Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 1, pp. 163-170

Title:

Some compact generalization of inequalities for polynomials with prescribed zeros

> Author(s):
H. A. Soleiman Mezerji, S. Ahmadi and M. Bidkham

Published by Iranian Mathematical Society

SOME COMPACT GENERALIZATION OF INEQUALITIES FOR POLYNOMIALS WITH PRESCRIBED ZEROS

H. A. SOLEIMAN MEZERJI, S. AHMADI AND M. BIDKHAM*

(Communicated by Ali Abkar)

Abstract

Let $p(z)=z^{s} h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z| \geq k$ or in $|z| \leq k$. In this paper we obtain some new results about the dependence of $|p(R z)|$ on $|p(r z)|$ for $r^{2} \leq r R \leq k^{2}, k^{2} \leq r R \leq R^{2}$ and for $R \leq r \leq k$. Our results refine and generalize certain well-known polynomial inequalities. Keywords: Polynomial, inequality, zeros. MSC(2010): Primary: 30A10; Secondary: 30C10, 30D15.

1. Introduction

Let $P(z)$ be a polynomial of degree n. It was shown by Govil [4, Theorem 1], that if $P(z)$ has no zeros in $|z|<1$, then for $0 \leq r \leq \rho \leq 1$,

$$
\begin{equation*}
\max _{|z|=r}|P(z)| \geq\left(\frac{r+1}{\rho+1}\right)^{n} \max _{|z|=\rho}|P(z)| . \tag{1.1}
\end{equation*}
$$

Inequality (1.1) is best possible and equality holds for the polynomial $P(z)=$ $\left(\frac{1+z}{1+\rho}\right)^{n}$.
As an extension of (1.1), Aziz [1] proved that if $P(z) \neq 0$ in $|z|<k$, where $k \geq 1$,

$$
\begin{equation*}
\max _{|z|=r<1}|P(z)| \geq\left(\frac{r+k}{1+k}\right)^{n} \max _{|z|=1}|P(z)| \tag{1.2}
\end{equation*}
$$

and in the case $k \leq 1$,

$$
\begin{equation*}
\max _{|z|=r}|P(z)| \geq\left(\frac{r+k}{1+k}\right)^{n} \max _{|z|=1}|P(z)|, \quad \text { for } \quad 0 \leq r \leq k^{2} \tag{1.3}
\end{equation*}
$$

Aziz and Mohammad [2] obtained the upper bound for the $\max _{|z|=R \geq 1}|P(z)|$ by proving the following result:

[^0]Theorem 1.1. If $P(z)$ is a polynomial of degree n such that $P(z) \neq 0$ in $|z|<k$, where $k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=R}|P(z)| \leq\left(\frac{R+k}{1+k}\right)^{n} \max _{|z|=1}|P(z)|, \quad \text { for } \quad 1 \leq R \leq k^{2} \tag{1.4}
\end{equation*}
$$

Here equality holds if $P(z)=(z+k)^{n}$.
As an extension of (1.2) Bidkham and Dewan [3] proved that:
Theorem 1.2. If $P(z)$ is a polynomial of degree n such that $P^{\prime}(0)=0$ and $P(z) \neq 0$ in $|z|<k$, where $k \geq 1$, then for $0 \leq r \leq \lambda \leq 1$,

$$
\begin{align*}
\max _{|z|=r}|P(z)| & \geq\left(\frac{r+k}{\lambda+k}\right)^{n} \\
& \times\left[1-\frac{(k-\lambda)(\lambda-r) n}{4 k^{3}}\left(\frac{k+r}{k+\lambda}\right)^{n-1}\right]^{-1} \max _{|z|=\lambda}|P(z)| \tag{1.5}
\end{align*}
$$

For the case of polynomials having all their zeros in $|z| \leq k, k>0$, we have the following results due to Aziz [1].

