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Abstract. In this paper, we consider the following Kirchhoff-type equa-
tions:

−
(
a+ b

∫
R3 |∇u|2

)
∆u+ V (x)u = λf(x, u) + u5, in R3,

u(x) > 0, in R3,
u ∈ H1(R3),

where a, b > 0 are constants and λ is a positive parameter. The aim of
this paper is to study the existence of positive solutions for Kirchhoff-type

equations with a nonlinearity in the critical growth under some suitable
assumptions on V (x) and f(x, u). Recent results from the literature are
improved and extended.
Keywords: Kirchhoff-type equations, critical growth, variational meth-

ods.
MSC(2010): Primary: 35J20; Secondary: 35J60.

1. Introduction and main results

In this paper, we consider the following Kirchhoff-type equations:

(1.1)

 −
(
a+ b

∫
R3 |∇u|2

)
∆u+ V (x)u = λf(x, u) + u5, in R3,

u(x) > 0, in R3,
u ∈ H1(R3),

where a, b > 0 are constants and λ is a positive parameter. Moreover, V (x)
and f(x, u) are continuous functions satisfying some conditions, which will be
stated later on.
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Over the past decades, many papers have extensively considered the Kirch-
hoff equation

(1.2)

{
−
(
a+ b

∫
Ω
|∇u|2

)
∆u = f(x, u), in Ω,

u = 0, on ∂Ω.

where Ω ⊂ RN is a smooth bounded domain. Using variational methods, for
various conditions of the nonlinearity f(x, u), the existence and multiplicity of
solutions for problem (1.2) have been extensively investigated in the literature,
one can see [1, 4, 5, 7, 11,15,17] and the references therein.

It is well known that problem (1.2) is related to the stationary analogue of
the Kirchhoff equation

(1.3) utt −
(
a+ b

∫
Ω

|∇u|2
)
∆u = f(x, u)

which was proposed by Kirchhoff in [11] as an extension of the classical D’Alem-
bert’s wave equation for free vibrations of elastic strings. Kirchhoff’s model
takes into account the changes in length of the string produced by transverse
vibrations.

There are also many works on the existence and multiplicity results for the
following equation

(1.4)

{
−
(
a+ b

∫
RN |∇u|2

)
∆u+ V (x)u = f(x, u), in RN ,

u ∈ H1(RN ),

where f(x, u) satisfies certain conditions. More precisely, Wu [26] studied the
existence of nontrivial solutions and infinitely many high energy solutions for
problem (1.4) by using a symmetric mountain pass theorem. Liu and He [13]
also studied the existence of infinitely many high energy solutions for super-
linear Kirchhoff problem (1.4) by variant version of fountain theorem. Duan
and Huang [6] dealt with problem (1.4) with sublinear case and the existence
of infinitely many solutions for the problem is established by using the genus
properties in critical point theory. For related topics, we refer the readers
to [8–10,14,18,24] and the references therein.

When b ≡ 0 and a ≡ 1 in (1.4), the equation itself turns to be a semilinear
Schrödinger equation:

(1.5)

{
−∆u+ V (x)u = f(x, u), in RN ,
u ∈ H1(RN ).

Many authors have studied the existence and multiplicity of solutions for prob-
lem (1.5) under various stipulations, one can see [12, 16, 19–23] and the refer-
ences therein. More precisely, [16] and [21] studied the periodic case, Tang [23]
and Lin [12] generalized the periodic case to asymptotically periodic case. Here
we do not try to review the huge bibliography.

Motivated by the above facts, we want to look for the positive solutions
for problem (1.1), where V (x) and f(x, u) in problem (1.1) are asymptotically
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periodic. Furthermore, we shall study the case that problem (1.1) has a non-
linearity in critical growth. We shall point out that the main difficulty of the
present paper is the lack of compactness of the Sobolev embeddings, because
we are working in whole R3, and the nonlinearity has a critical growth. These
facts prevent from proving that the energy functional associated with (1.1) ver-
ifies the well known Palais-Smale condition, which is a key point to prove the
existence of critical points for this functional in a lot of papers. Compared to
the existing results, our result is different and extend the above results to some
extent.

