ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 1, pp. 163-170

Title:

Some compact generalization of inequalities for polynomials with prescribed zeros

Author(s):

H. A. Soleiman Mezerji, S. Ahmadi and M. Bidkham

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 43 (2017), No. 1, pp. 163–170 Online ISSN: 1735-8515

SOME COMPACT GENERALIZATION OF INEQUALITIES FOR POLYNOMIALS WITH PRESCRIBED ZEROS

H. A. SOLEIMAN MEZERJI, S. AHMADI AND M. BIDKHAM*

(Communicated by Ali Abkar)

ABSTRACT. Let $p(z) = z^{s}h(z)$ where h(z) is a polynomial of degree at most n-s having all its zeros in $|z| \ge k$ or in $|z| \le k$. In this paper we obtain some new results about the dependence of |p(Rz)| on |p(rz)| for $r^2 \leq rR \leq k^2, k^2 \leq rR \leq R^2$ and for $R \leq r \leq k$. Our results refine and generalize certain well-known polynomial inequalities. Keywords: Polynomial, inequality, zeros.

MSC(2010): Primary: 30A10; Secondary: 30C10, 30D15.

1. Introduction

Let P(z) be a polynomial of degree n. It was shown by Govil [4, Theorem 1], that if P(z) has no zeros in |z| < 1, then for $0 \le r \le \rho \le 1$,

(1.1)
$$\max_{|z|=r} |P(z)| \ge \left(\frac{r+1}{\rho+1}\right)^n \max_{|z|=\rho} |P(z)|.$$

Inequality (1.1) is best possible and equality holds for the polynomial P(z) = $\left(\frac{1+z}{1+\rho}\right)^n$.

As an extension of (1.1), Aziz [1] proved that if $P(z) \neq 0$ in |z| < k, where k > 1,

(1.2)
$$\max_{|z|=r<1} |P(z)| \ge \left(\frac{r+k}{1+k}\right)^n \max_{|z|=1} |P(z)|.$$
and in the case $k \le 1$,

(1.3)
$$\max_{|z|=r} |P(z)| \ge \left(\frac{r+k}{1+k}\right)^n \max_{|z|=1} |P(z)|, \quad \text{for } 0 \le r \le k^2.$$

Aziz and Mohammad [2] obtained the upper bound for the $\max_{|z|=R>1} |P(z)|$ by proving the following result:

163

©2017 Iranian Mathematical Society

Article electronically published on February 22, 2017.

Received: 15 July 2015, Accepted: 23 October 2015.

^{*}Corresponding author.

Theorem 1.1. If P(z) is a polynomial of degree n such that $P(z) \neq 0$ in |z| < k, where $k \ge 1$, then

(1.4)
$$\max_{|z|=R} |P(z)| \le \left(\frac{R+k}{1+k}\right)^n \max_{|z|=1} |P(z)|, \text{ for } 1 \le R \le k^2.$$

Here equality holds if $P(z) = (z+k)^n$.

As an extension of (1.2) Bidkham and Dewan [3] proved that:

Theorem 1.2. If P(z) is a polynomial of degree n such that P'(0) = 0 and $P(z) \neq 0$ in |z| < k, where $k \ge 1$, then for $0 \le r \le \lambda \le 1$,

(1.5)
$$\max_{\substack{|z|=r}} |P(z)| \ge \left(\frac{r+k}{\lambda+k}\right)^n \\ \times \left[1 - \frac{(k-\lambda)(\lambda-r)n}{4k^3} \left(\frac{k+r}{k+\lambda}\right)^{n-1}\right]^{-1} \max_{\substack{|z|=\lambda}} |P(z)|.$$

For the case of polynomials having all their zeros in $|z| \leq k, k > 0$, we have the following results due to Aziz [1].

Theorem 1.3. If P(z) is a polynomial of degree n which has all its zeros in the disk $|z| \leq k$, where $k \leq 1$, then

(1.6)
$$\max_{|z|=R>1} |P(z)| \ge \left(\frac{R+k}{1+k}\right)^n \max_{|z|=1} |P(z)|$$

The result is sharp and equality holds for $P(z) = (z+k)^n$.