Theorem 1.3. If $P(z)$ is a polynomial of degree n which has all its zeros in the disk $|z| \leq k$, where $k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=R>1}|P(z)| \geq\left(\frac{R+k}{1+k}\right)^{n} \max _{|z|=1}|P(z)| \tag{1.6}
\end{equation*}
$$

The result is sharp and equality holds for $P(z)=(z+k)^{n}$.
Theorem 1.4. If $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k$, where $k \geq 1$, then for every $R \geq k^{2}$,

$$
\begin{equation*}
\max _{|z|=R}|P(z)| \geq\left(\frac{R+k}{1+k}\right)^{n} \max _{|z|=1}|P(z)| \tag{1.7}
\end{equation*}
$$

The result is sharp with equality for $P(z)=(z+k)^{n}$.
Also Mir [5] proved the following theorem for polynomials with s-fold zeros at the origin.

Theorem 1.5. If $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k \leq 1$ with s-fold zeros at the origin, then for $R \leq k \leq 1$,

$$
\begin{equation*}
\max _{|z|=R}|P(z)| \leq R^{s}\left(\frac{R+k}{1+k}\right) \max _{|z|=1}|P(z)| \tag{1.8}
\end{equation*}
$$

The result is best possible for $s=n-1$ and equality holds for $P(z)=z^{n-1}(z+k)$.

2. Main results

In this paper, we first extend inequalities (1.2), (1.3) and (1.4) to the class of polynomials of degree n with s-fold zeros at origin. In fact we prove:
Theorem 2.1. If $P(z)$ is a polynomial of degree n, with s-fold zeros at origin, $0 \leq s \leq n$ where the remaining $n-s$ zeros in $|z| \geq k$, then for every $r^{2} \leq R r \leq$ k^{2},

$$
\begin{equation*}
|P(r z)| \geq\left(\frac{r}{R}\right)^{s}\left(\frac{r+k}{R+k}\right)^{n-s}|P(R z)|, \quad \text { for } \quad|z|=1 \tag{2.1}
\end{equation*}
$$

If we use the Maximum Modulus Principle, the result is best possible and equality holds for $P(z)=z^{s}(z+k)^{n-s}$.

Remark 2.2. If we take $s=0, R=1$, then Theorem 2.1 reduces to inequality (1.2). Also for $s=0, r=1$, inequality (2.1) reduces to (1.4). Finally, for $s=0$, $R=1, k \leq 1$, Theorem 2.1 reduces to inequality (1.3).

Next, we prove the following result which among other things includes Theorems 1.3 and 1.4 as special case.
Theorem 2.3. Let $P(z)=z^{s} h(z)$ where $h(z)$ is a polynomial of degree $n-s$ having all its zeros in $|z| \leq k$ and $(0 \leq s \leq n)$. Then for $k^{2} \leq r R \leq R^{2}$,

$$
\begin{equation*}
|P(r z)| \leq\left(\frac{r}{R}\right)^{s}\left(\frac{r+k}{R+k}\right)^{n-s}|P(R z)|, \quad \text { for } \quad|z|=1 \tag{2.2}
\end{equation*}
$$

If we use the Maximum Modulus Principle, the result is best possible and equality holds for $P(z)=z^{s}(z+k)^{n-s}$.

If we take $R=1$ in Theorem 2.3, then we get the following result:
Corollary 2.4. Let $P(z)=z^{s} h(z)$ where $h(z)$ is a polynomial of degree $n-s$ having all its zeros in $|z| \leq k, k \leq 1$ and $(0 \leq s \leq n)$. Then for $k^{2} \leq r \leq 1$,

$$
\begin{equation*}
\max _{|z|=r}|P(z)| \leq r^{s}\left(\frac{r+k}{1+k}\right)^{n-s} \max _{|z|=1}|P(z)| \tag{2.3}
\end{equation*}
$$

Remark 2.5. In general for $k \leq 1$, we can not compare Corollary 2.4 with Theorem 1.5 but, one can easily see that for $k^{2} \leq r \leq k$, the bound indicated in Corollary 2.4 is better than the bound obtained in Theorem 1.5.