Related to the function V (x), we assume that
(V1) V ∈ C(R3,R), and there exists a function Vp, which is 1-periodic in each

of xi (i = 1, 2, 3), such that

Vp(x) ≥ V0 > 0, x ∈ R3,

where V0 is a constant.
(V2) There exists a function W ∈ L

3
2 (R3) with W (x) ≥ 0 such that

V (x) = Vp(x)−W (x) ≥ W0, x ∈ R3,

where W0 is a positive constant and the inequality W (x) > 0 is strict on
a subset of positive measure in R3.

On function f , since we intend to show the existence of positive solutions
for problem (1.1), we assume that
(f0) f(x, u) = 0, ∀u ≤ 0.

We also suppose that f ∈ C(R3 × R,R) satisfies the following conditions:
(f1) |f(x, u)| ≤ c(1+|u|q−1) for some 2 < q < 6, where c is a positive constant.
(f2) f(x, u) = o(u3) uniformly in x as |u| → 0.

(f3) u 7→ f(x,u)
u3 is nondecreasing on (0,∞).

(f4)
F (x,u)
|u|4 → +∞ uniformly in x as u → +∞, where F (x, u) =

∫ u

0
f(x, s)ds.

Moreover, suppose f is asymptotically periodic in x in the following sense,
there exists a function fp ∈ C(R3 × R,R), which is 1-periodic in each of xi

(i = 1, 2, 3), such that
(f5) |f(x, u)| ≥ |fp(x, u)|, ∀(x, u) ∈ R3 × R.
(f6) |f(x, u)− fp(x, u)| ≤ a(x)(|u|+ |u|q−1), ∀(x, u) ∈ R3 × R, where a(x) ∈

L∞(R3) and for every ε > 0, the set {x ∈ R3 : |a(x)| ≥ ε} has finite
Lebesgue measure.

(f7) u 7→ fp(x,u)
u3 is nondecreasing on (0,∞).

Theorem 1.1. Suppose that (V1), (V2) and (f0)−(f7) hold. Then, there exists
λ∗ > 0 such that problem (1.1) possesses a positive solution, for all λ > λ∗.

The proof of Theorem 1.1 is mainly based on the method of the generalized
Nehari manifold and the concentration-compactness principle. As in [3], we
reduce the problem of looking for a positive solution into that of finding a
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minimizer on the Nehari manifold. Then we apply concentration-compactness
principle to solve the minimizing problem.

The reminder of this paper is organized as follows. In Section 2, some
preliminary results are presented. The proof of main results will be given in
the last section.

2. Variational setting and preliminaries

In this section, we present some basic preliminary results and necessary
lemmas, which will be used throughout this paper.

Let us first recall some notations. As usual, for 1 ≤ s < ∞, we denote

∥u∥s =
(∫

R3

|u(x)|sdx
) 1

s

, u ∈ Ls(R3)

and

∥u∥∞ = ess supx∈R3 |u(x)|, u ∈ L∞(R3).

Let S be the sharp constant of the Sobolev embedding D1,2(R3) ↪→ L6(R3),
which is given by

S = inf
u∈D1,2(R3)\{0}

∥∇u∥22
∥u∥26

.

Here, D1,2(R3) :=
{
u ∈ L6(R3) : |∇u| ∈ L2(R3)

}
.

Define the function space

H1(R3) =
{
u ∈ L2(R3) : |∇u| ∈ L2(R3)

}
with the usual norm

∥u∥H1 =

(∫
R3

(|∇u|2 + u2)dx

) 1
2

.

We consider the Sobolev spaceH1(R3) endowed with one of the following norms

∥u∥2 =

∫
R3

(|∇u|2 + V (x)u2)dx, ∥u∥2Vp
=

∫
R3

(|∇u|2 + Vp(x)u
2)dx.

Under the assumptions (V1) and (V2), the norms ∥ · ∥ and ∥ · ∥Vp are equivalent
to the standard norm ∥ · ∥H1 .

