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Abstract. Let p(z) = zsh(z) where h(z) is a polynomial of degree at
most n − s having all its zeros in |z| ≥ k or in |z| ≤ k. In this paper we
obtain some new results about the dependence of |p(Rz)| on |p(rz)| for
r2 ≤ rR ≤ k2, k2 ≤ rR ≤ R2 and for R ≤ r ≤ k. Our results refine and
generalize certain well-known polynomial inequalities.
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1. Introduction

Let P (z) be a polynomial of degree n. It was shown by Govil [4, Theorem
1], that if P (z) has no zeros in |z| < 1, then for 0 ≤ r ≤ ρ ≤ 1,

(1.1) max
|z|=r

|P (z)| ≥
(
r + 1

ρ+ 1

)n

max
|z|=ρ

|P (z)|.

Inequality (1.1) is best possible and equality holds for the polynomial P (z) =(
1+z
1+ρ

)n

.

As an extension of (1.1), Aziz [1] proved that if P (z) ̸= 0 in |z| < k, where
k ≥ 1,

(1.2) max
|z|=r<1

|P (z)| ≥
(
r + k

1 + k

)n

max
|z|=1

|P (z)|.

and in the case k ≤ 1,

(1.3) max
|z|=r

|P (z)| ≥
(
r + k

1 + k

)n

max
|z|=1

|P (z)|, for 0 ≤ r ≤ k2.

Aziz and Mohammad [2] obtained the upper bound for the max|z|=R≥1 |P (z)|
by proving the following result:
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Theorem 1.1. If P (z) is a polynomial of degree n such that P (z) ̸= 0 in
|z| < k, where k ≥ 1, then

(1.4) max
|z|=R

|P (z)| ≤
(
R+ k

1 + k

)n

max
|z|=1

|P (z)|, for 1 ≤ R ≤ k2.

Here equality holds if P (z) = (z + k)n.

As an extension of (1.2) Bidkham and Dewan [3] proved that:

Theorem 1.2. If P (z) is a polynomial of degree n such that P ′(0) = 0 and
P (z) ̸= 0 in |z| < k, where k ≥ 1, then for 0 ≤ r ≤ λ ≤ 1,

max
|z|=r

|P (z)| ≥
(
r + k

λ+ k

)n

×

[
1− (k − λ)(λ− r)n

4k3

(
k + r

k + λ

)n−1
]−1

max
|z|=λ

|P (z)|.
(1.5)

For the case of polynomials having all their zeros in |z| ≤ k, k > 0, we have
the following results due to Aziz [1].

Theorem 1.3. If P (z) is a polynomial of degree n which has all its zeros in
the disk |z| ≤ k, where k ≤ 1, then

(1.6) max
|z|=R>1

|P (z)| ≥
(
R+ k

1 + k

)n

max
|z|=1

|P (z)|.

The result is sharp and equality holds for P (z) = (z + k)n.

Theorem 1.4. If P (z) is a polynomial of degree n having all its zeros in
|z| ≤ k, where k ≥ 1, then for every R ≥ k2,

(1.7) max
|z|=R

|P (z)| ≥
(
R+ k

1 + k

)n

max
|z|=1

|P (z)|.

The result is sharp with equality for P (z) = (z + k)n.

Also Mir [5] proved the following theorem for polynomials with s-fold zeros
at the origin.

Theorem 1.5. If P (z) is a polynomial of degree n having all its zeros in
|z| ≤ k ≤ 1 with s-fold zeros at the origin, then for R ≤ k ≤ 1,

(1.8) max
|z|=R

|P (z)| ≤ Rs

(
R+ k

1 + k

)
max
|z|=1

|P (z)|.

The result is best possible for s = n−1 and equality holds for P (z) = zn−1(z+k).
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2. Main results

In this paper, we first extend inequalities (1.2), (1.3) and (1.4) to the class
of polynomials of degree n with s-fold zeros at origin. In fact we prove:

Theorem 2.1. If P (z) is a polynomial of degree n, with s-fold zeros at origin,
0 ≤ s ≤ n where the remaining n−s zeros in |z| ≥ k, then for every r2 ≤ Rr ≤
k2,

(2.1) |P (rz)| ≥
( r

R

)s
(

r + k

R+ k

)n−s

|P (Rz)|, for |z| = 1.