If we take $r=1$ in Theorem 2.3, then we get the following interesting result:
Corollary 2.6. Let $P(z)=z^{s} h(z)$ where $h(z)$ is a polynomial of degree $n-s$ having all its zeros in $|z| \leq k$ and $(0 \leq s \leq n)$. Then for $R \geq \max \left\{1, k^{2}\right\}$,

$$
\begin{equation*}
\max _{|z|=R}|P(z)| \geq R^{s}\left(\frac{R+k}{1+k}\right)^{n-s} \max _{|z|=1}|P(z)| . \tag{2.4}
\end{equation*}
$$

Remark 2.7. Corollary 2.6 not only includes Theorems 1.3 and 1.4 as special cases but also improves them. In fact:
(1) For $s=0, k \leq 1$, Corollary 2.6 reduces to Theorem 1.3 , so for $s \neq 0$, this result improves it.
(2) For $s=0, k \geq 1$, Corollary 2.6 reduces to Theorem 1.4 , so for $s \neq 0$, this result improves it also.

Finally, we give the following result which can be thought of as a generalization as well as an improvement of Theorem 1.2.

Theorem 2.8. Let $P(z)=a_{0}+\sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}$ be a polynomial of degree n having all its zeros in $|z| \geq k$. Then for every $r \leq R \leq k$,

$$
\begin{align*}
\max _{|z|=r}|P(z)| & \geq\left(\frac{k+r}{k+R}\right)^{n} \\
& \times\left[1-\frac{n\left(k^{\mu-1}-R^{\mu-1}\right)(R-r)}{4 k^{\mu}}\left(\frac{k+r}{k+R}\right)^{n-1}\right]^{-1} \tag{2.5}\\
& \times\left[\max _{|z|=R}|P(z)|+\frac{n}{\mu}\left(\frac{R^{\mu}-r^{\mu}}{R^{\mu}+k^{\mu}}\right) \min _{|z|=k}|P(z)|\right] .
\end{align*}
$$

By taking $\mu=1$, we get the following improvement of result due to Bidkham and Dewan [3].

Corollary 2.9. Let $P(z)$ be a polynomial of degree n having all its zeros in $|z| \geq k$. Then for every $r \leq R \leq k$,

$$
\begin{equation*}
\max _{|z|=r}|P(z)| \geq\left(\frac{k+r}{k+R}\right)^{n}\left[\max _{|z|=R}|P(z)|+n\left(\frac{R-r}{R+k}\right) \min _{|z|=k}|P(z)|\right] \tag{2.6}
\end{equation*}
$$

The result is best possible and equality holds for $P(z)=(z+k)^{n}$.
By taking $\mu=2$, we get the following improvement of Theorem 1.2.
Corollary 2.10. Let $P(z)=a_{0}+\sum_{\nu=2}^{n} a_{\nu} z^{\nu}$ is a polynomial of degree n having all its zeros in $|z| \geq k$. Then for every $r \leq R \leq k$,

$$
\begin{align*}
\max _{|z|=r}|P(z)| & \geq\left(\frac{k+r}{k+R}\right)^{n}\left[1-\frac{n(k-R)(R-r)}{4 k^{2}}\left(\frac{k+r}{k+R}\right)^{n-1}\right]^{-1} \tag{2.7}\\
& \times\left[\max _{|z|=R}|P(z)|+\frac{n}{2}\left(\frac{R^{2}-r^{2}}{R^{2}+k^{2}}\right) \min _{|z|=k}|P(z)|\right]
\end{align*}
$$

If $P(z)=z^{s} h(z)$ where $h(z)=a_{0}+\sum_{\nu=\mu}^{n-s} a_{\nu} z^{\nu}$ be a polynomial of degree $n-s$ having all its zeros in $|z| \geq k$, by using Theorem 2.8 for $h(z)$, we get the following interesting result.

