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1. Introduction

All groups considered in this paper are finite.
Let H be an abelian subgroup of a group G. Then

1 ≤ H ≤ CG(H) ≤ G

is always true. It is clear that G is abelian if and only if |G : CG(H)| = 1 for
every abelian subgroup H. So it is interesting to investigate the structure of
a group G if |G : CG(H)| is small for every abelian subgroup H. In fact, K.
Ishikawa in [4,5] investigates the structure of a p-group G with |G : CG(x)| = p
and the structure of a p-group G with |G : CG(x)| = p2 for every x ∈ G and
gives the classifications for these kind of p-groups. On the other hand, it is also
interesting to investigate the structure of a group G if |CG(H) : H| is small for
every abelian subgroup H. In fact, Li and Zhang in [6] investigate the structure
of a p-group G with |CG(x) : ⟨x⟩| ≤ pk for k = 1 or 2 and p > 2. Moreover,
many authors investigated the structure of groups by using the some kind of
index of subgroups, for example [10–12]. Now it is natural to ask the following
question, which is proposed by Berkovich in [1]:
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Question 1: Classify the p-groups G such that CG(H)/H is cyclic for every
noncentral cyclic subgroup H in G.

Question 1 has been answered in [9]. We may also ask the following ques-
tions:

Question 2: How about the structure of a p-group G with CG(H)/H cyclic
for every abelian subgroup H in G with H ≰ Z(G)?

Question 3: How about the structure of a p-group G with CG(H)/H cyclic
for every non-cyclic abelian subgroup H in G with H ≰ Z(G)?

It is clear that Question 3 is more general than Question 2. Furthermore,
we have the following proposition.

Proposition 1.1. Let G be a non-abelian p-group. If CG(x)/⟨x⟩ is cyclic for
every non-central element x ∈ G. Then, for every non-cyclic abelian subgroup
H in G with H ≰ Z(G), CG(H)/H is cyclic.

In fact, let H be a non-cyclic abelian subgroup of G and H ≰ Z(G). Then
there exists an element x ∈ H with x ̸∈ Z(G). By the hypothesis, CG(x)/⟨x⟩
is cyclic. Noticing that CG(x) is abelian and H ⊴ CG(x), we see CG(x)/H is
cyclic. It follows from CG(H) ≤ CG(x) that CG(H)/H is cyclic.

Remark 1.2. Assume G = ⟨a, b, c
∣∣ a4 = b4 = c2 = 1, [b, a] = c, [c, a] =

[c, b] = 1⟩. Then it is easy to see that CG(H)/H is cyclic for every non-
cyclic abelian subgroup H in G with H ≰ Z(G). However, a /∈ Z(G) and
CG(a)/⟨a⟩ = ⟨a, b2, c⟩/⟨a⟩ is not cyclic. So Question 3 is more general than
Question 2.

In this paper we hope to investigate the structure of a p-group G in which
CG(H)/H is cyclic for every non-cyclic abelian subgroup H in G with H ≰
Z(G). For convenience, we call this kind of p-groups CAC-p-groups.

It is clear that every abelian p-group must be a CAC-p-group. So in the
following CAC-p-groups means non-abelian CAC-p-groups.

2. Preliminaries

For convenience, we first introduce some notions and notations.
Let G be a p-group. Then r(G) = max{logp|E|

∣∣ E is an elementary abelian

subgroup in G } and rn(G) = max{logp|E|
∣∣ E is an elementary abelian normal

subgroup in G } are called the rank and the normal rank of G respectively.
We use Mp(m,n) to denote the p-group

⟨a, b
∣∣ apm

= bp
n

= 1, ab = a1+pm−1

⟩, where m ≥ 2,
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and Mp(m,n, 1) to denote the p-group

⟨a, b, c
∣∣ apm

= bp
n

= cp = 1, [a, b] = c, [c, a] = [c, b] = 1⟩,

where m ≥ n, and m+n ≥ 3 if p = 2. We also use Cpm and Cn
pm to denote the

cyclic group of order pm and the direct product of n cyclic groups of order pm

respectively. If H and K are groups, then H ∗K denotes a central product of
H and K. M <· G means M is a maximal subgroup of G. For other notation
and terminology the reader is referred to [3].

Lemma 2.1. [8, Lemma 2.2] Let G be a p-group. Then the following conditions
are equivalent.

(1) G is a minimal non-abelian p-group;
(2) d(G) = 2 and |G′| = p;
(3) d(G) = 2 and Φ(G) = Z(G).

Lemma 2.2. Let G be a p-group and c(G) = 2. Then G′ is elementary abelian
if and only if G/Z(G) is elementary abelian.

Proof. Since c(G) = 2, G′ is elementary abelian if and only if [ap, b] = [a, b]p = 1
for all a, b ∈ G, and [ap, b] = [a, b]p = 1 for all a, b ∈ G if and only if G/Z(G) is
elementary abelian. Thus the lemma is true. □

Lemma 2.3. [1, Section 1, Lemma 1.1] If a non-abelian p-group G has an
abelian maximal subgroup, then |G| = p|G′||Z(G)|.

Lemma 2.4. ([7]) Let p be an odd prime and let G be a metacyclic p-group.
Then there are non-negative integers r, s, t, u with r ≥ 1, u ≤ r such that G =

⟨a, b
∣∣ apr+s+u

= 1, bp
r+s+t

= ap
r+s

, ab = a1+pr ⟩. Furthermore, different values
of the parameters r, s, t and u with the above conditions give non-isomorphic
metacyclic p-groups.

Lemma 2.5. [2, Theorem 4.1] Let G be a group of order pn with p > 2 and
n ≥ 5. If rn(G) = 2. Then G is one of the following groups:

(1) G is metacyclic;
(2) G ∼= Mp(1, 1, 1) ∗ Cpn−2 ;
(3) G is a 3-group of maximal class of order ≥ 35;

(4) G = ⟨a, x, y
∣∣ apn−2

= xp = yp = 1, [a, x] = y, [x, y] = aip
n−3

, [y, a] = 1⟩,
i = 1 or σ, where σ is a fixed square non-residue modulo p.

Lemma 2.6. Let G be a p-group. Then
(1) [1, Section 7, Theorem 7.1] If Kp−1(G) is cyclic, then G is regular.
(2) [1, Section 9, Exercise 10] Let G be a 3-group of maximal class. Then

G1 = CG(K2(G)/K4(G)) is abelian or metacyclic minimal non-abelian.
(3) [1, Section 9, Exercise 1(c)] Let G be a maximal class p-group of order

pn. If p > 2 and n > 3. Then G has no cyclic normal subgroups of order p2.
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(4) [1, Section 10, Corollary 10.2] Suppose that N is a normal subgroup of G,
and A is a maximal G-invariant abelian subgroup of N with exp(A) = pn, pn >
2. Then Ωn(CN (A)) = A.

(5) [1, Section 41, Remarks.2] G is metacyclic if and only if Ω2(G) is meta-
cyclic.

Lemma 2.7. Let G be a p-group of order pn and n ≥ 4. Then there exists a
maximal subgroup M of G such that M is not of maximal class.

Proof. Let N ⊴ G and |N | = p2. Then G/CG(N) ≲ Aut(N). Thus |G :
CG(N)| ≤ p. Let M ≤ CG(N) such that N ≤ M and |G : M | = p. Since
|Z(M)| ≥ |N | = p2, M is not of maximal class. □

3. Some properties of CAC-p-groups

In this section we discuss the properties of CAC-p-groups which will be used
later.

Lemma 3.1. If G is a CAC-p-group, then r(G) ≤ 3.