If we use the Maximum Modulus Principle, the result is best possible and equal-
ity holds for P (z) = zs(z + k)n−s.

Remark 2.2. If we take s = 0, R = 1, then Theorem 2.1 reduces to inequality
(1.2). Also for s = 0, r = 1, inequality (2.1) reduces to (1.4). Finally, for s = 0,
R = 1, k ≤ 1, Theorem 2.1 reduces to inequality (1.3).

Next, we prove the following result which among other things includes The-
orems 1.3 and 1.4 as special case.

Theorem 2.3. Let P (z) = zsh(z) where h(z) is a polynomial of degree n− s
having all its zeros in |z| ≤ k and (0 ≤ s ≤ n). Then for k2 ≤ rR ≤ R2,

(2.2) |P (rz)| ≤
( r

R

)s
(

r + k

R+ k

)n−s

|P (Rz)|, for |z| = 1.

If we use the Maximum Modulus Principle, the result is best possible and equal-
ity holds for P (z) = zs(z + k)n−s.

If we take R = 1 in Theorem 2.3, then we get the following result:

Corollary 2.4. Let P (z) = zsh(z) where h(z) is a polynomial of degree n− s
having all its zeros in |z| ≤ k, k ≤ 1 and (0 ≤ s ≤ n). Then for k2 ≤ r ≤ 1,

(2.3) max
|z|=r

|P (z)| ≤ rs
(
r + k

1 + k

)n−s

max
|z|=1

|P (z)|.

Remark 2.5. In general for k ≤ 1 , we can not compare Corollary 2.4 with
Theorem 1.5 but, one can easily see that for k2 ≤ r ≤ k, the bound indicated
in Corollary 2.4 is better than the bound obtained in Theorem 1.5.

If we take r = 1 in Theorem 2.3, then we get the following interesting result:

Corollary 2.6. Let P (z) = zsh(z) where h(z) is a polynomial of degree n− s
having all its zeros in |z| ≤ k and (0 ≤ s ≤ n). Then for R ≥ max{1, k2},

(2.4) max
|z|=R

|P (z)| ≥ Rs

(
R+ k

1 + k

)n−s

max
|z|=1

|P (z)|.
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Remark 2.7. Corollary 2.6 not only includes Theorems 1.3 and 1.4 as special
cases but also improves them. In fact:

(1) For s = 0, k ≤ 1, Corollary 2.6 reduces to Theorem 1.3, so for s ̸= 0,
this result improves it.

(2) For s = 0, k ≥ 1, Corollary 2.6 reduces to Theorem 1.4, so for s ̸= 0,
this result improves it also.

Finally, we give the following result which can be thought of as a general-
ization as well as an improvement of Theorem 1.2.

Theorem 2.8. Let P (z) = a0 +Σn
ν=µaνz

ν be a polynomial of degree n having
all its zeros in |z| ≥ k. Then for every r ≤ R ≤ k,

max
|z|=r

|P (z)| ≥
(
k + r

k +R

)n

×

[
1− n(kµ−1 −Rµ−1)(R− r)

4kµ

(
k + r

k +R

)n−1
]−1

×
[
max
|z|=R

|P (z)|+ n

µ

(
Rµ − rµ

Rµ + kµ

)
min
|z|=k

|P (z)|
]
.

(2.5)

By taking µ = 1, we get the following improvement of result due to Bidkham
and Dewan [3].

Corollary 2.9. Let P (z) be a polynomial of degree n having all its zeros in
|z| ≥ k. Then for every r ≤ R ≤ k,

max
|z|=r

|P (z)| ≥
(

k + r

k +R

)n [
max
|z|=R

|P (z)|+ n

(
R− r

R+ k

)
min
|z|=k

|P (z)|
]
.(2.6)

The result is best possible and equality holds for P (z) = (z + k)n.