Corollary 2.11. Let $P(z)=z^{s} h(z)$ where $h(z)=a_{0}+\sum_{\nu=\mu}^{n-s} a_{\nu} z^{\nu}$ is a polynomial of degree $n-s$ having all its zeros in $|z| \geq k$. Then for every $r \leq R \leq k$,

$$
\begin{align*}
\max _{|z|=r}|P(z)| & \geq\left(\frac{r}{R}\right)^{s}\left(\frac{k+r}{k+R}\right)^{n-s} \\
& \times\left[1-\frac{(n-s)\left(k^{\mu-1}-R^{\mu-1}\right)(R-r)}{4 k^{\mu}}\left(\frac{k+r}{k+R}\right)^{n-s-1}\right]^{-1} \tag{2.8}\\
& \times\left[\max _{|z|=R}|P(z)|+\left(\frac{R}{k}\right)^{s} \frac{n-s}{\mu}\left(\frac{R^{\mu}-r^{\mu}}{R^{\mu}+k^{\mu}}\right) \min _{|z|=k}|P(z)|\right]
\end{align*}
$$

For $\mu=1$ in Corollary 2.11, we get the following result:
Corollary 2.12. Let $P(z)=z^{s} h(z)$ where $h(z)$ is a polynomial of degree $n-s$ having all its zeros in $|z| \geq k$. Then for every $r \leq R \leq k$,

$$
\begin{align*}
\max _{|z|=r}|P(z)| & \geq\left(\frac{r}{R}\right)^{s}\left(\frac{k+r}{k+R}\right)^{n-s} \tag{2.9}\\
& \times\left[\max _{|z|=R}|P(z)|+(n-s)\left(\frac{R}{k}\right)^{s}\left(\frac{R-r}{R+k}\right) \min _{|z|=k}|P(z)|\right]
\end{align*}
$$

Here equality holds for $P(z)=z^{s}(z+k)^{n-s}$.

3. Lemma

For the proof of Theorem 2.8, we need the following lemma.
Lemma 3.1. If $P(z)=a_{0}+\sum_{v=\mu}^{n} a_{v} z^{v}$ is a polynomial of degree n, having no zeros in $|z|<k, k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq \frac{n}{1+k^{\mu}}\left\{\max _{|z|=1}|P(z)|-\min _{|z|=k}|P(z)|\right\} \tag{3.1}
\end{equation*}
$$

with equality for $P(z)=\left(\left(z^{\mu}+k^{\mu}\right) /\left(1+k^{\mu}\right)\right)^{\frac{n}{\mu}}$ where n is a multiple of μ.
This lemma is due to Pukhta [6].

4. Proofs of the theorems

Proof of Theorem 2.1. Since $P(z)$ has s-fold zeros at the origin and remaining $n-s$ zeros lie in $|z| \geq k$, we can write

$$
P(z)=C z^{s} \prod_{j=1}^{n-s}\left(z-R_{j} e^{i \theta_{j}}\right)
$$

where $R_{j} \geq k, j=1,2,3, \ldots, n-s$. Therefore, for $0 \leq \theta<2 \pi$, we have

$$
\begin{align*}
\left|\frac{P\left(R e^{i \theta}\right)}{P\left(r e^{i \theta}\right)}\right| & =\left(\frac{R}{r}\right)^{s} \quad \prod_{j=1}^{n-s}\left|\frac{R e^{i \theta}-R_{j} e^{i \theta_{j}}}{r e^{i \theta}-R_{j} e^{i \theta_{j}}}\right| \\
& =\left(\frac{R}{r}\right)^{s} \prod_{j=1}^{n-s}\left|\frac{R e^{i\left(\theta-\theta_{j}\right)}-R_{j}}{r e^{i\left(\theta-\theta_{j}\right)}-R_{j}}\right| . \tag{4.1}
\end{align*}
$$