Proof. If not, then there exists A ≤ G and A ∼= C4
p . If A ≰ Z(G), then there

exist a ∈ A \ Z(G) and b ∈ A such that ⟨a, b⟩ is not cyclic. Since A is abelian,
we see A ≤ CG(⟨a, b⟩) and CG(⟨a, b⟩)/⟨a, b⟩ is not cyclic, in contradiction to
the hypothesis. If A ≤ Z(G), then, for any x ∈ G \ Z(G), there exists a ∈ A
such that ⟨a, x⟩ is not cyclic. Since ⟨A, x⟩ ≤ CG(⟨a, x⟩) and ⟨A, x⟩/⟨a, x⟩ is not
cyclic, we see CG(⟨a, x⟩)/⟨a, x⟩ is not cyclic, another contradiction. □

Lemma 3.2. Let G be a CAC-p-group with r(G) = 3 and A ≤ G with A ∼= C3
p .

If A ≰ Z(G). Then CG(A) = A. If A ≤ Z(G), then Ω1(G) = A and ℧1(G) ≤
Z(G).

Proof. Assume A = ⟨a⟩ × ⟨b⟩ × ⟨c⟩. Then Lemma 3.1 implies Ω1(CG(A)) = A.
If A ≰ Z(G), then, we claim CG(A) = Ω1(CG(A)). Otherwise, there exists

x ∈ CG(A)\Ω1(CG(A)) with o(x) = pk and k ≥ 2. Thus xpk−1 ∈ Ω1(CG(A)) =
A. On the other hand, since A ≰ Z(G), we may assume that a /∈ Z(G). If

⟨xpk−1⟩ ≠ ⟨a⟩, then ⟨a, xpk−1⟩ is not cyclic and ⟨xpk−1

, a⟩ ≰ Z(G). Thus, by

the hypotheses of the lemma, ⟨a, b, c, x⟩/⟨a, xpk−1⟩ is a cyclic group. However,

it is impossible. If ⟨xpk−1⟩ = ⟨a⟩, then, by the hypotheses of the lemma,
⟨a, b, c, x⟩/⟨a, b⟩ is cyclic. It is also impossible. So CG(A) = Ω1(CG(A)) = A.

If A ≤ Z(G), then Ω1(G) = Ω1(CG(A)) = A. For any x ∈ G with o(x) = pk,

if xp /∈ Z(G), then k ≥ 3. Furthermore, for any y ∈ A \ ⟨xpk−1⟩, ⟨xp, y⟩ is not
cyclic and ⟨xp, y⟩ is abelian. By the hypotheses, ⟨a, b, c, x⟩/⟨xp, y⟩ is cyclic.
However, it is impossible. Hence xp ∈ Z(G). So ℧1(G) ≤ Z(G) and the lemma
is proved. □
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Lemma 3.3. Suppose that G is a metacyclic p-group and p > 2. Then G is a
CAC-p-group if and only if G is a minimal non-abelian group.

Proof. If G is a minimal non-abelian group, then Z(G) = Φ(G) by Lemma
2.1(3). Thus, for every non-cyclic abelian subgroup H in G with H ≰ Z(G),
we have H ≰ Φ(G) and so H ≰ Φ(CG(H)). Since G is metacyclic, CG(H) is
metacyclic. Thus d(CG(H)) ≤ 2. It follows that there exists g ∈ G such that
CG(H) = ⟨H, g⟩. Hence CG(H)/H is cyclic. That is, G is a CAC-p-group.

Conversely, let G be a CAC-p-group. By Lemma 2.4, we may assume G =

⟨a, b
∣∣ apr+s+u

= 1, bp
r+s+t

= ap
r+s

, ab = a1+pr ⟩, where r, s, t, u are non-negative

integers with r ≥ 1, u ≤ r. By calculation, we get Z(G) = ⟨aps+u

, bp
s+u⟩. If

ap ∈ Z(G), then |G′| = p. By Lemma 2.1, G is minimal non-abelian. Thus

we may assume ap /∈ Z(G). If ⟨ap, bps+u⟩ is cyclic, then ⟨bps+u⟩ ≤ ⟨a⟩ ∩ ⟨b⟩ =
⟨bpr+s+t⟩, which implies t = 0 and r = u. Let b1 = ba−1, then bp

r+s

1 = 1 and

⟨apr+s

, bp
r+s−1

1 ⟩ ≰ Z(G). Since G is a CAC-p-group, ⟨ap, b1⟩/⟨ap
s+r

, bp
s+r−1

1 ⟩ is

cyclic. Noticing that ⟨aps+r

, bp
s+r−1

1 ⟩ ≤ Φ(⟨ap, b1⟩), we see ⟨ap, b1⟩ is cyclic, a

contradiction. If ⟨ap, bps+u⟩ is not cyclic, then ⟨a, bps+u−1⟩/⟨ap, bps+u⟩ is cyclic

and therefore ⟨a, bps+u−1⟩ is cyclic, another contradiction. □
It is easy to see that the arguments in the proof of Lemma 3.3 is true

for ordinary metacyclic 2-groups. Thus we have the following lemma without
proof.

Lemma 3.4. Let G be an ordinary metacyclic 2-group. Then G is a CAC-2-
group if and only if G is a minimal non-abelian group.

Lemma 3.5. Let G be a CAC-p-group of order pn and n ≥ 6. Then G has no
abelian maximal subgroup M such that r(M) = 3.

Proof. If not, assume M ⋖ G and M = ⟨x⟩ × ⟨y⟩ × ⟨z⟩ with o(x) = pi, o(y) =
pj , o(z) = pk, where i ≥ 1, j ≥ 1, k ≥ 1. Then Lemma 3.2 implies Ω1(G) =
Ω1(M) ≤ Z(G) and ℧1(G) ≤ Z(G). Since M ≰ Z(G), we may assume x /∈
Z(G). Thus, by the hypotheses of the lemma, ⟨x, y, z⟩/⟨x, ypj−1⟩ is cyclic,
which implies j = 1. Similarly, k = 1. Hence ⟨xp⟩ × ⟨y⟩ × ⟨z⟩ = Z(G) and

i ≥ 3. If there exists a ∈ G \ M such that ⟨a, xp2⟩ is not cyclic, then, by

hypothesis, ⟨a, xp, y, z⟩/⟨a, xp2⟩ is cyclic. However, it is impossible. So for any

a ∈ G \M , ⟨a, xp2⟩ is cyclic. It follows from ap ∈ Z(G) that o(a) ≤ o(x) and

⟨a⟩ ≰ ⟨xp2⟩. Thus we may assume xp2

= ap or xp2

= ap
2

. If xp2

= ap, then

a−1xp ∈ Ω1(G) ≤ M and therefore a ∈ M , a contradiction. If xp2

= ap
2

, then,
since [a, x] ∈ Z(G), we see o(ax−1) = p2. Noticing that ax−1 /∈ M , we have

xp2

= (ax−1)p by the above, a contradiction . □
Lemma 3.6. Suppose that G is a CAC-p-group of order pn with n ≥ 6 and
r(G) = 3. If p > 2, then G has no abelian maximal subgroup. If p = 2 and G
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has an abelian maximal subgroup, then G is isomorphic to one of the following
non-isomorphic groups:

(1) D2n−1 × C2;
(2) SD2n−1 × C2;

(3) ⟨a, b, c
∣∣ a4 = b2 = c2

n−3

= 1, [b, a] = c, [c, a] = [c, b] = c−2⟩.