By taking µ = 2, we get the following improvement of Theorem 1.2.

Corollary 2.10. Let P (z) = a0+Σn
ν=2aνz

ν is a polynomial of degree n having
all its zeros in |z| ≥ k. Then for every r ≤ R ≤ k,

max
|z|=r

|P (z)| ≥
(

k + r

k +R

)n
[
1− n(k −R)(R− r)

4k2

(
k + r

k +R

)n−1
]−1

×
[
max
|z|=R

|P (z)|+ n

2

(
R2 − r2

R2 + k2

)
min
|z|=k

|P (z)|
]
.

(2.7)

If P (z) = zsh(z) where h(z) = a0 + Σn−s
ν=µaνz

ν be a polynomial of degree
n− s having all its zeros in |z| ≥ k, by using Theorem 2.8 for h(z), we get the
following interesting result.
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Corollary 2.11. Let P (z) = zsh(z) where h(z) = a0 +Σn−s
ν=µaνz

ν is a polyno-
mial of degree n− s having all its zeros in |z| ≥ k. Then for every r ≤ R ≤ k,

max
|z|=r

|P (z)| ≥
( r

R

)s
(
k + r

k +R

)n−s

×

[
1− (n− s)(kµ−1 −Rµ−1)(R− r)

4kµ

(
k + r

k +R

)n−s−1
]−1

×
[
max
|z|=R

|P (z)|+
(
R

k

)s
n− s

µ

(
Rµ − rµ

Rµ + kµ

)
min
|z|=k

|P (z)|
]
.

(2.8)

For µ = 1 in Corollary 2.11, we get the following result:

Corollary 2.12. Let P (z) = zsh(z) where h(z) is a polynomial of degree n−s
having all its zeros in |z| ≥ k. Then for every r ≤ R ≤ k,

max
|z|=r

|P (z)| ≥
( r

R

)s
(
k + r

k +R

)n−s

×
[
max
|z|=R

|P (z)|+ (n− s)

(
R

k

)s (
R− r

R+ k

)
min
|z|=k

|P (z)|
]
.

(2.9)

Here equality holds for P (z) = zs(z + k)n−s.

3. Lemma

For the proof of Theorem 2.8, we need the following lemma.

Lemma 3.1. If P (z) = a0 +Σn
υ=µaυz

υ is a polynomial of degree n, having no
zeros in |z| < k, k ≥ 1, then

(3.1) max
|z|=1

|P ′(z)| ≤ n

1 + kµ

{
max
|z|=1

|P (z)| − min
|z|=k

|P (z)|
}
,

with equality for P (z) = ((zµ + kµ)/(1 + kµ))
n
µ where n is a multiple of µ .

This lemma is due to Pukhta [6].

4. Proofs of the theorems

Proof of Theorem 2.1. Since P (z) has s-fold zeros at the origin and remain-
ing n− s zeros lie in |z| ≥ k, we can write

P (z) = Czs
n−s∏
j=1

(
z −Rje

iθj
)
,



Some compact generalization of inequalities 168

where Rj ≥ k, j = 1, 2, 3, . . . , n− s. Therefore, for 0 ≤ θ < 2π, we have∣∣∣∣P (Reiθ)

P (reiθ)

∣∣∣∣ = (
R

r

)s n−s∏
j=1

∣∣∣∣Reiθ −Rje
iθj

reiθ −Rjeiθj

∣∣∣∣
=

(
R

r

)s n−s∏
j=1

∣∣∣∣Rei(θ−θj) −Rj

rei(θ−θj) −Rj

∣∣∣∣ .
(4.1)

Now for r ≥ R, Rr ≥ R2
j (r ≤ R, rR ≤ R2

j ) and for each θ, 0 ≤ θ < 2π, it
can be easily seen that

(4.2)

∣∣∣∣Rei(θ−θj) −Rj

rei(θ−θj) −Rj

∣∣∣∣2 =
R2 +R2

j − 2RRj cos(θ − θj)

r2 +R2
j − 2rRj cos(θ − θj)

≤
(
R+Rj

r +Rj

)2

.