Now for $r \geq R, R r \geq R_{j}^{2}\left(r \leq R, r R \leq R_{j}^{2}\right)$ and for each $\theta, 0 \leq \theta<2 \pi$, it can be easily seen that

$$
\begin{equation*}
\left|\frac{R e^{i\left(\theta-\theta_{j}\right)}-R_{j}}{r e^{i\left(\theta-\theta_{j}\right)}-R_{j}}\right|^{2}=\frac{R^{2}+R_{j}^{2}-2 R R_{j} \cos \left(\theta-\theta_{j}\right)}{r^{2}+R_{j}^{2}-2 r R_{j} \cos \left(\theta-\theta_{j}\right)} \leq\left(\frac{R+R_{j}}{r+R_{j}}\right)^{2} \tag{4.2}
\end{equation*}
$$

Since $R_{j} \geq k$, for all $j=1,2, \ldots, n-s$, it follows from (4.1) and (4.2) that if $r^{2} \leq r R \leq k^{2}$, then

$$
\begin{equation*}
\left|\frac{P\left(R e^{i \theta}\right)}{P\left(r e^{i \theta}\right)}\right| \leq\left(\frac{R}{r}\right)^{s} \quad \prod_{j=1}^{n-s}\left(\frac{R+R_{j}}{r+R_{j}}\right) \leq\left(\frac{R}{r}\right)^{s}\left(\frac{R+k}{r+k}\right)^{n-s} \tag{4.3}
\end{equation*}
$$

Hence for $r^{2} \leq r R \leq k^{2}$ and for each $\theta, 0 \leq \theta<2 \pi$, we have

$$
\left|P\left(R e^{i \theta}\right)\right| \leq\left(\frac{R}{r}\right)^{s}\left(\frac{R+k}{r+k}\right)^{n-s}\left|P\left(r e^{i \theta}\right)\right|
$$

This completes the proof of Theorem 2.1.
Proof of Theorem 2.3. Similar to previous one for ($r \leq R, R r \geq R_{j}^{2}$) or $\left(r \geq R, \quad r R \leq R_{j}^{2}\right)$ and for each $\theta, 0 \leq \theta<2 \pi$, it can be easily seen that

$$
\begin{equation*}
\left|\frac{R e^{i\left(\theta-\theta_{j}\right)}-R_{j}}{r e^{i\left(\theta-\theta_{j}\right)}-R_{j}}\right|^{2}=\frac{R^{2}+R_{j}^{2}-2 R R_{j} \cos \left(\theta-\theta_{j}\right)}{r^{2}+R_{j}^{2}-2 r R_{j} \cos \left(\theta-\theta_{j}\right)} \geq\left(\frac{R+R_{j}}{r+R_{j}}\right)^{2} \tag{4.4}
\end{equation*}
$$

Since $R_{j} \leq k$, for all $j=1,2, \ldots, n-s$, it follows from (4.1) that if $k^{2} \leq$ $r R \leq R^{2}$, then

$$
\begin{equation*}
\left|\frac{P\left(R e^{i \theta}\right)}{P\left(r e^{i \theta}\right)}\right| \geq\left(\frac{R}{r}\right)^{s} \prod_{j=1}^{n-s}\left(\frac{R+R_{j}}{r+R_{j}}\right) \geq\left(\frac{R}{r}\right)^{s}\left(\frac{R+k}{r+k}\right)^{n-s} . \tag{4.5}
\end{equation*}
$$

Hence for $k^{2} \leq r R \leq R^{2}$ and for each $\theta, 0 \leq \theta<2 \pi$, we have

$$
\left|P\left(R e^{i \theta}\right)\right| \geq\left(\frac{R}{r}\right)^{s}\left(\frac{R+k}{r+k}\right)^{n-s}\left|P\left(r e^{i \theta}\right)\right|
$$

This completes the proof of Theorem 2.3.