The functional corresponding to the problem (1.1) is

I(u) =
a

2

∫
R3

|∇u|2dx+
b

4

(∫
R3

|∇u|2dx
)2

+
1

2

∫
R3

V (x)u2dx

− λ

∫
R3

F (x, u)dx− 1

6

∫
R3

u6
+dx.
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By our assumptions, I belongs to C1(H1(R3),R) with

⟨I ′(u), v⟩ =
(
a+ b

∫
R3

|∇u|2dx
)∫

R3

∇u∇vdx+

∫
R3

V (x)uvdx

− λ

∫
R3

f(x, u)vdx−
∫
R3

u5
+vdx,

and its critical points are solutions of problem (1.1).
In the process of looking for the positive solutions of problem (1.1), its

corresponding periodic equation is very important and defined by

(2.1)

 −
(
a+ b

∫
RN |∇u|2

)
∆u+ Vp(x)u = λfp(x, u) + u5, in R3,

u(x) > 0, in R3,
u ∈ H1(R3),

and the associated functional is

Ip(u) =
a

2

∫
R3

|∇u|2dx+
b

4

(∫
R3

|∇u|2dx
)2

+
1

2

∫
R3

Vp(x)u
2dx

− λ

∫
R3

Fp(x, u)dx− 1

6

∫
R3

u6
+dx,(2.2)

where Fp(x, u) =
∫ u

0
fp(x, s)ds. It is well known that Ip ∈ C1(H1(R3),R), with

⟨I ′p(u), v⟩ =
(
a+ b

∫
R3

|∇u|2dx
)∫

R3

∇u∇vdx+

∫
R3

Vp(x)uvdx

− λ

∫
R3

fp(x, u)vdx−
∫
R3

u5
+vdx(2.3)

for all v ∈ H1(R3). Hence, the critical points of Ip are positive solutions of
problem (2.1).

Later, we give some lemmas that will be used in the proof of our theorems.

Lemma 2.1. If (f2) and (f3) are satisfied, then

0 ≤ 4F (x, u) ≤ f(x, u)u, ∀u ∈ R.

If (f2) and (f5) are satisfied, then

fp(x, u) = o(u3) uniformly in x as u → 0.

If (f2), (f5) and (f7) are satisfied, then

(2.4) 0 ≤ 4Fp(x, u) ≤ fp(x, u)u, ∀u ∈ R.

In addition, if (f3) is also satisfied, then

(2.5) F (x, u) ≥ Fp(x, u) ≥ 0, ∀u ∈ R.
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Proof. By (f2) and (f3), we have f(x, u) ≥ 0, ∀u > 0. Thus, F (x, u) ≥ 0,
∀u > 0. And we have

F (x, u) =

∫ u

0

f(x, s)

s3
s3ds ≤

∫ u

0

f(x, u)

u3
s3ds =

1

4
f(x, u)u.

The conclusion fp(x, u) = o(u3) as u → 0 is immediate from the assumptions
(f2) and (f5). Similarly, we get (2.4) and fp(x, u) ≥ 0, ∀u > 0, then by (f5), we
obtain f(x, u) ≥ fp(x, u) ≥ 0, ∀u > 0. So F (x, u) ≥ Fp(x, u) ≥ 0, ∀u ∈ R. □

The next two lemmas show that the functional Ip verifies the mountain pass
geometry.

Lemma 2.2. Suppose that (V1), (f1), (f2), (f5) and (f6) are satisfied, then
there exist positive constants ρ and α such that

Ip(u) ≥ α, ∀u ∈ H1(R3) : ∥u∥Vp = ρ.

Proof. By (f1), (f6) and Lemma 2.1, for all ε > 0, there exists Cε such that

|fp(x, u)| ≤ ε|u|+ Cε|u|q−1, ∀u ∈ H1(R3).

From the Sobolev embedding, we derive

Ip(u) ≥
a

2

∫
R3

|∇u|2dx+
1

2

∫
R3

Vp(x)u
2dx− λ

∫
R3

(ε|u|2 + Cε|u|q)dx

− 1

6

∫
R3

u6
+dx

≥ 1

2
min{a, 1}∥u∥2Vp

− λ(ε∥u∥2Vp
+ C∥u∥qVp

)− C

6
∥u+∥6Vp

≥ 1

2
(min{a, 1} − λε)∥u∥2Vp

− λC∥u∥qVp
− C∥u∥6Vp

for some positive constant C. Since 2 < q < 6, taking ρ > 0 sufficiently small,
we conclude that there exists a constant α > 0 such that

Ip(u) ≥ α, ∀u ∈ H1(R3) : ∥u∥Vp
= ρ.