Proof. If there exists a maximal subgroup M in G such that M is abelian,
then r(M) ≤ 2 according to Lemma 3.5. The hypotheses r(G) = 3 implies that
r(M) = 2. Let M = ⟨x⟩×⟨y⟩ with o(x) = pi and o(y) = pj for i ≥ 1 and j ≥ 1,
and let A ≤ G with A ∼= C3

p . Since Z(G) ≤ M , we have A ≰ Z(G). Thus
A = CG(A) by Lemma 3.2. Hence Z(G) = M ∩ A = Ω1(M). Since n ≥ 6, we

may assume i ≥ 3. In this case ⟨xp, yp
j−1⟩ ≰ Z(G). Thus, by the hypotheses,

⟨x, y⟩/⟨xp, yp
j−1⟩ is cyclic. It follows that o(x) = pn−2 and o(y) = p. For

any g ∈ A \ M , G = ⟨x, y, g⟩. By Lemma 2.3, |G′| = pn−3. Now assume
[x, g] = xpsyt. It is easy to see that G′ = ⟨xpsyt⟩ and so (s, p) = 1. If p > 2,
then, by Lemma 2.6(1), G is regular. Thus [x, gp] = 1 if and only if [x, g]p = 1.

However, [x, g]p = xsp2 ̸= 1, a contradiction. If p = 2, then, according to

[x, g2] = 1, [x, g] = x−2 or x2n−3−2 or x−2y or x2n−3−2y. If [x, g] = x−2, then

G ∼= D2n−1 × C2. If [x, g] = x2n−3−2, then G ∼= SD2n−1 × C2. If [x, g] = x−2y,

then G = ⟨x1, g, y1
∣∣ x4

1 = g2 = y2
n−3

1 = 1, [g, x1] = y1, [y1, g] = [y1, x1] = y−2
1 ⟩

when we set x1 = gx and y1 = x2y. In this case, G is the type (3). If

[x, g] = x2n−3−2y, then G is also the type (3). □

Lemma 3.7. Let G be a CAC-p-group, and H be a non-abelian subgroup of G.
Then

(1) H is a CAC-p-group.
(2) If Z(H) is not cyclic, then Z(H) ≤ Z(G).

Proof. (1) If K is a non-cyclic abelian subgroup of H and K ≰ Z(H), then
K ≰ Z(G). By the hypotheses, CG(K)/K is cyclic and therefore CH(K)/K is
cyclic. Hence H is a CAC-p-group.

The proof of (2) comes immediately from the definition of CAC-p-groups. □

Lemma 3.8. Let G be a p-group. If Z(G) is a cyclic subgroup of index p2,
then G is a CAC-p-group.

Proof. Let H be a non-cyclic abelian subgroup of G and H ≰ Z(G). Then
CG(H) < G and CG(H) ≥ HZ(G). Thus CG(H) = HZ(G) and therefore
CG(H)/H ∼= Z(G)/Z(G) ∩H is cyclic. So G is a CAC-p-group. □

4. CAC-p-groups of odd order

In this section we investigate the CAC-p-groups for p > 2.
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Lemma 4.1. Let G be a p-group of order pn and r(G) = 2 with p > 2 and
n ≥ 3. Then G is a CAC-p-group if and only if G is one of the following
pairwise non-isomorphic groups:

(1) metacyclic minimal non-abelian p-groups;
(2) Mp(1, 1, 1);
(3) ⟨a, b, c

∣∣ a9 = c3 = 1, b3 = a3, [a, b] = c, [c, a] = 1, [c, b] = a−3⟩;
(4) Mp(1, 1, 1) ∗ Cpn−2 ;

(5) ⟨a, x, y
∣∣ apn−2

= xp = yp = 1, [a, x] = y, [x, y] = aip
n−3

, [y, a] = 1⟩, i = 1
or σ, where σ is a fixed square non-residue modulo p.

Proof. If |G| ≤ p4, then, the conclusion holds by checking the list of groups of
order p3 and p4. Assume |G| ≥ p5. Since r(G) = 2, rn(G) ≤ 2. If rn(G) = 1,
then G is cyclic, a contradiction. So rn(G) = 2. Thus G is one of the groups
listed in Lemma 2.5. We discuss case by case.

If G is of the type (1) in Lemma 2.5, then, by Lemma 3.3, G is of the type
(1).

If G is of the type (2) in Lemma 2.5, then Z(G) is a cyclic subgroup of index
p2. By Lemma 3.8, G is a CAC-p-group of the type (4).

IfG is of the type (3) in Lemma 2.5, then G1 = CG(K2(G)/K4(G)) is abelian
or metacyclic minimal non-abelian by Lemma 2.6(2). Thus Φ(G1) ≤ Z(G1) by
Lemma 2.1. On the other hand, by [3, Section 14, Theorem 14.4], G1⋖G. Thus
|G1| ≥ 34 and |Φ(G1)| ≥ 32. Noticing that |Z(G)| = 3, we see Φ(G1) ≰ Z(G).
Furthermore, by Lemma 2.6(3), Φ(G1) and G1/Φ(G1) are not cyclic, which
means that G is not a CAC-p-group.

If G is of the type (4) in Lemma 2.5, then, by [9, Theorem 4.1] and Propo-
sition 1, we see G is a CAC-p-group of the type (5).

Conversely, every group listed in the lemma is a CAC-p-group and they are
pairwise non-isomorphic. □

Lemma 4.2. Let G be a CAC-p-group of order pn with p > 2 and n ≥ 6. If
r(G) = 3, then, for every maximal subgroup M of G, r(M) = 3.

Proof. Let A ≤ G with A ∼= C3
p . If there exists a M ⋖G such that r(M) = 2,

then, by Lemma 3.6, M is not abelian. Thus, according to Lemma 3.7, M is
a CAC-p-group of order pn−1. So M is of type (1), (4), or (5) listed in Lemma
4.1.

If M is of type (4), (5) or type (1) with exp(M) = pn−2 in Lemma 4.1, then,
by calculation, we see Z(M) is cyclic and |Z(M)| ≥ p2. Let Z(M) = ⟨a⟩ with
o(a) = pk. Since ⟨apk−1⟩ ⊴ G and |⟨apk−1⟩| = p, ⟨apk−1⟩ ≤ Z(G). Furthermore,

for any b ∈ M ∩A \ ⟨apk−1⟩, we have b /∈ Z(G). Thus, by the hypotheses of the

lemma, ⟨a,A⟩/⟨apk−1

, b⟩ is cyclic. However, it is impossible.
If M is of type (1) with exp(M) < pn−2 in Lemma 4.1, then assume M =

⟨a, b
∣∣ apu

= bp
v

= 1, [a, b] = ap
u−1⟩, where u ≥ 2, v ≥ 2 and u+v = n−1. Thus
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Z(M) is not cyclic. By Lemma 3.7, Z(M) ≤ Z(G). It follows from Lemma 3.2
that A ≤ Z(G). Since n ≥ 6, we may assume u ≥ 3. Then, by the hypotheses,

⟨ap, b, A⟩/⟨apu−1

, b⟩ is cyclic. It is also impossible. □

Lemma 4.3. Let G be a CAC-p-group of order p6 and p > 2. If r(G) = 3,
then, for every maximal subgroup M of G, Z(M) = Ω1(G) = ℧1(G) = Z(G) =
G′ = Φ(G) ∼= C3

p .