Proof of Theorem 2.8. If $P(z)=a_{0}+\Sigma_{\nu=\mu}^{n} a_{\nu} z^{\nu}$ has no zeros in $|z|<k$, and $r \leq t \leq R \leq k$, then $H(z)=P(t z)$ has no zeros in $|z|<k / t$, where $k / t \geq 1$. Hence by Lemma 3.1,

$$
\begin{equation*}
\max _{|z|=1}\left|t P^{\prime}(t z)\right| \leq \frac{n}{1+(k / t)^{\mu}}\left\{\max _{|z|=1}|P(t z)|-\min _{|z|=\frac{k}{t}}|P(t z)|\right\} \tag{4.6}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\max _{|z|=t}\left|P^{\prime}(z)\right| \leq \frac{n t^{\mu-1}}{k^{\mu}+t^{\mu}}\left\{\max _{|z|=t}|P(z)|-\min _{|z|=k}|P(z)|\right\} \tag{4.7}
\end{equation*}
$$

We have for $r \leq t \leq R \leq k, 0 \leq \theta<2 \pi$,

$$
\begin{aligned}
\left|P\left(R e^{i \theta}\right)-P\left(r e^{i \theta}\right)\right| & =\left|\int_{r}^{R} e^{i \theta} P^{\prime}\left(t e^{i \theta}\right) d t\right| \leq \int_{r}^{R}\left|P^{\prime}\left(t e^{i \theta}\right)\right| d t \\
& \leq \int_{r}^{R} \frac{n t^{\mu-1}}{k^{\mu}+t^{\mu}}\left\{\max _{|z|=t}|P(z)|-\min _{|z|=k}|P(z)|\right\} d t \quad \quad \quad \text { by } \quad \text { (4.7)) } \\
& \leq \int_{r}^{R} \frac{n t^{\mu-1}}{k^{\mu}+t^{\mu}}\left\{\left(\frac{k+t}{k+r}\right)^{n} \max _{|z|=r}|P(z)|-\min _{|z|=k}|P(z)|\right\} d t \\
& =\frac{n}{(k+r)^{n}} \max _{|z|=r}^{R}|P(z)| \int_{r}^{R} \frac{t^{\mu-1}(k+t)^{n}}{k^{\mu}+t^{\mu}} d t \\
& -\min _{|z|=k}|P(z)| \int_{r}^{R} \frac{n t^{\mu-1}}{k^{\mu}+t^{\mu}} d t
\end{aligned}
$$