This completes the proof. □

Lemma 2.3. Suppose that (V1), (f2), (f3), (f5) and (f7) are satisfied. Thus,
for all λ > 0, there exists e ∈ H1(R3) such that Ip(e) < 0 and ∥e∥Vp > ρ.

Proof. Fix v0 ∈ H1(R3) with v0 ≥ 0. By (2.2), we have

Ip(tv0) ≤
t2

2
max{a, 1}∥v0∥2Vp

+
bt4

4
∥v0∥4Vp

− t6

6

∫
R3

v60dx.

Then obviously, Ip(tv0) → −∞ as t → ∞ and thus, there exists a constant
t∗ > 0 such that ∥t∗v0∥Vp > ρ and Ip(t∗v0) ≤ 0. The result directly follows by
considering e = t∗v0. □
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Now we define

Γ := {γ ∈ C([0, 1],H1(R3)) | γ(0) = 0, Ip(γ(1)) ≤ 0, γ(1) ̸= 0}

and

cλ := inf
γ∈Γ

max
t∈[0,1]

Ip(γ(t)).

Note that from Lemma 2.3, Γ ̸= ∅. Moreover, from the argument in Lemma 2.2,
clearly 0 is a local minimum of Ip. Consequently, using a version of Mountain
Pass Theorem without (PS) condition founded in [25], we have the existence
of sequence {un} ⊂ H1(R3) satisfying

Ip(un) → cλ, and I ′p(un) → 0.

The above sequence is called a (PS)cλ sequence for Ip.
Hereafter, M denotes the Nehari manifold associated with Ip, that is,

M = {u ∈ H1(R3)\{0} : ⟨I ′p(u), u⟩ = 0}.

We prove the next lemma.

Lemma 2.4. Suppose that (V1) and (f7) are satisfied, then for each u ∈
H1(R3) with u+ ̸= 0, there exists a unique t0(u) > 0 such that t0(u)u ∈ M
and Ip(t0u) = maxt≥0 Ip(tu). Moreover cλ = c = c̃, where c̃ = infM Ip and
c = infu∈H1(R3)\{0} maxt≥0 Ip(tu) .

Proof. Let u ∈ H1(R3) with u+ ̸= 0 be fixed and define g(t) := Ip(tu) on
[0,∞). By Lemma 2.3, there exists t0 > 0 such that

g(t0) = max
t≥0

g(t) = max
t≥0

Ip(tu).

Clearly we have

g′(t0) = 0 ⇔ t0(u)u ∈ M

⇔ at20

∫
R3

|∇u|2dx+ bt40

(∫
R3

|∇u|2dx
)2

+ t20

∫
R3

Vp(x)u
2dx

= λ

∫
R3

fp(x, t0u)t0udx+ t60

∫
R3

u6
+dx.

In the sequel, we will show that t0 is unique. To this end, we suppose that
there exists t1 > 0 such that t1u ∈ M. This together with above equality
implies that

a
∫
R3 |∇u|2dx+

∫
R3 Vp(x)u

2dx

t20
+ b

(∫
R3

|∇u|2dx
)2

= λ

∫
R3

fp(x, t0u)

t30u
3

u4dx+ t20

∫
R3

u6
+dx
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and

a
∫
R3 |∇u|2dx+

∫
R3 Vp(x)u

2dx

t21
+ b

(∫
R3

|∇u|2dx
)2

= λ

∫
R3

fp(x, t1u)

t31u
3

u4dx+ t21

∫
R3

u6
+dx.

Hence(
a

∫
R3

|∇u|2dx+

∫
R3

Vp(x)u
2dx

)(
1

t20
− 1

t21

)
= λ

∫
R3

(
fp(x, t0u)

t30u
3

u4 − fp(x, t1u)

t31u
3

u4

)
dx+ (t20 − t21)

∫
R3

u6
+dx.

It follows from (f7) that t0 = t1. By using similar arguments in [25], it is easy
to prove the rest of the proof. This concludes the proof. □

Now, we begin studying the behavior of mountain pass level cλ related to
the parameter λ.

Lemma 2.5. Suppose that (V1), (f2), (f3) and (f7) are satisfied, then limλ→∞ cλ
= 0.