Theorem 1.4. If P(z) is a polynomial of degree n having all its zeros in $|z| \leq k$, where $k \geq 1$, then for every $R \geq k^2$,

(1.7)
$$\max_{|z|=R} |P(z)| \ge \left(\frac{R+k}{1+k}\right)^n \max_{|z|=1} |P(z)|$$

The result is sharp with equality for $P(z) = (z+k)^n$.

Also Mir [5] proved the following theorem for polynomials with s-fold zeros at the origin.

Theorem 1.5. If P(z) is a polynomial of degree n having all its zeros in $|z| \le k \le 1$ with s-fold zeros at the origin, then for $R \le k \le 1$,

(1.8)
$$\max_{|z|=R} |P(z)| \le R^s \left(\frac{R+k}{1+k}\right) \max_{|z|=1} |P(z)|.$$

The result is best possible for s = n-1 and equality holds for $P(z) = z^{n-1}(z+k)$.

2. Main results

In this paper, we first extend inequalities (1.2), (1.3) and (1.4) to the class of polynomials of degree n with s-fold zeros at origin. In fact we prove:

Theorem 2.1. If P(z) is a polynomial of degree n, with s-fold zeros at origin, $0 \le s \le n$ where the remaining n - s zeros in $|z| \ge k$, then for every $r^2 \le Rr \le k^2$,

(2.1)
$$|P(rz)| \ge \left(\frac{r}{R}\right)^s \left(\frac{r+k}{R+k}\right)^{n-s} |P(Rz)|, \quad \text{for} \quad |z|=1.$$

If we use the Maximum Modulus Principle, the result is best possible and equality holds for $P(z) = z^s (z+k)^{n-s}$.

Remark 2.2. If we take s = 0, R = 1, then Theorem 2.1 reduces to inequality (1.2). Also for s = 0, r = 1, inequality (2.1) reduces to (1.4). Finally, for s = 0, R = 1, $k \leq 1$, Theorem 2.1 reduces to inequality (1.3).

Next, we prove the following result which among other things includes Theorems 1.3 and 1.4 as special case.

Theorem 2.3. Let $P(z) = z^s h(z)$ where h(z) is a polynomial of degree n - s having all its zeros in $|z| \le k$ and $(0 \le s \le n)$. Then for $k^2 \le rR \le R^2$,

(2.2)
$$|P(rz)| \le \left(\frac{r}{R}\right)^s \left(\frac{r+k}{R+k}\right)^{n-s} |P(Rz)|, \quad \text{for} \quad |z|=1.$$

If we use the Maximum Modulus Principle, the result is best possible and equality holds for $P(z) = z^s (z+k)^{n-s}$.

If we take R = 1 in Theorem 2.3, then we get the following result:

Corollary 2.4. Let $P(z) = z^s h(z)$ where h(z) is a polynomial of degree n - s having all its zeros in $|z| \le k$, $k \le 1$ and $(0 \le s \le n)$. Then for $k^2 \le r \le 1$,

(2.3)
$$\max_{|z|=r} |P(z)| \le r^s \left(\frac{r+k}{1+k}\right)^{n-s} \max_{|z|=1} |P(z)|.$$

Remark 2.5. In general for $k \leq 1$, we can not compare Corollary 2.4 with Theorem 1.5 but, one can easily see that for $k^2 \leq r \leq k$, the bound indicated in Corollary 2.4 is better than the bound obtained in Theorem 1.5.

If we take r = 1 in Theorem 2.3, then we get the following interesting result:

Corollary 2.6. Let $P(z) = z^s h(z)$ where h(z) is a polynomial of degree n - s having all its zeros in $|z| \le k$ and $(0 \le s \le n)$. Then for $R \ge \max\{1, k^2\}$,

(2.4)
$$\max_{|z|=R} |P(z)| \ge R^s \left(\frac{R+k}{1+k}\right)^{n-s} \max_{|z|=1} |P(z)|.$$

165

Remark 2.7. Corollary 2.6 not only includes Theorems 1.3 and 1.4 as special cases but also improves them. In fact:

- (1) For $s = 0, k \le 1$, Corollary 2.6 reduces to Theorem 1.3, so for $s \ne 0$, this result improves it.
- (2) For s = 0, $k \ge 1$, Corollary 2.6 reduces to Theorem 1.4, so for $s \ne 0$, this result improves it also.