which gives for $r \leq R \leq k$,

$$
\begin{aligned}
& \max _{|z|=R}|P(z)| \leq\left\{1+\frac{n}{(k+r)^{n}} \int_{r}^{R} \frac{t^{\mu-1}(k+t)^{n}}{k^{\mu}+t^{\mu}} d t\right\} \max _{|z|=r}|P(z)| \\
& -\min _{|z|=k}|P(z)| \int_{r}^{R} \frac{n t^{\mu-1}}{k^{\mu}+t^{\mu}} d t \\
& \leq\left\{1+\frac{n}{(k+r)^{n}} \frac{R^{\mu-1}(k+R)}{k^{\mu}+R^{\mu}} \int_{r}^{R}(k+t)^{n-1} d t\right\} \max _{|z|=r}|P(z)| \\
& -\frac{n}{k^{\mu}+R^{\mu}} \min _{|z|=k}|P(z)| \int_{r}^{R} t^{\mu-1} d t \\
& =\left[1+\frac{R^{\mu-1}(k+R)(k+R)^{n}}{(k+r)^{n}\left(k^{\mu}+R^{\mu}\right)}\left\{1-\left(\frac{k+r}{k+R}\right)^{n}\right\}\right] \max _{|z|=r}|P(z)| \\
& -\frac{n}{\mu}\left(\frac{R^{\mu}-r^{\mu}}{R^{\mu}+k^{\mu}}\right) \min _{|z|=k}|P(z)| \\
& =\left[\frac{k^{\mu}-R^{\mu-1} k}{k^{\mu}+R^{\mu}}+\frac{R^{\mu-1}(k+R)}{k^{\mu}+R^{\mu}}\left(\frac{k+R}{k+r}\right)^{n}\right] \max _{|z|=r}|P(z)|
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{n}{\mu}\left(\frac{R^{\mu}-r^{\mu}}{R^{\mu}+k^{\mu}}\right) \min _{|z|=k}|P(z)| \\
& =\left(\frac{k+R}{k+r}\right)^{n}\left[1-\frac{k^{\mu}-R^{\mu-1} k}{k^{\mu}+R^{\mu}}\left\{1-\left(\frac{k+r}{k+R}\right)^{n}\right\}\right] \max _{|z|=r}|P(z)| \\
& -\frac{n}{\mu}\left(\frac{R^{\mu}-r^{\mu}}{R^{\mu}+k^{\mu}}\right) \min _{|z|=k}|P(z)| \\
& =\left(\frac{k+R}{k+r}\right)^{n}\left[1-\frac{\left(k^{\mu}-R^{\mu-1} k\right)(R-r)}{\left(k^{\mu}+R^{\mu}\right)(k+R)\left(1-\frac{k+r}{k+R}\right)}\left\{1-\left(\frac{k+r}{k+R}\right)^{n}\right\}\right] \max _{|z|=r}|P(z)| \\
& -\frac{n}{\mu}\left(\frac{R^{\mu}-r^{\mu}}{R^{\mu}+k^{\mu}}\right) \min _{|z|=k}|P(z)| \\
& \leq\left(\frac{k+R}{k+r}\right)^{n}\left[1-\frac{n\left(k^{\mu}-R^{\mu-1} k\right)(R-r)}{\left(k^{\mu}+R^{\mu}\right)(k+R)}\left(\frac{k+r}{k+R}\right)^{n-1}\right] \max _{|z|=r}|P(z)| \\
& -\frac{n}{\mu}\left(\frac{R^{\mu}-r^{\mu}}{R^{\mu}+k^{\mu}}\right) \min _{|z|=k}|P(z)| \\
& \leq\left(\frac{k+R}{k+r}\right)^{n}\left[1-\frac{n\left(k^{\mu}-R^{\mu-1} k\right)(R-r)}{4 k^{\mu+1}}\left(\frac{k+r}{k+R}\right)^{n-1}\right] \max _{|z|=r}|P(z)| \\
& -\frac{n}{\mu}\left(\frac{R^{\mu}-r^{\mu}}{R^{\mu}+k^{\mu}}\right) \min _{|z|=k}|P(z)| .
\end{aligned}
$$

This completes the proof of Theorem 2.8.

References

[1] A. Aziz, Growth of polynomials whose zeros are within or outside a circle, Bull. Aust. Math. Soc. 35 (1987), no. 2, 247-256.
[2] A. Aziz and Q. G. Mohammad, Growth of polynomials with zeros outside a circle, Proc. Amer. Math. Soc. 81 (1981), no. 4, 549-553.
[3] M. Bidkham and K. K. Dewan, Inequalities for a polynomial and its derivative, J. Math. Anal. Appl. 166 (1992), no. 2, 319-324.
[4] N. K. Govil, On the maximum modulus of polynomials, J. Math. Anal. Appl. 112 (1985), no. 1, 253-258.
[5] A. Mir, On extremal properties and location of zeros of polynomials, PhD Thesis, submitted to Jamia Millia Islamia, New Delhi, 2002.
[6] M. S. Pukhta, Extremal problems for polynomials and on location of zeros of polynomials, PhD Thesis, submitted to the Jamia Millia Islamia, New Delhi, 1995.
(Soleiman Mezerji) Freelance Mathematics Researcher, Mashhad, Iran.
E-mail address: soleiman50@gmail.com
(Sara Ahmadi) Department of Mathematics, Semnan University, Semnan, Iran.
E-mail address: sa-ahmadi58@yahoo.com
(Mahmood Bidkham) Department of Mathematics, Semnan University, Semnan, Iran.

E-mail address: mdbidkham@gmail.com

[^0]: Article electronically published on February 22, 2017.
 Received: 15 July 2015, Accepted: 23 October 2015.

 * Corresponding author.