Proof. If v0 is the function given by Lemma 2.3, it follows that there exists
tλ > 0 satisfying Ip(tλv0) = maxt≥0 Ip(tv0). Then, we have

at2λ

∫
R3

|∇v0|2dx+ bt4λ

(∫
R3

|∇v0|2dx
)2

+ t2λ

∫
R3

Vp(x)v
2
0dx

= λ

∫
R3

fp(x, tλv0)tλv0dx+ t6λ

∫
R3

v60dx.

By Lemma 2.1, we get

at2λ

∫
R3

|∇v0|2dx+ bt4λ

(∫
R3

|∇v0|2dx
)2

+ t2λ

∫
R3

Vp(x)v
2
0dx ≥ t6λ

∫
R3

v60dx,

which implies that tλ is bounded. Furthermore, we will show that tλ → 0 as
λ → ∞. If not, there exists a sequence λn → +∞ and a constant t∗ > 0 such
that tλn

→ t∗ as n → ∞. The boundedness of tλn
yields that there is M > 0

such that

at2λn

∫
R3

|∇v0|2dx+ bt4λn

(∫
R3

|∇v0|2dx
)2

+ t2λn

∫
R3

Vp(x)v
2
0dx ≤ M

and so

λn

∫
R3

fp(x, tλnv0)tλnv0dx+ t6λn

∫
R3

v60dx ≤ M.

If t∗ > 0, we have that

lim
n→∞

[
λn

∫
R3

fp(x, tλnv0)tλnv0dx+ t6λn

∫
R3

v60dx

]
→ ∞,
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which is a contradiction. Thus tλ → 0 as λ → ∞. Now, consider the path
γ∗(t) = te for t ∈ [0, 1], then γ∗ ∈ Γ. Therefore we obtain

0 < cλ ≤ max
t∈[0,1]

Ip(γ
∗(t)) ≤ max

t≥0
Ip(tv0) = Ip(tλv0)

≤ at2λ

∫
R3

|∇v0|2dx+ bt4λ

(∫
R3

|∇v0|2dx
)2

+ t2λ

∫
R3

Vp(x)v
2
0dx

→ 0.

This completes the proof. □

Lemma 2.6. Let {un} be a (PS)cλ sequence for Ip with un ⇀ 0 in H1(R3).
Then there is a λ∗ > 0, when λ > λ∗, there exist a sequence {yn} ⊂ R3 and
constants R, η > 0 such that

lim sup
n→∞

∫
BR(yn)

|un|2dx ≥ η > 0.

Proof. From Lemma 2.5, there exists a constant λ∗ > 0 such that

(2.6) cλ <
abS3

4
+

S6

24
[(b2 + 4aS−3)

3
2 + b3]

for all λ > λ∗. Now, we argue by contradiction. Suppose {un} is vanishing,
then from P.L. Lions Compactness Lemma [25] it directly follows that un → 0
in Lq(R3) for all 2 < q < 6. By (f1), (f2), (f5) and (f6), we have∫

R3

Fp(x, un) → 0 and

∫
R3

fp(x, un)un → 0.

Since {un} is a (PS)cλ sequence for Ip, we have

cλ =
a

2

∫
R3

|∇un|2dx+
b

4

(∫
R3

|∇un|2dx
)2

+
1

2

∫
R3

Vp(x)u
2
ndx

− 1

6

∫
R3

u6
n+dx+ on(1)(2.7)

and

a

∫
R3

|∇un|2dx+ b

(∫
R3

|∇un|2dx
)2

+

∫
R3

Vp(x)u
2
ndx

=

∫
R3

u6
n+dx+ on(1).(2.8)

We claim that
∫
R3 |∇un|2 ↛ 0. If not,

∫
R3 |∇un|2 → 0, then∫

R3

u6
n+dx ≤ S−3

(∫
R3

|∇un|2dx
)3

→ 0,

which implies that cλ = 0 in (2.7). This is a contradiction with the fact that
cλ > 0.
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By (2.8) we have

a+ b

∫
R3

|∇un|2dx ≤ S−3

(∫
R3

|∇un|2dx
)2

+ on(1).

Then we conclude

(2.9)

∫
R3

|∇un|2dx ≥ S3

2
(b+

√
b2 + 4aS−3) + on(1)

and

(2.10)

(∫
R3

|∇un|2dx
)2

≥ aS3 +
bS6

2
(b+

√
b2 + 4aS−3) + on(1)

It follows from (2.7) and (2.8) that

cλ ≥ a

3

∫
R3

|∇un|2dx+
b

12

(∫
R3

|∇un|2dx
)2

+ on(1).