Finally, we give the following result which can be thought of as a generalization as well as an improvement of Theorem 1.2.

Theorem 2.8. Let $P(z) = a_0 + \sum_{\nu=\mu}^n a_{\nu} z^{\nu}$ be a polynomial of degree *n* having all its zeros in $|z| \ge k$. Then for every $r \le R \le k$,

(2.5)
$$\max_{|z|=r} |P(z)| \ge \left(\frac{k+r}{k+R}\right)^n \times \left[1 - \frac{n(k^{\mu-1} - R^{\mu-1})(R-r)}{4k^{\mu}} \left(\frac{k+r}{k+R}\right)^{n-1}\right]^{-1} \times \left[\max_{|z|=R} |P(z)| + \frac{n}{\mu} \left(\frac{R^{\mu} - r^{\mu}}{R^{\mu} + k^{\mu}}\right) \min_{|z|=k} |P(z)|\right].$$

By taking $\mu = 1$, we get the following improvement of result due to Bidkham and Dewan [3].

Corollary 2.9. Let P(z) be a polynomial of degree n having all its zeros in $|z| \ge k$. Then for every $r \le R \le k$,

(2.6)
$$\max_{|z|=r} |P(z)| \ge \left(\frac{k+r}{k+R}\right)^n \left[\max_{|z|=R} |P(z)| + n\left(\frac{R-r}{R+k}\right) \min_{|z|=k} |P(z)|\right].$$

The result is best possible and equality holds for $P(z) = (z+k)^n$.

By taking $\mu = 2$, we get the following improvement of Theorem 1.2.

Corollary 2.10. Let $P(z) = a_0 + \sum_{\nu=2}^n a_{\nu} z^{\nu}$ is a polynomial of degree *n* having all its zeros in $|z| \ge k$. Then for every $r \le R \le k$,

(2.7)
$$\max_{|z|=r} |P(z)| \ge \left(\frac{k+r}{k+R}\right)^n \left[1 - \frac{n(k-R)(R-r)}{4k^2} \left(\frac{k+r}{k+R}\right)^{n-1}\right]^{-1} \times \left[\max_{|z|=R} |P(z)| + \frac{n}{2} \left(\frac{R^2 - r^2}{R^2 + k^2}\right) \min_{|z|=k} |P(z)|\right].$$

If $P(z) = z^s h(z)$ where $h(z) = a_0 + \sum_{\nu=\mu}^{n-s} a_{\nu} z^{\nu}$ be a polynomial of degree n-s having all its zeros in $|z| \ge k$, by using Theorem 2.8 for h(z), we get the following interesting result.

Corollary 2.11. Let $P(z) = z^s h(z)$ where $h(z) = a_0 + \sum_{\nu=\mu}^{n-s} a_{\nu} z^{\nu}$ is a polynomial of degree n-s having all its zeros in $|z| \ge k$. Then for every $r \le R \le k$,

(2.8)
$$\max_{|z|=r} |P(z)| \ge \left(\frac{r}{R}\right)^s \left(\frac{k+r}{k+R}\right)^{n-s} \\ \times \left[1 - \frac{(n-s)(k^{\mu-1} - R^{\mu-1})(R-r)}{4k^{\mu}} \left(\frac{k+r}{k+R}\right)^{n-s-1}\right]^{-1} \\ \times \left[\max_{|z|=R} |P(z)| + \left(\frac{R}{k}\right)^s \frac{n-s}{\mu} \left(\frac{R^{\mu} - r^{\mu}}{R^{\mu} + k^{\mu}}\right) \min_{|z|=k} |P(z)|\right].$$

For $\mu = 1$ in Corollary 2.11, we get the following result:

Corollary 2.12. Let $P(z) = z^s h(z)$ where h(z) is a polynomial of degree n-s having all its zeros in $|z| \ge k$. Then for every $r \le R \le k$,

(2.9)
$$\max_{|z|=r} |P(z)| \ge \left(\frac{r}{R}\right)^s \left(\frac{k+r}{k+R}\right)^{n-s} \times \left[\max_{|z|=R} |P(z)| + (n-s)\left(\frac{R}{k}\right)^s \left(\frac{R-r}{R+k}\right) \min_{|z|=k} |P(z)|\right].$$

Here equality holds for $P(z) = z^s (z+k)^{n-s}$.