Since Rj ≥ k, for all j = 1, 2, . . . , n− s, it follows from (4.1) and (4.2) that
if r2 ≤ rR ≤ k2, then

(4.3)

∣∣∣∣P (Reiθ)

P (reiθ)

∣∣∣∣ ≤ (
R

r

)s n−s∏
j=1

(
R+Rj

r +Rj

)
≤

(
R

r

)s (
R+ k

r + k

)n−s

.

Hence for r2 ≤ rR ≤ k2 and for each θ, 0 ≤ θ < 2π, we have

|P (Reiθ)| ≤
(
R

r

)s (
R+ k

r + k

)n−s

|P (reiθ)|.

This completes the proof of Theorem 2.1.
Proof of Theorem 2.3. Similar to previous one for (r ≤ R, Rr ≥ R2

j ) or

(r ≥ R, rR ≤ R2
j ) and for each θ, 0 ≤ θ < 2π, it can be easily seen that

(4.4)

∣∣∣∣Rei(θ−θj) −Rj

rei(θ−θj) −Rj

∣∣∣∣2 =
R2 +R2

j − 2RRj cos(θ − θj)

r2 +R2
j − 2rRj cos(θ − θj)

≥
(
R+Rj

r +Rj

)2

.

Since Rj ≤ k, for all j = 1, 2, . . . , n − s, it follows from (4.1) that if k2 ≤
rR ≤ R2, then

(4.5)

∣∣∣∣P (Reiθ)

P (reiθ)

∣∣∣∣ ≥ (
R

r

)s n−s∏
j=1

(
R+Rj

r +Rj

)
≥

(
R

r

)s (
R+ k

r + k

)n−s

.

Hence for k2 ≤ rR ≤ R2 and for each θ, 0 ≤ θ < 2π, we have

|P (Reiθ)| ≥
(
R

r

)s (
R+ k

r + k

)n−s

|P (reiθ)|.

This completes the proof of Theorem 2.3.



169 Soleiman Mezerji, Ahmadi and Bidkham

Proof of Theorem 2.8. If P (z) = a0+Σn
ν=µaνz

ν has no zeros in |z| < k, and
r ≤ t ≤ R ≤ k, then H(z) = P (tz) has no zeros in |z| < k/t, where k/t ≥ 1.
Hence by Lemma 3.1,

(4.6) max
|z|=1

|tP ′(tz)| ≤ n

1 + (k/t)µ

{
max
|z|=1

|P (tz)| − min
|z|= k

t

|P (tz)|

}
,

which gives

(4.7) max
|z|=t

|P ′(z)| ≤ ntµ−1

kµ + tµ

{
max
|z|=t

|P (z)| − min
|z|=k

|P (z)|
}
.

We have for r ≤ t ≤ R ≤ k, 0 ≤ θ < 2π,

|P (Reiθ)− P (reiθ)| =
∣∣∣∣∫ R

r

eiθP ′(teiθ)dt

∣∣∣∣ ≤ ∫ R

r

∣∣∣P ′(teiθ)
∣∣∣ dt

≤
∫ R

r

ntµ−1

kµ + tµ

{
max
|z|=t

|P (z)| − min
|z|=k

|P (z)|
}
dt (by (4.7))

