] G. A. Elliott and G. Gong, On the classification of C*-algebras of real rank zero II, Ann. of Math. (2) 144 (1996), no. 3, 497–610.
- [8] G. A. Elliott and Z. Niu, On tracial approximation, J. Funct. Anal. 254 (2008), no. 2, 396–440.
- Q. Fan, Classification of certain simple C*-algebras, J. Ramanujan Math. Soc. 26 (2011) 99-105.
- [10] Q. Fan, Some C*-algebras properties preserved by tracial approximation, Israel J. Math. 195 (2013) 545–563.
- [11] Q. Fan, Crossed products by finite group actions with certain tracial Rokhlin property, preprint.
- [12] Q. Fan and X. Fang, Non-simple tracial approximation, Houston J. Math. 37 (2011), no. 4, 1249–1263.
- [13] Q. Fan and X. Fang, Stable rank one and real rank zero for crossed products by automorphisms with the tracial Rokhlin property, *Chin. Ann. Math. Ser. B* 30 (2009) 179–186.
- [14] X. Fang and Q. Fan, Certain properties for crossed product by automorphisms with certain non-simple tracial Rokhlin property, *Ergodic Theory Dynam. Systems*, **33** (2013), no. 5, 1391-1400.
- [15] R. Herman and A. Ocneanu, Stability for integer actions on UHF C*-algebras, J. Funct. Anal. 59 (1984) 132–144.
- [16] J. Hua, The tracial Rokhlin property for automorphisms of non-simple C*-algebras, Chin. Ann. Math. Ser. B 31 (2010) 191–200.
- [17] A. Kishimoto, The Rohlin property for shifts on UHF algebras, J. Reine Angew. Math. 465 (1995) 183–196.
- [18] H. Lin, The tracial topological rank of C*-algebras, Proc. Lond. Math. Soc. 83 (2001) 199–234.
- [19] H. Lin, An Introduction to the Classification of Amenable C*-algebras, World Scientific, New Jersey, London, Singapore, Hong Kong, 2001.
- [20] H. Osaka, SP-property for a pair of C^* -algebras, J. Opertaor theory 46 (2001), no. 1, 159–171.
- [21] H. Osaka and N. C. Phillips, Stable and real rank for crossed products by automorphisms with the tracial Rokhlin property, *Ergodic Theory Dynam. Systems* 26 (2006), no. 5, 1579–1621.

Yang and Fan

- [22] H. Osaka and N. C. Phillips, Crossed products by finite group actions with the Rokhlin property, Math. Z. 270 (2012), no. 1-2, 19–42.
- [23] N. C. Phillips, Crossed products by finite cyclic group actions with the tracial Rokhlin property, ArXiv: 0306410 [math. OA].
- [24] N. C. Phillips, The tracial Rokhlin property for actions of finite groups on C*-algebras, Amer. J. Math. 133 (2011) 581–636.
- [25] M. Rordam, Classification of certain infinite simple C*-algebras, J. Funct. Anal. 131 (1995) 415–458.
- [26] X. Yang and X. Fang, The tracial class property for crossed producted by finite group action, Abstr. Appl. Anal. 2012 (2012), Article ID 745369, 10 pages.
- [27] X. Yang and X. Fang, The tracial rank for crossed products by finite group actions, *Rocky Mountain J. Math.* 42 (2012) 339–352.

(Jun Yang) DEPARTMENT OF MATHEMATICS, SHANGHAI MARITIME UNIVERSITY, SHANGHAI 200135, CHINA.

E-mail address: yangjundlut@gmail.com

(Qingzhai Fan) Department of Mathematics, Shanghai Maritime University, Shanghai 200135, China.

E-mail address: qzfan@shmtu.edu.cn

145