Combining with (2.9) and (2.10) we obtain

cλ ≥ abS3

4
+

S6

24
[(b2 + 4aS−3)

3
2 + b3],

which is a contradiction with (2.6). Hence {un} is non-vanishing. This con-
cludes the proof. □

The next result establishes the existence of solution for problem (2.1).

Theorem 2.7. Suppose that (V1), (V2) and (f0)−(f7) hold. Then, there exists
λ∗ > 0 such that problem (2.1) possesses a positive solution, for all λ > λ∗.

Proof. From Lemmas 2.2 and 2.3, there exists a sequence {un} ⊂ H1(R3)
satisfying

Ip(un) → cλ, and I ′p(un) → 0.

We first claim the sequence {un} is bounded in H1(R3). Indeed, noting that

cλ + ∥un∥Vp ≥ Ip(un)−
1

4
⟨I ′p(un), un⟩

≥ a

4

∫
R3

|∇un|2dx+
1

4

∫
R3

Vp(x)u
2
ndx

+ λ

∫
R3

[
1

4
fp(x, un)un − Fp(x, un)

]
dx

≥ 1

4
min{a, 1}∥un∥2Vp

,

where we used (2.4). Then {un} is bounded in H1(R3).
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From boundedness of {un}, there is a subsequence of {un}, still denoted by
itself, ũ ∈ H1(R3) such that

un ⇀ ũ in H1(R3),

un → ũ a.e. on R3,

un → ũ in Ls
loc(R3) for all s ∈ [2, 6).

Without loss of generality, we can assume that ũ ̸= 0. If not, ũ = 0, then by
Lemma 2.6, there exists a sequence {yn} ⊂ R3 and constants R, η > 0 such
that

(2.11) lim sup
n→∞

∫
BR(yn)

|un|2dx ≥ η > 0.

Since un → ũ in Ls
loc(R3) and ũ = 0, we may suppose that |yn| → ∞ up to a

subsequence. Denote vn(x) = un(x+yn), once that Vp is periodic, we have that
{vn} is bounded in H1(R3). Similarly, passing to a subsequence, we assume
that

vn ⇀ ṽ in H1(R3),

vn → ṽ a.e. on R3,

vn → ṽ in Ls
loc(R3) for all s ∈ [2, 6).

By (2.11) one easily has that ṽ ̸= 0. Furthermore, a standard computation
leads to

Ip(vn) → cλ and I ′p(vn) → 0.

Next we claim that I ′p(ũ) = 0. Since {un} is bounded inH1(R3), passing to a

subsequence, we may assume that there exists m ≥ 0 such that
∫
R3 |∇un|2dx →

m. Note that I ′p(un) → 0, then ũ is a non-negative solution of the problem

−(a+ bm)∆u+ Vp(x)u = λfp(x, u) + u5, u ∈ H1(R3).

To conclude our proof, we need to prove that
∫
R3 |∇ũ|2dx = m. From the

weakly lower semi-continuous of the norm it follows that m ≥
∫
R3 |∇ũ|2dx.

Then (
a+ b

∫
R3

|∇ũ|2dx
)∫

R3

|∇ũ|2dx+

∫
R3

Vp(x)ũ
2dx

≤ (a+ bm)

∫
R3

|∇ũ|2dx+

∫
R3

Vp(x)ũ
2dx

= λ

∫
R3

fp(x, ũ)ũdx+

∫
R3

ũ6dx.(2.12)

This inequality implies that ⟨I ′p(ũ), ũ⟩ ≤ 0. By Lemma 2.4, there exists t ∈
(0, 1] such that tũ ∈ M. Combining this results with the characterization of
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mountain pass level, we conclude

cλ ≤ Ip(tũ) = Ip(tũ)−
1

4
⟨I ′p(tũ), tũ⟩

=
a

4

∫
R3

|∇(tũ)|2dx+1

4

∫
R3

Vp(x)(tũ)
2dx+

1

12

∫
R3

|tũ+|6dx

+λ

∫
R3

[
1

4
fp(x, tũ)tũ−Fp(x, tũ)