3. Lemma

For the proof of Theorem 2.8, we need the following lemma.

Lemma 3.1. If $P(z) = a_0 + \sum_{\nu=\mu}^n a_{\nu} z^{\nu}$ is a polynomial of degree n, having no zeros in $|z| < k, \ k \ge 1$, then

(3.1)
$$\max_{|z|=1} |P'(z)| \le \frac{n}{1+k^{\mu}} \left\{ \max_{|z|=1} |P(z)| - \min_{|z|=k} |P(z)| \right\},$$

with equality for $P(z) = ((z^{\mu} + k^{\mu})/(1 + k^{\mu}))^{\frac{n}{\mu}}$ where n is a multiple of μ .

This lemma is due to Pukhta [6].

4. Proofs of the theorems

Proof of Theorem 2.1. Since P(z) has s-fold zeros at the origin and remaining n - s zeros lie in $|z| \ge k$, we can write

$$P(z) = C z^s \prod_{j=1}^{n-s} \left(z - R_j e^{i\theta_j} \right),$$

where $R_j \ge k$, j = 1, 2, 3, ..., n - s. Therefore, for $0 \le \theta < 2\pi$, we have

(4.1)
$$\left|\frac{P(Re^{i\theta})}{P(re^{i\theta})}\right| = \left(\frac{R}{r}\right)^{s} \prod_{j=1}^{n-s} \left|\frac{Re^{i\theta} - R_{j}e^{i\theta_{j}}}{re^{i\theta} - R_{j}e^{i\theta_{j}}}\right|$$
$$= \left(\frac{R}{r}\right)^{s} \prod_{j=1}^{n-s} \left|\frac{Re^{i(\theta-\theta_{j})} - R_{j}}{re^{i(\theta-\theta_{j})} - R_{j}}\right|.$$

Now for $r \ge R$, $Rr \ge R_j^2$ $(r \le R, rR \le R_j^2)$ and for each θ , $0 \le \theta < 2\pi$, it can be easily seen that

(4.2)
$$\left|\frac{Re^{i(\theta-\theta_j)}-R_j}{re^{i(\theta-\theta_j)}-R_j}\right|^2 = \frac{R^2+R_j^2-2RR_j\cos(\theta-\theta_j)}{r^2+R_j^2-2rR_j\cos(\theta-\theta_j)} \le \left(\frac{R+R_j}{r+R_j}\right)^2.$$

Since $R_j \ge k$, for all j = 1, 2, ..., n - s, it follows from (4.1) and (4.2) that if $r^2 \le rR \le k^2$, then

(4.3)
$$\left|\frac{P(Re^{i\theta})}{P(re^{i\theta})}\right| \le \left(\frac{R}{r}\right)^s \quad \prod_{j=1}^{n-s} \left(\frac{R+R_j}{r+R_j}\right) \le \left(\frac{R}{r}\right)^s \left(\frac{R+k}{r+k}\right)^{n-s}$$

Hence for $r^2 \leq rR \leq k^2$ and for each θ , $0 \leq \theta < 2\pi$, we have

$$|P(Re^{i\theta})| \le \left(\frac{R}{r}\right)^s \left(\frac{R+k}{r+k}\right)^{n-s} |P(re^{i\theta})|.$$

This completes the proof of Theorem 2.1.

Proof of Theorem 2.3. Similar to previous one for $(r \leq R, Rr \geq R_j^2)$ or $(r \geq R, rR \leq R_j^2)$ and for each θ , $0 \leq \theta < 2\pi$, it can be easily seen that

(4.4)
$$\left|\frac{Re^{i(\theta-\theta_j)}-R_j}{re^{i(\theta-\theta_j)}-R_j}\right|^2 = \frac{R^2+R_j^2-2RR_j\cos(\theta-\theta_j)}{r^2+R_j^2-2rR_j\cos(\theta-\theta_j)} \ge \left(\frac{R+R_j}{r+R_j}\right)^2.$$

Since $R_j \leq k$, for all j = 1, 2, ..., n - s, it follows from (4.1) that if $k^2 \leq rR \leq R^2$, then