Proof. Let M be a maximal subgroup of G. Then, by Lemma 3.6 and Lemma
4.2, M is not abelian and r(M) = 3. Let A ≤ G with A ∼= C3

p . We consider
the following two cases:

Case 1. A ≤ Z(G).
In this case, it is clear that A = Z(G). Then, by Lemma 3.2, ℧1(G) ≤

Z(G) = Ω1(G), which implies exp(G) = p2. Since r(M) = 3, we have Ω1(G) =
Z(G) = Z(M) ≤ Φ(G). If Z(G) < Φ(G), then d(G) = 2. Assume G = ⟨g1, g2⟩
and [g1, g2] = x. If o(x) = p, then x ∈ Z(G) and therefore |G′| = p. So G
is minimal non-abelian by Lemma 2.1, a contradiction. If o(x) = p2, then,

by calculation, we get [g1, g
p
2 ] = xp[x, g2]

p(p−1)
2 = xp ̸= 1, in contradiction to

℧1(G) ≤ Z(G). So Z(G) = Φ(G) and G is regular. By [1, Section 7, Theorem
7.2], |G/Ω1(G)| = |℧1(G)| and therefore Ω1(G) = ℧1(G). If |G′| < p3, then
there exist x1 and x2 in G with o(x1) = o(x2) = p2 such that x1 ∈ G\⟨x2,Φ(G)⟩
and [x1, x2] = 1. If ⟨x1⟩ ∩ ⟨x2⟩ = 1, then |⟨x1, x2, A⟩| = p5, in contradiction to
that G has no abelian maximal subgroup. If ⟨x1⟩ ∩ ⟨x2⟩ ̸= 1, then ⟨xp

1⟩ = ⟨xp
2⟩.

Obviously, there exists an element a ∈ A such that ⟨x1, a⟩ is not cyclic. Then,
by the hypothesis, ⟨x1, x2, A⟩/⟨x1, a⟩ is cyclic. However, it is impossible. Hence,
for every M ⋖G, Z(M) = Ω1(G) = ℧1(G) = Z(G) = G′ = Φ(G) ∼= C3

p .

Case 2. A ≰ Z(G).
By Lemma 3.2, CG(A) = A and so Z(G) < A in this case. Since r(M) = 3,

there exists a B ∼= C3
p such that B ≤ M and CG(B) = B. Let N ≤ M

with Z(G) < B < N < M . If Z(G) < Z(M), then Z(M) is not cyclic. By
Lemma 3.7, Z(M) ≤ Z(G), a contradiction. Thus Z(M) = Z(G). Similarly,
Z(G) = Z(N) and therefore Z(G) = Z(N) = Z(M). Now we consider the
following two subcases:

Subcase 1. |Z(N)| = p
By [1, Section 1, Exercise 4], N is of maximal class. Then N ′ ∼= Cp × Cp

and B = CN (N ′) by the classification of maximal class p-groups of order p4.
Since M/CM (N ′) ≲ Aut(N ′), we have CM (N ′) ⋖ M . By the hypotheses of
the lemma, CM (N ′)/N ′ is cyclic and so CM (N ′) is abelian. It follows that
CM (N ′) ≤ CG(B), in contradiction to CG(B) = B.

Subcase 2. |Z(N)| = p2

Since r(N) = 3, by checking the list of groups of order p4, we see N ∼=
Mp(1, 1, 1)× Cp or Mp(2, 1, 1) or Mp(2, 1)× Cp.
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If N ∼= Mp(1, 1, 1) × Cp, then we may assume N = ⟨a, b, c, d
∣∣ ap = bp =

cp = dp = 1, [b, a] = c, [c, a] = [d, a] = [c, b] = [d, b] = [c, d] = 1⟩. In this
case Z(N) = Z(G) = ⟨c, d⟩. Since |M | = p5, we have |K3(M)| ≤ p2. Thus
|G/CG(K3(M))| | p. SoK3(M) ≤ Z(CG(K3(M))) ≤ Z(G). Take x ∈ M\N . If
[a, x] /∈ Z(G), then [a, x, x] ∈ Z(G). Without loss of generality, we may assume
[a, x] ∈ Z(G). Noticing that CG(a) = CG(⟨a, c, d⟩) = ⟨a, c, d⟩ and [b, a] = c,
we see [g, a] /∈ ⟨c⟩ for any g ∈ G \ N . Thus we may assume [a, x] = cid. For
every integer j, since CG(a

jb) = ⟨ajb, c, d⟩, we see [b, x] /∈ Z(G). It follows that
M ′ = ⟨a, c, d⟩ and so ⟨a, c, d⟩ ⊴ G. Take y ∈ G \ M . Since [a, y] /∈ ⟨c⟩, we
may assume [a, y] = ckd. It follows that [a, xy−1] ∈ ⟨c⟩ and so xy−1 ∈ N , a
contradiction.

If N ∼= Mp(2, 1, 1), then we may assume N = ⟨a, b, c
∣∣ ap

2

= bp = cp =
1, [b, a] = c, [c, a] = [c, b] = 1⟩. Thus Z(N) = Z(G) = ⟨ap, c⟩, B = Ω1(N) =
⟨ap, b, c⟩. So CG(b) = B. Since |M/Ω1(N)| = p2, M ′ ≤ Ω1(N). Take x ∈
M \ N . Then we may assume [x, b] = apci. Thus xp ∈ CG(b), which implies
exp(M) = p2. If o(x) = p, then ⟨ap, b, c, x⟩ ∼= Mp(1, 1, 1)×Cp, a contradiction.
So o(x) = p2 and Ω1(N) = Ω1(M). Take y ∈ G \ M and assume [y, b] =

y1, [y1, b] = y2. If o(y1) = p2, then [y, bp] = yp1y
p(p−1)

2
2 = yp1 ̸= 1, a contradiction.

If o(y1) = p, then [y, b] ∈ Ω1(M) = Ω1(N). So we may assume [y, b] = apcj .
Thus [xy−1, b] ∈ ⟨c⟩ and therefore xy−1 ∈ N , a contradiction.

If N ∼= Mp(2, 1) × Cp, then, by the similar arguments as in the case N ∼=
Mp(2, 1, 1), we may also have a contradiction. □

Lemma 4.4. Let G be a CAC-p-group of order pn with p > 2 and n ≥ 7. Then
r(G) = 2.

Proof. Without loss of generality, we may assume n = 7 by Lemma 3.6, Lemma
3.7, and Lemma 4.2. If r(G) ̸= 2, then r(G) = 3 by Lemma 3.1. Let M be
a maximal subgroup of G. Then, according to Lemma 3.6, Lemma 3.7, and
Lemma 4.2, M is not abelian, r(M) = 3 and G has no abelian subgroup of
index p2. Furthermore, by Lemma 4.3, Ω1(M) = ℧1(M) = Z(M) = M ′ ∼=
C3

p . Thus Ω1(G) = Z(M) ≤ Z(G) and ℧1(G) ≤ Z(G) by Lemma 3.2. If

Z(M) < Z(G), then G has an abelian subgroup of index p2, a contradiction.
Hence ℧1(G) = Ω1(G). For any a, b ∈ G, if [a, b] = x and [x, b] = y, then

y ∈ Z(G). By calculation, [a, bp] = xpy
p(p−1)

2 = xp. Thus o(x) ≤ p, and
therefore G′ ≤ Z(G) and G is regular. According to [1, Section 7, Theorem
7.2], we see |G/Ω1(G)| = |℧1(G)| and therefore |G| = p6, in contradiction to
the hypothesis. □

According to Lemma 4.1 and Lemma 4.4, we have the following result:

Theorem 4.5. Let G be a p-group of order pn with p > 2 and n ≥ 7. Then G is
a CAC-p-group if and only if G is one of the following pairwise non-isomorphic
groups:



Finite p-groups and centralizers of non-cyclic abelian subgroups 180

(1) metacyclic minimal non-abelian p-groups;
(2) Mp(1, 1, 1) ∗ Cpn−2 ;

(3) ⟨a, x, y
∣∣ apn−2

= xp = yp = 1, [a, x] = y, [x, y] = aip
n−3

, [y, a] = 1⟩, i = 1
or σ, where σ is a fixed square non-residue modulo p.

5. CAC-p-groups of even order

In this section we investigate the CAC-2-groups.