]
dx

≤ a

4

∫
R3

|∇ũ|2dx+
1

4

∫
R3

Vp(x)ũ
2dx+

1

12

∫
R3

|ũ+|6dx

+ λ

∫
R3

[
1

4
fp(x, ũ)ũ− Fp(x, ũ)

]
dx

≤ a

4

∫
R3

|∇un|2dx+
1

4

∫
R3

Vp(x)u
2
ndx+

1

12

∫
R3

|un+|6dx

+ λ

∫
R3

[
1

4
fp(x, un)un − Fp(x, un)

]
dx+ on(1)

= Ip(un)−
1

4
I ′p(un)un + on(1) = cλ + on(1)(2.13)

where we use Fatou’s Lemma. So t = 1, then I ′p(ũ)ũ = 0, it follows from (2.12)

that
∫
R3 |∇ũ|2dx = m. Then, I ′p(ũ) = 0. Moreover, by (2.13), we have

Ip(ũ)−
1

4
⟨I ′p(ũ), ũ⟩ =

a

4

∫
R3

|∇ũ|2dx+
1

4

∫
R3

Vp(x)ũ
2dx

+ λ

∫
R3

[
1

4
fp(x, ũ)ũ− Fp(x, ũ)

]
dx+

1

12

∫
R3

|ũ+|6dx

= cλ.

From I ′p(ũ) = 0 it directly follows that Ip(ũ) = cλ. This completes the proof.
□

3. Proof of main results

We are now in a position to give the proof of Theorem 1.1. In this section,
N denotes the Nehari manifold related to I, that is,

N = {u ∈ H1(R3)\{0} : ⟨I ′(u), u⟩ = 0}.

Arguing as Lemmas 2.2 and 2.3, it is easy to prove that the functional I has the
mountain pass geometry. Thus, there exists a (PS)dλ

sequence {un} ⊂ H1(R3)
satisfying

I(un) → dλ, and I ′(un) → 0,

where dλ := infγ∈Γ maxt∈[0,1] I(γ(t)).
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Arguing as Lemma 2.4, we obtain that

dλ = inf
u∈H1(R3)\{0}

max
t≥0

I(tu) = inf
N

I.

From the conditions in Theorem 1.1, we have that Fp(x, u) ≤ F (x, u). Com-
bining with condition (V2), it follows that dλ < cλ.

Now we give the proof of Theorem 1.1.

Proof. Let {un} be a (PS)dλ
sequence for I. Arguing as in the proof of Theorem

2.7, we have that {un} is bounded in H1(R3). Thus, there exists u ∈ H1(R3)
such that un ⇀ u in H1(R3).

Now we will show that u = 0 cannot occur. Indeed, if u = 0, then un ⇀ 0
in H1(R3). Since W ∈ L

3
2 (R3), we concludes that∫

R3

Wu2
ndx → 0.

So

|Ip(un)− I(un)| =
∣∣∣∣12

∫
R3

Wu2
ndx+

∫
R3

(F (x, un)− Fp(x, un)) dx

∣∣∣∣
≤ 1

2

∣∣∣∣∫
R3

Wu2
ndx

∣∣∣∣+ ∫
R3

(|Fp(x, un)|+ |F (x, un)|) dx

= on(1),

which implies that Ip(un) → dλ.
On the other hand, taking ϕ ∈ H1(R3) with ∥ϕ∥ ≤ 1, we obtain that

|⟨I ′p(un)− I ′(un), ϕ⟩| =
∣∣∣∣∫

R3

Wunϕdx+

∫
R3

(f(x, un)− fp(x, un))ϕdx

∣∣∣∣
≤ C

(∫
R3

|W |u2
ndx

) 1
2

+ C(∥un∥2 + ∥un∥q−1
q )

= on(1).

Thus, I ′p(un) = on(1). Let tn > 0 such that tnun ∈ M. Using the same
arguments in [2], it follows that tn → 1. Therefore,

cλ ≤ Ip(tnun) = Ip(un) + on(1) = dλ + on(1).

Letting n → ∞, we get

cλ ≤ dλ,

which is a contradiction with above fact dλ < cλ. Thus, u ̸= 0, then arguing
as in the proof of Theorem 2.7, u is a positive solution for problem (1.1). This
completes the proof of Theorem 1.1. □
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