(4.5)
$$\left|\frac{P(Re^{i\theta})}{P(re^{i\theta})}\right| \ge \left(\frac{R}{r}\right)^s \quad \prod_{j=1}^{n-s} \left(\frac{R+R_j}{r+R_j}\right) \ge \left(\frac{R}{r}\right)^s \left(\frac{R+k}{r+k}\right)^{n-s}.$$

Hence for $k^2 \leq rR \leq R^2$ and for each θ , $0 \leq \theta < 2\pi$, we have

$$|P(Re^{i\theta})| \ge \left(\frac{R}{r}\right)^s \left(\frac{R+k}{r+k}\right)^{n-s} |P(re^{i\theta})|.$$

This completes the proof of Theorem 2.3.

Proof of Theorem 2.8. If $P(z) = a_0 + \sum_{\nu=\mu}^n a_{\nu} z^{\nu}$ has no zeros in |z| < k, and $r \le t \le R \le k$, then H(z) = P(tz) has no zeros in |z| < k/t, where $k/t \ge 1$. Hence by Lemma 3.1,

(4.6)
$$\max_{|z|=1} |tP'(tz)| \le \frac{n}{1+(k/t)^{\mu}} \left\{ \max_{|z|=1} |P(tz)| - \min_{|z|=\frac{k}{t}} |P(tz)| \right\},$$

which gives

(4.7)
$$\max_{|z|=t} |P'(z)| \le \frac{nt^{\mu-1}}{k^{\mu} + t^{\mu}} \left\{ \max_{|z|=t} |P(z)| - \min_{|z|=k} |P(z)| \right\}.$$

We have for $r \leq t \leq R \leq k, \ 0 \leq \theta < 2\pi$,

$$\begin{split} |P(Re^{i\theta}) - P(re^{i\theta})| &= \left| \int_{r}^{R} e^{i\theta} P'(te^{i\theta}) dt \right| \leq \int_{r}^{R} \left| P'(te^{i\theta}) \right| dt \\ &\leq \int_{r}^{R} \frac{nt^{\mu-1}}{k^{\mu} + t^{\mu}} \left\{ \max_{|z|=t} |P(z)| - \min_{|z|=k} |P(z)| \right\} dt \quad \text{(by (4.7))} \\ &\leq \int_{r}^{R} \frac{nt^{\mu-1}}{k^{\mu} + t^{\mu}} \left\{ \left(\frac{k+t}{k+r} \right)^{n} \max_{|z|=r} |P(z)| - \min_{|z|=k} |P(z)| \right\} dt \\ &= \frac{n}{(k+r)^{n}} \max_{|z|=r} |P(z)| \int_{r}^{R} \frac{t^{\mu-1}(k+t)^{n}}{k^{\mu} + t^{\mu}} dt \\ &- \min_{|z|=k} |P(z)| \int_{r}^{R} \frac{nt^{\mu-1}}{k^{\mu} + t^{\mu}} dt, \end{split}$$

which gives for $r \leq R \leq k$,

$$\begin{split} &\max_{|z|=R} |P(z)| \leq \left\{ 1 + \frac{n}{(k+r)^n} \int_r^R \frac{t^{\mu-1}(k+t)^n}{k^\mu + t^\mu} dt \right\} \max_{|z|=r} |P(z)| \\ &- \min_{|z|=k} |P(z)| \int_r^R \frac{nt^{\mu-1}}{k^\mu + t^\mu} dt \\ &\leq \left\{ 1 + \frac{n}{(k+r)^n} \frac{R^{\mu-1}(k+R)}{k^\mu + R^\mu} \int_r^R (k+t)^{n-1} dt \right\} \max_{|z|=r} |P(z)| \\ &- \frac{n}{k^\mu + R^\mu} \min_{|z|=k} |P(z)| \int_r^R t^{\mu-1} dt \\ &= \left[1 + \frac{R^{\mu-1}(k+R)(k+R)^n}{(k+r)^n(k^\mu + R^\mu)} \left\{ 1 - \left(\frac{k+r}{k+R}\right)^n \right\} \right] \max_{|z|=r} |P(z)| \\ &- \frac{n}{\mu} \left(\frac{R^\mu - r^\mu}{R^\mu + k^\mu} \right) \min_{|z|=k} |P(z)| \\ &= \left[\frac{k^\mu - R^{\mu-1}k}{k^\mu + R^\mu} + \frac{R^{\mu-1}(k+R)}{k^\mu + R^\mu} \left(\frac{k+R}{k+r}\right)^n \right] \max_{|z|=r} |P(z)| \end{split}$$