Lemma 5.1. Let G be a CAC-p-group and H be a subgroup of G. If there exist
a, b, and c in G such that a ∈ H \Z(H), b ∈ Z(G)∩H \⟨a⟩, and c ∈ CG(a)\H,
then ⟨CH(a), c⟩ = ⟨a, b, c⟩ is abelian.

Proof. By the hypotheses of the lemma, and c /∈ H, we see ⟨CH(a), c⟩/⟨a, b⟩ =
⟨c̄⟩. So ⟨CH(a), c⟩ = ⟨a, b, c⟩ is abelian. □

Lemma 5.2. Let G be a CAC-2-group and M be a non-abelian maximal sub-
group of G. If exp(M) = 4 and Z(M) ∼= C3

2 , then Φ(G) ≤ Z(M) and for any
a ∈ M \ Z(M), b ∈ G \M , we have [a, b] ̸= 1 and o(a) = o(b) = 4.

Proof. By Lemma 3.7, Z(M) ≤ Z(G). It follows from Lemma 3.2 that Φ(G) ≤
Z(G) and so Φ(G) ≤ Z(M). For any x ∈ G \ Z(M), if o(x) = 2, then
Z(M)⟨x⟩ ∼= C4

2 , in contradiction to the Lemma 3.1. Thus o(a) = o(b) = 4.
If [a, b] = 1 and a2 = b2, then o(ab) = 2, a contradiction. If [a, b] = 1 and
a2 ̸= b2, then ⟨a, b2⟩ is not cyclic. By the hypotheses, ⟨a, b, Z(M)⟩/⟨a, b2⟩ is
cyclic which is impossible. So [a, b] ̸= 1. □

Lemma 5.3. Let G be a CAC-2-group of order 2n with n ≥ 6, and M be a
maximal subgroup of G. If M is metacyclic minimal non-abelian. Then G is
one of the following pairwise non-isomorphic groups:

(1) D8 ∗ C2n−2 ;

(2) ⟨a, b, c
∣∣ a2n−2

= b2 = c4, c2 = a2
n−3

, [b, a] = c, [c, b] = c2, [c, a] = 1⟩;
(3) ⟨a, b, c

∣∣ a2n−3

= b2
2

= 1, c2 = a2b2, [a, b] = b2, [c, a] = [c, b] = 1⟩;
(4) ⟨a, b, c

∣∣ a2n−3

= b2
2

= 1, c2 = a2b2, [a, b] = b2, [c, a] = a2
n−4

, [c, b] = 1⟩.

Proof. Let M = ⟨a, b
∣∣ a2u = b2

v

= 1, [a, b] = a2
u−1⟩, where u ≥ 2, v ≥ 1 and

u+ v = n− 1. We consider the following two cases: v = 1 and v ̸= 1.
Case 1. v = 1
In this case, M = ⟨a, b

∣∣ a2n−2

= b2 = 1, [a, b] = a2
n−3⟩. Take d ∈ G \ M .

Since [b2, d] = 1, we have [b, d] = 1 or a2
n−3

. If [b, d] = a2
n−3

, then [b, ad] = 1.
Without loss of generality, we may assume [b, d] = 1. Noticing that Z(M) =

⟨a2⟩, we see ⟨a2n−3⟩ ≤ Z(G). By Lemma 5.1, a2 ∈ CM (b) ≤ ⟨a2n−3

, b, d⟩. Since
d /∈ M , a2 ∈ ⟨a2n−3

, b, d2⟩. Clearly, exp(G) = pn−2. Thus we may assume
d2 = a2 or a2b.
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If d2 = a2, then [a, d] = 1 or a2
n−3

. If [a, d] = 1, then, by letting a1 = ad−1,

G = ⟨a1, b⟩ ∗ ⟨d⟩ ∼= D8 ∗ C2n−2 . If [a, d] = a2
n−3

, then, by letting d1 = bd, we
see d21 = a2 and [a, d1] = [b, d1] = 1. So we may also have G ∼= D8 ∗ C2n−2 .

If d2 = a2b, then [a2, d] = [b, d] = 1 and [a, d2] = a2
n−3

. By calculation,

[a, d] = a±2n−4

b. Then G = ⟨a1, c, d
∣∣ a21 = c4 = d2

n−2

= 1, c2 = d2
n−3

, [a1, d] =

c, [c, a1] = c2, [c, d] = 1⟩ when we set a1 = a±2n−5−1d and c = a±2n−4

b. Thus
G is the type (2).

Case 2. v ̸= 1
In this case, Z(M) = ⟨a2, b2⟩ is not cyclic. By Lemma 3.7, Z(M) ≤ Z(G).

Take d ∈ G \M . Since [a2, d] = 1, [a, d] = a2
u−1ib2

v−1j , where i, j are integers.
It follows that [a, d2] = 1. Similarly, [b, d2] = 1. Thus d2 ∈ Z(M) ≤ Z(G).
Noticing that Φ(M) = Z(M) ≤ Z(G), we see Φ(G) ≤ Z(G). So G/Z(G)
is elementary abelian. By Lemma 2.2, G′ is elementary abelian. In partic-

ular, G′ ≤ Ω1(M) = ⟨a2u−1

, b2
v−1⟩. If there exists an element g ∈ G \ M

such that o(g) = 2, then Ω1(M)⟨g⟩ ∼= C3
2 . It follows from Lemma 3.2 that

g ∈ Z(G). Since n ≥ 6, we may assume u ≥ 3. Then, by the hypotheses,

⟨a2, b, g⟩/⟨a2u−1

, b⟩ is cyclic. However it is impossible. So there is not an invo-
lution in G \M .

Now we consider the following three subcases:
Subcase 1. u ≥ 3 and v ≥ 3
Let W = ⟨a2u−2

, b2
v−2⟩. Then W ∼= C4 × C4 and CG(W ) = G. By Lemma

2.6(4), Ω2(CG(W )) = W . Then Lemma 2.6(5) implies G is metacyclic. Thus
d(G) = 2 and |G′| = 2. By Lemma 2.1, G is minimal non-abelian, a contradic-
tion.

Subcase 2. v = 2
In this case, M = ⟨a, b

∣∣ a2
n−3

= b2
2

= 1, [a, b] = a2
n−4⟩. By the above,

G′ ≤ ⟨a2n−4

, b2⟩. Take d ∈ G \ M . Then d2 ∈ Z(G) ∩ M = ⟨a2, b2⟩. If
o(d) < 2n−3, then, by letting d1 = ad, we see o(d1) = 2n−3. Without loss of
generality, we assume o(d) = 2n−3. Thus we may assume d2 = a2b2 or d2 = a2.

If d2 = a2, then o(a−1d) = 2 if [a, d] = 1 and o(da2
n−5−1) = 2 if [a, d] =

a2
n−4

, which contradict that there is not an involution inG\M . Thus [a, d] = b2

or a2
n−4

b2. Since o(abd−1) = 2 if [ab, d] = b2a2
n−4

and o(a1+2n−5

bd−1) = 2 if

[ab, d] = b2, we see [ab, d] = 1 or a2
n−4

. It follows that [b, d] = b2 or a2
n−4

b2. If

[a, d] = b2 and [b, d] = b2, then, by letting a1 = a1+2n−5

b, G = ⟨a1, b, d
∣∣ a2n−3

1 =

b2
2

= 1, [a1, b] = a2
n−4

1 , [b, d] = b2, [a1, d] = 1, d2 = a21b
2⟩. By calculation, G is

isomorphic to the group of type (4). If [a, d] = b2 and [b, d] = a2
n−4

b2, then

G = ⟨a1, b1, d
∣∣ a2n−3

1 = b2
2

1 = 1, [a1, b1] = 1, [b1, d] = b21, [a1, d] = a2
n−4

1 , d2 =

a21b
2
1⟩ when we set a1 = a1+2n−5

b and b1 = ad−1. Thus G is the type (4). If

[a, d] = a2
n−4

b2, then, by setting d1 = bd if [b, d] = b2 and d1 = a2
n−5

bd if
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[b, d] = a2
n−4

b2, we see d21 = a2 and [a, d1] = b2. So we may also have the group
of type (4).