≤
∫ R

r

ntµ−1

kµ + tµ

{(
k + t

k + r

)n

max
|z|=r

|P (z)| − min
|z|=k

|P (z)|
}
dt

=
n

(k + r)n
max
|z|=r

|P (z)|
∫ R

r

tµ−1(k + t)n

kµ + tµ
dt

− min
|z|=k

|P (z)|
∫ R

r

ntµ−1

kµ + tµ
dt,

which gives for r ≤ R ≤ k,

max
|z|=R

|P (z)| ≤
{
1 +

n

(k + r)n

∫ R

r

tµ−1(k + t)n

kµ + tµ
dt

}
max
|z|=r

|P (z)|

− min
|z|=k

|P (z)|
∫ R

r

ntµ−1

kµ + tµ
dt

≤
{
1 +

n

(k + r)n
Rµ−1(k +R)

kµ +Rµ

∫ R

r

(k + t)n−1dt

}
max
|z|=r

|P (z)|

− n

kµ +Rµ
min
|z|=k

|P (z)|
∫ R

r

tµ−1dt

=

[
1 +

Rµ−1(k +R)(k +R)n

(k + r)n(kµ +Rµ)

{
1−

(
k + r

k +R

)n}]
max
|z|=r

|P (z)|

− n

µ

(
Rµ − rµ

Rµ + kµ

)
min
|z|=k

|P (z)|

=

[
kµ −Rµ−1k

kµ +Rµ
+

Rµ−1(k +R)

kµ +Rµ

(
k +R

k + r

)n]
max
|z|=r

|P (z)|
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− n

µ

(
Rµ − rµ

Rµ + kµ

)
min
|z|=k

|P (z)|

=

(
k +R

k + r

)n [
1− kµ −Rµ−1k

kµ +Rµ

{
1−

(
k + r

k +R

)n}]
max
|z|=r

|P (z)|

− n

µ

(
Rµ − rµ

Rµ + kµ

)
min
|z|=k

|P (z)|

=

(
k +R

k + r

)n
1− (kµ −Rµ−1k)(R− r)

(kµ +Rµ)(k +R)
(
1− k+r

k+R

) {
1−

(
k + r

k +R

)n}max
|z|=r

|P (z)|

− n

µ

(
Rµ − rµ

Rµ + kµ

)
min
|z|=k

|P (z)|

≤
(
k +R

k + r

)n
[
1− n(kµ −Rµ−1k)(R− r)

(kµ +Rµ)(k +R)

(
k + r

k +R

)n−1
]
max
|z|=r

|P (z)|

− n

µ

(
Rµ − rµ

Rµ + kµ

)
min
|z|=k

|P (z)|

≤
(
k +R

k + r

)n
[
1− n(kµ −Rµ−1k)(R− r)

4kµ+1

(
k + r

k +R

)n−1
]
max
|z|=r

|P (z)|

− n

µ

(
Rµ − rµ

Rµ + kµ

)
min
|z|=k

|P (z)|.

This completes the proof of Theorem 2.8.

References

[1] A. Aziz, Growth of polynomials whose zeros are within or outside a circle, Bull. Aust.

Math. Soc. 35 (1987), no. 2, 247–256.
[2] A. Aziz and Q. G. Mohammad, Growth of polynomials with zeros outside a circle, Proc.

Amer. Math. Soc. 81 (1981), no. 4, 549–553.
[3] M. Bidkham and K. K. Dewan, Inequalities for a polynomial and its derivative, J. Math.

Anal. Appl. 166 (1992), no. 2, 319–324.
[4] N. K. Govil, On the maximum modulus of polynomials, J. Math. Anal. Appl. 112 (1985),

no. 1, 253–258.
[5] A. Mir, On extremal properties and location of zeros of polynomials, PhD Thesis, sub-

mitted to Jamia Millia Islamia, New Delhi, 2002.
[6] M. S. Pukhta, Extremal problems for polynomials and on location of zeros of polynomi-

als, PhD Thesis, submitted to the Jamia Millia Islamia, New Delhi, 1995.

(Soleiman Mezerji) Freelance Mathematics Researcher, Mashhad, Iran.

E-mail address: soleiman50@gmail.com

(Sara Ahmadi) Department of Mathematics, Semnan University, Semnan, Iran.
E-mail address: sa−ahmadi58@yahoo.com

(Mahmood Bidkham) Department of Mathematics, Semnan University, Semnan,
Iran.

E-mail address: mdbidkham@gmail.com


	1. Introduction
	2. Main results
	3. Lemma
	4. Proofs of the theorems
	References