$$\begin{split} &-\frac{n}{\mu} \left(\frac{R^{\mu} - r^{\mu}}{R^{\mu} + k^{\mu}}\right) \min_{|z|=k} |P(z)| \\ &= \left(\frac{k+R}{k+r}\right)^{n} \left[1 - \frac{k^{\mu} - R^{\mu-1}k}{k^{\mu} + R^{\mu}} \left\{1 - \left(\frac{k+r}{k+R}\right)^{n}\right\}\right] \max_{|z|=r} |P(z)| \\ &-\frac{n}{\mu} \left(\frac{R^{\mu} - r^{\mu}}{R^{\mu} + k^{\mu}}\right) \min_{|z|=k} |P(z)| \\ &= \left(\frac{k+R}{k+r}\right)^{n} \left[1 - \frac{(k^{\mu} - R^{\mu-1}k)(R-r)}{(k^{\mu} + R^{\mu})(k+R)\left(1 - \frac{k+r}{k+R}\right)} \left\{1 - \left(\frac{k+r}{k+R}\right)^{n}\right\}\right] \max_{|z|=r} |P(z)| \\ &-\frac{n}{\mu} \left(\frac{R^{\mu} - r^{\mu}}{R^{\mu} + k^{\mu}}\right) \min_{|z|=k} |P(z)| \\ &\leq \left(\frac{k+R}{k+r}\right)^{n} \left[1 - \frac{n(k^{\mu} - R^{\mu-1}k)(R-r)}{(k^{\mu} + R^{\mu})(k+R)} \left(\frac{k+r}{k+R}\right)^{n-1}\right] \max_{|z|=r} |P(z)| \\ &-\frac{n}{\mu} \left(\frac{R^{\mu} - r^{\mu}}{R^{\mu} + k^{\mu}}\right) \min_{|z|=k} |P(z)| \\ &\leq \left(\frac{k+R}{k+r}\right)^{n} \left[1 - \frac{n(k^{\mu} - R^{\mu-1}k)(R-r)}{4k^{\mu+1}} \left(\frac{k+r}{k+R}\right)^{n-1}\right] \max_{|z|=r} |P(z)| \\ &-\frac{n}{\mu} \left(\frac{R^{\mu} - r^{\mu}}{R^{\mu} + k^{\mu}}\right) \min_{|z|=k} |P(z)|. \end{split}$$

This completes the proof of Theorem 2.8.

References

- A. Aziz, Growth of polynomials whose zeros are within or outside a circle, Bull. Aust. Math. Soc. 35 (1987), no. 2, 247–256.
- [2] A. Aziz and Q. G. Mohammad, Growth of polynomials with zeros outside a circle, Proc. Amer. Math. Soc. 81 (1981), no. 4, 549–553.
- [3] M. Bidkham and K. K. Dewan, Inequalities for a polynomial and its derivative, J. Math. Anal. Appl. 166 (1992), no. 2, 319–324.
- [4] N. K. Govil, On the maximum modulus of polynomials, J. Math. Anal. Appl. 112 (1985), no. 1, 253–258.
- [5] A. Mir, On extremal properties and location of zeros of polynomials, PhD Thesis, submitted to Jamia Millia Islamia, New Delhi, 2002.
- [6] M. S. Pukhta, Extremal problems for polynomials and on location of zeros of polynomials, PhD Thesis, submitted to the Jamia Millia Islamia, New Delhi, 1995.

(Soleiman Mezerji) FREELANCE MATHEMATICS RESEARCHER, MASHHAD, IRAN. *E-mail address*: soleiman50@gmail.com

(Sara Ahmadi) Department of Mathematics, Semnan University, Semnan, Iran. $E\text{-}mail\ address:\ \mathtt{sa_ahmadi58@yahoo.com}$

(Mahmood Bidkham) Department of Mathematics, Semnan University, Semnan, Iran.

 $E\text{-}mail\ address:\ \texttt{mdbidkham@gmail.com}$