If d2 = a2b2, then, by letting a1 = a1+2n−5

b, we see d2 = a21, which is reduced
to the case of d2 = a2.

Subcase 3. u = 2
In this case, M = ⟨a, b

∣∣ a22 = b2
n−3

= 1, [a, b] = a2⟩ and G′ ≤ ⟨a2, b2n−4⟩.
Take d ∈ G \ M . Without loss of generality, we may assume d2 = a2b2 or
d2 = b2.

If d2 = b2, then o(b−1d) = 2 if [b, d] = 1 and o(db2
n−5−1) = 2 if [b, d] = b2

n−4

.

So [b, d] = a2 or b2
n−4

a2. Since (ab)2 = b2, we see [ab, d] = a2 or b2
n−4

a2. It

follows that [a, d] = 1 or b2
n−4

. If [a, d] = 1 and [b, d] = a2, then, by letting d1 =

ad, G = ⟨a, b, d1
∣∣ a4 = b2

n−3

= 1, [a, b] = a2, d21 = a2b2, [d1, a] = [d1, b] = 1⟩.
Thus G is the type (3). If [a, d] = 1 and [b, d] = b2

n−4

a2, then G is isomorphic

to the group of type (4). If [a, d] = b2
n−4

and [b, d] = a2 or b2
n−4

a2, then G is
also the type (4).

If d2 = a2b2, then o(b−1d) = 2 if [b, d] = a2 and o(db2
n−5−1) = 2 if [b, d] =

a2b2
n−4

. So [b, d] = 1 or b2
n−4

. Similarly, [ab, d] = 1 or b2
n−4

. It follows that

[a, d] = 1 or b2
n−4

. Let d1 = ad if [a, d] = 1 and d1 = b2
n−5

ad if [a, d] = b2
n−4

.
In the two cases, we have d21 = b2, which is reduced to the case of d2 = b2. □

Lemma 5.4. Let G be a CAC-2-group of order 2n and n ≥ 6. If there is a
maximal subgroup M in G such that M ∼= D8 ∗ C2n−3 , then G is one of the
following pairwise non-isomorphic groups:

(1) D8 ∗ C2n−2 ;

(2) ⟨a, b, c
∣∣ a2n−2

= b2 = c4 = 1, c2 = a2
n−3

, [b, a] = c, [c, b] = c2, [c, a] = 1⟩.

Proof. Let M = ⟨a, b, c
∣∣ a2n−3

= b2 = c2 = 1, [c, b] = a2
n−4

, [b, a] = [c, a] = 1⟩.
Then Z(M) = ⟨a⟩ ⊵ G and so ⟨a2n−4⟩ ≤ Z(G). Take d ∈ G \ M . Since

[b2, d] = 1, by calculation, we have [b, d] = 1 or a2
n−4

or a±2n−5

c or ai2
n−4

bc,

where i is an integer. If [b, d] = a±2n−5

c, then, since [b, d2] ∈ ⟨a2n−4⟩, we see

[c, d] = a2
n−4

or 1. If [b, d] = ai2
n−4

bc, then [bc, d] = a2
n−4

or 1. Without loss

of generality, we may assume [b, d] = 1, or a2
n−4

. Now we consider o(d) = 2n−2

and o(d) ≤ 2n−3.

If o(d) = 2n−2, then ⟨d4⟩ = ⟨a2⟩. If [b, d] = a2
n−4

, then, by Lemma 2.1,
⟨b, d⟩ is metacyclic minimal non-abelian of order 2n−1. If [b, d] = 1, then

[b, cd] = a2
n−4

and so ⟨b, cd⟩ is metacyclic minimal non-abelian of order 2n−1.
Thus we may have the groups listed in lemma by Lemma 5.3.

If o(d) ≤ 2n−3 and [b, d] = 1, then, by Lemma 5.1, we see a ∈ CM (b) ≤
⟨a2n−4

, b, d⟩. Thus a ∈ ⟨a2n−4

, b, d2⟩, in contradiction to o(d) ≤ 2n−3. If [b, d] =

a2
n−4

, then [b, cd] = 1. We may also have a contradiction. □
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Lemma 5.5. Let G be a CAC-2-group of order 2n and n ≥ 6. If there is

a maximal subgroup M in G such that M ∼= ⟨a, b, c
∣∣ a2

n−4

= b2
2

= 1, c2 =

a2b2, [a, b] = b2, [c, a] = [c, b] = 1⟩, then G is one of the following pairwise
non-isomorphic groups:

(1) ⟨a, b, c
∣∣ a2n−3

= b2
2

= 1, c2 = a2b2, [a, b] = b2, [c, a] = [c, b] = 1⟩;
(2) ⟨a, b, c

∣∣ a2n−3

= b2
2

= 1, c2 = a2b2, [a, b] = b2, [c, a] = a2
n−4

, [c, b] = 1⟩.

Proof. By calculation, we see Z(M) = ⟨b2, c⟩, Φ(M) = ⟨a2, b2⟩, and Ω1(M) =

⟨c2n−5

, b2⟩. By Lemma 3.7, Z(M) ≤ Z(G). For any d ∈ G \M , if d2 /∈ Z(G),
then there exists an element x ∈ Φ(M) such that ⟨x, d2⟩ is not cyclic. It follows
from Lemma 5.1 that c ∈ CM (d2) ≤ ⟨x, d⟩ and so d2 ∈ Z(G), a contradiction.
Thus d2 ∈ Z(G). So Φ(G) ≤ Z(G) and G/Z(G) is elementary abelian. By
Lemma 2.2, G′ is elementary abelian. In particular, G′ ≤ Ω1(M). We consider
exp(G) = 2n−4 and exp(G) = 2n−3.

If exp(G) = 2n−3, then o(d) = 2n−3. Since d2 ∈ Z(M) = ⟨b2, c⟩, ⟨d4⟩ = ⟨c2⟩.
If [b, d] = b2 or c2

n−5

, then ⟨b, d⟩ is metacyclic minimal non-abelian of order

2n−1. If [b, d] = 1 or b2c2
n−5

, then [b, ad] = b2 or c2
n−5

and so ⟨b, ad⟩ is
metacyclic minimal non-abelian of order 2n−1. Thus we may get the groups
listed in lemma by Lemma 5.3.

If exp(G) = 2n−4, then d2 ∈ ⟨b2, c2⟩. Since [a, b] = b2, we may assume

[a, d] = 1 or a2
n−5

. If [a, d] = 1, then, by Lemma 5.1, we see c ∈ CM (a) ≤
⟨a, b2, d⟩, a contradiction. So [a, d] = a2

n−5

. Similarly [b, d] = a2
n−5

. Then
[ab, d] = 1. We may also have a contradiction. □

Lemma 5.6. Let G be a CAC-2-group of order 2n and n ≥ 6. Then

(1) If there is a maximal subgroup M in G such that M ∼= ⟨a, b, c
∣∣ a2n−4

=

b2
2

= 1, c2 = a2b2, [a, b] = b2, [c, a] = a2
n−5

, [c, b] = 1⟩, then n = 6 and G ∼=
⟨a, b, c, d

∣∣ a4 = b4 = 1, c2 = a2b2, a2 = d2, [a, b] = b2, [a, c] = a2, [a, d] =

b2, [b, c] = 1, [b, d] = a2, [c, d] = c2⟩.
(2) If n = 6, then there is not a maximal subgroup M in G such that M ∼=

⟨a, b, c
∣∣ a4 = b4 = c4 = 1, a2 = b2, [b, a] = a2, [c, a] = c2, [c, b] = 1⟩.

Proof. Assume M ⋖G and M is isomorphic to the maximal subgroup listed in
(1) or (2). Then Z(M) = Φ(M) = ⟨b2, c2⟩ = ⟨a2, c2⟩ ≤ Z(G).

It is easy to see that ⟨b, c⟩ is the unique abelian maximal subgroup of M .
Thus ⟨b, c⟩ charM ⊴ G and so G′ ≤ ⟨b, c⟩. For any d ∈ G \ M , it follows
from [b2, d] = 1 that [b, d2] = 1. Thus d2 ∈ CG(b) ∩ M = CM (b) = ⟨b, c⟩. If
d2 /∈ Z(G), then there exists an element x ∈ Z(M) such that ⟨x, d2⟩ is not cyclic.
By the hypotheses, ⟨b, c, d⟩/⟨x, d2⟩ is cyclic. Noticing that ⟨x, d2⟩ ≤ Φ(⟨b, c, d⟩),
we see ⟨b, c, d⟩ is cyclic, a contradiction. Thus d2 ∈ Z(G) and so Φ(G) ≤ Z(G).
Thus G/Z(G) is elementary abelian. By Lemma 2.2, G′ is elementary abelian.
In particular, G′ = Ω1(M) = M ′.
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For any d ∈ G \ M , if o(d) = 2, then Ω1(M)⟨d⟩ ∼= C3
2 , which implies

r(G) = 3. If d ∈ Z(G), then, by the hypotheses, ⟨b, c, d⟩/⟨b, c2⟩ is cyclic.
However it is impossible. If d /∈ Z(G), then CG(d) = Ω1(M)⟨d⟩ by Lemma 3.2.
It follows from G′ ∼= C2

2 that there exists an element x ∈ M \ Φ(M) such that
[x, d] = 1. Thus x ∈ CG(d) = Ω1(M)⟨d⟩. It is also impossible. So there is not
an involution in G \M .

Noticing that [a,M ] = G′, we may take a suitable d ∈ G \ M such that
[a, d] = 1. If [b, d] = 1, then, by Lemma 5.1, we see c ∈ CM (b) ≤ ⟨b, d, c2⟩, a
contradiction. If [b, d] = b2, then [b, ad] = 1. We may also have a contradiction.
Thus [b, d] /∈ ⟨b2⟩.

If M ∼= ⟨a, b, c
∣∣ a2n−4

= b2
2

= 1, c2 = a2b2, [a, b] = b2, [c, a] = a2
n−5

, [c, b] =

1⟩, then, since d2 ∈ Z(M), we may assume d2 = a2ib2j , where i, j are integers.
Replacing d by da−i, we have d2 = b2j and so d2 = b2. Since [b, d] /∈ ⟨b2⟩,
[b, d] = a2

n−5

b2 or a2
n−5

. Similarly [c, d] = b2 or b2a2
n−5

. If n ≥ 7, then

a2
n−6 ∈ Z(G). Since (bda2

n−6

)2 = [b, d]a2
n−5 ̸= 1, we see [b, d] = a2

n−5

b2. It

follows that (abc−1d)2 = b2[c, d] and so [c, d] = b2a2
n−5

. Thus [bc, d] = 1. By
Lemma 5.1, c ∈ CM (bc) ≤ ⟨bc, d, b2⟩, a contradiction. So n = 6. Since (abd)2 =
a2b2[b, d], we see [b, d] = a2. Thus (bcd)2 = b2[c, d] and so [c, d] = b2a2 = c2.
Hence G = ⟨a, b, c, d⟩ is isomorphic to the group in lemma.

If M ∼= ⟨a, b, c
∣∣ a4 = b4 = c4 = 1, a2 = b2, [b, a] = a2, [c, a] = c2, [c, b] = 1⟩,

then we may assume d2 = c2. Since (bd)2 = b2c2[b, d] and (acd)2 = a2c2[c, d],
we see [b, d] ̸= a2c2 and [c, d] ̸= a2c2. Thus [b, d] = c2 and [c, d] = a2. It
follows that [bc, ad] = 1. By Lemma 5.1, we see c ∈ CM (bc) ≤ ⟨bc, ad, b2⟩, a
contradiction. □

Lemma 5.7. Let G be a CAC-2-group of order 2n and n ≥ 6. If G has an
abelian maximal subgroup and a maximal subgroup of maximal class, then G is
one of the following pairwise non-isomorphic groups:

(1) 2-groups of maximal class;
(2) D2n−1 × C2;
(3) SD2n−1 × C2;
(4) Q2n−1 × C2;

(5) ⟨a, b, c
∣∣ a2n−2

= b2 = c4 = 1, c2 = a2
n−3

, [a, b] = a−2, [c, a] = [c, b] =
1⟩ ∼= D2n−1 ∗ C4

∼= Q2n−1 ∗ C4
∼= SD2n−1 ∗ C4.

Proof. Let M ⋖G and M be of maximal class. Then |Z(M)| = 2 and |M ′| =
2n−3. Thus 2n−3 ≤ |G′| ≤ 2n−2. If |G′| = 2n−2, then G is of maximal class.
If |G′| = 2n−3, then |Z(G)| = 4 by Lemma 2.3. So there exists an element
x ∈ Z(G) such that x /∈ M . Then x2 ∈ M ∩ Z(G) ≤ Z(M). If o(x) = 2, then
G is of the type (2), (3) or (4). If o(x) = 4, then G is of the type (5). □
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Lemma 5.8. Let G be a CAC-2-group of order 2n and n ≥ 6. Then G has
no maximal subgroup M ∼= SD2n−2 × C2 and if G has a maximal subgroup
M ∼= D2n−2 × C2, then G is one of the groups listed in Lemma 3.6.

Proof. Let M⋖G and M = ⟨a, b, c
∣∣ a2n−3

= b2 = c2 = 1, [a, b] = ai2
n−4−2, [c, a]

= [c, b] = 1⟩, where i = 0 or 1. Then r(M) = 3. By Lemma 3.7, Z(M) =

⟨a2n−4

, c⟩ ≤ Z(G). Clearly, we may take a suitable d ∈ G \ M such that

[a2
n−5

, d] = 1. By Lemma 5.1, ⟨CM (a2
n−5

), d⟩ = ⟨a, c, d⟩ is an abelian maximal
subgroup of G. So G is one of the groups listed in Lemma 3.6. Conversely,
those groups listed in Lemma 3.6 have a maximal subgroup M ∼= D2n−2 × C2

and have no maximal subgroup M ∼= SD2n−2 × C2. □

Lemma 5.9. Let G be a CAC-2-group of order 2n and n ≥ 6. If there is a
maximal subgroup M in G such that M ∼= Q2n−2 × C2, then G is one of the
following pairwise non-isomorphic groups:

(1) Q2n−1 × C2;
(2) SD2n−1 × C2;

(3) ⟨a, b, c
∣∣ a4 = b4 = c2

n−3

= 1, b2 = c2
n−4

, [b, a] = c, [c, a] = [c, b] = c−2⟩.

Proof. Let M = ⟨a, b, c
∣∣ a2

n−3

= c2 = 1, b2 = a2
n−4

, [a, b] = a−2, [c, a] =

[c, b] = 1⟩. Then Z(M) = ⟨a2n−4

, c⟩ ≤ Z(G). Since ⟨a, c⟩ is the unique abelian
maximal subgroup of M , G′ ≤ ⟨a, c⟩. Take a suitable d ∈ G \ M such that

[a2
n−5

, d] = 1. By Lemma 5.1, we see a ∈ CM (a2
n−5

) ≤ ⟨a2n−5

, c, d⟩. Without
loss of generality, we may assume d2 = a. Then [d2, b] = [a, b] = a−2. It

follows that [d, b] = a−1 or a2
n−4−1 or a−1c or a2

n−4−1c. If [d, b] = a−1, then

G = ⟨b, c, d⟩ ∼= Q2n−1 × C2. If [d, b] = a2
n−4−1, then G ∼= SD2n−1 × C2. If

[d, b] = a−1c, then G = ⟨b, c1, d1
∣∣ b4 = d41 = c2

n−3

1 = 1, b2 = c2
n−4

1 , [d1, b] =

c1, [c1, b] = [c1, d1] = c−2
1 ⟩ when we set d1 = bd and c1 = a−1c. In this case, G

is the type (3). If [d, b] = a2
n−4−1c, then G is also the type (3). □

Lemma 5.10. Let G be a CAC-2-group of order 2n and n ≥ 6. Then G has

no maximal subgroup M ∼= ⟨a, b
∣∣ a4 = b2

n−3

= 1, [b, a] = b2
n−4−2⟩ and if G has

a maximal subgroup M ∼= ⟨a, b
∣∣ a4 = b2

n−3

= 1, [b, a] = b−2⟩, then G is one of
the following pairwise non-isomorphic groups:

(1) ⟨a, b
∣∣ a4 = b2

n−2

= 1, [b, a] = b−2⟩;
(2) ⟨a, b

∣∣ a4 = b2
n−2

= 1, [b, a] = b2
n−3−2⟩;

(3) ⟨a, b
∣∣ a4 = b2 = c2

n−3

= 1, [b, a] = c, [c, a] = [c, b] = c−2⟩;
(4) ⟨a, b

∣∣ a4 = b4 = c2
n−3

= 1, b2 = c2
n−4

, [b, a] = c, [c, a] = [c, b] = c−2⟩.

Proof. Let M ⋖ G and M = ⟨a, b
∣∣ a4 = b2

n−3

= 1, [b, a] = bi2
n−4−2⟩, where

i = 0 or 1. It is easy to see Z(M) = ⟨a2, b2n−4⟩ ≤ Z(G) and G′ ≤ ⟨a2, b⟩.
Take a suitable d ∈ G \ M such that [b2

n−5

, d] = 1. By Lemma 5.1, ⟨a2, b, d⟩
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is abelian and b ∈ ⟨a2, b2n−5

, d⟩. Without loss of generality, we may assume
d2 = b.

If i = 1, then [d2, a] = b2
n−4−2. Assume [a, d] = a2jbk. It follows from

[a2, d] = 1 that k is even and so [a, d2] ∈ ⟨b4⟩, a contradiction.

If i = 0, then [d2, a] = b−2. It follows that [d, a] = b−1 or a2b−1 or a2b2
n−4−1

or b2
n−4−1. If [d, a] = b−1, then G is the type (1). If [d, a] = b2

n−4−1, then

G is the type (2). If [d, a] = a2b−1, then G = ⟨a, b1, c1
∣∣ a4 = b21 = c2

n−3

1 =

1, [b1, a] = c1, [c1, a] = [c1, b1] = c−2
1 ⟩ when we set b1 = ad and c1 = a2b−1. In

this case, G is the type (3). If [d, a] = a2b2
n−4−1, then, by letting b1 = ad and

c1 = a2b2
n−4−1, we see G = ⟨a, b1, c1

∣∣ a4 = b41 = c2
n−3

1 = 1, b21 = c2
n−4

1 , [b1, a] =

c1, [c1, a] = [c1, b1] = c−2
1 ⟩. Thus G is the type (4). □

Lemma 5.11. Let G be a CAC-2-group of order 2n and n ≥ 6. If there is

a maximal subgroup M in G such that M ∼= ⟨a, b
∣∣ a8 = b2

n−3

= 1, a4 =

b2
n−4

, [b, a] = b−2⟩, then G is one of the following pairwise non-isomorphic
groups:

(1) ⟨a, b
∣∣ a8 = b2

n−2

= 1, a4 = b2
n−3

, [b, a] = b−2⟩;
(2) ⟨a, b, c

∣∣ a8 = b2 = c2
n−3

= 1, a4 = c2
n−4

, [b, a] = c, [c, a] = [c, b] = c−2⟩.

Proof. Since ⟨a2, b⟩ is the unique abelian maximal subgroup of M , G′ ≤ ⟨a2, b⟩.
Take d ∈ G \M . Since M ′ = ⟨b2⟩ and Z(M) = ⟨a2⟩, we see [b2

n−5

, d] = 1 or

b2
n−4

, and [a2, d] = 1 or a4. Thus [a2b2
n−5

, d] = 1 or b2
n−4

. We may assume

[a2b2
n−5

, d] = 1. By Lemma 5.1, b ∈ ⟨a4, a2b2n−5

, d⟩ and ⟨b, d, a2b2n−5⟩ is
abelian. Without loss of generality, we may assume d2 = b or ba2. Then

[d2, a] = b−2. By calculation, [d, a] = b−1 or b2
n−4−1. If d2 = b and [d, a] = b−1

or b2
n−4−1, then G = ⟨a, d⟩ is the type (1). Let b1 = a3d, c1 = b−1 if d2 = ba2,

[d, a] = b−1, and let b1 = ad, c1 = b2
n−4−1 if d2 = ba2, [d, a] = b2

n−4−1. In

either case, we get G = ⟨a, b1, c1
∣∣ a8 = b21 = c2

n−3

1 = 1, a4 = c2
n−4

1 , [b1, a] =

c1, [c1, a] = [c1, b1] = c−2
1 ⟩. Thus G is the type (2). □

Lemma 5.12. Let G be a CAC-2-group of order 2n and n ≥ 6. Then there is

not a maximal subgroup M in G such that M ∼= ⟨a, b, c
∣∣ a4 = b2 = c2

n−4

=

1, [b, a] = c, [c, a] = [c, b] = c−2⟩.

Proof. Otherwise, it is easy to seeG′ ≤ ⟨a2, ab⟩. If (ab)ia2j ∈ G′, where i is odd,
then |G′| = |⟨ab, a2⟩| = 2n−2. Thus G is of maximal class, a contradiction. It

follows that G′ ≤ ⟨c, a2⟩. Take a suitable d ∈ G \M such that [c2
n−6

, d] = 1. It

is easy to see [a2, d] = 1. Thus a2 ∈ Z(G). By Lemma 5.1, ab ∈ ⟨a2, c2n−6

, d⟩.
It follows that [a, d2] = ck, where k is odd. On the other hand, we assume
[a, d] = a2sct and so [a, d2] ∈ ⟨c2⟩, a contradiction. □

By similar arguments as in Lemma 5.12, we have the following result:
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Lemma 5.13. Let G be a CAC-2-group of order 2n and n ≥ 6. Then there is

not a maximal subgroup M in G such that M ∼= ⟨a, b, c
∣∣ a4 = b4 = c2

n−4

=

1, b2 = c2
n−5

, [b, a] = c, [c, a] = [c, b] = c−2⟩ or ⟨a, b, c
∣∣ a8 = b2 = c2

n−4

=

1, a4 = c2
n−5

, [b, a] = c, [c, a] = [c, b] = c−2⟩.

Lemma 5.14. Let G be a CAC-2-group of order 2n and n ≥ 6. If there is a

maximal subgroup M in G such that M ∼= ⟨a, b, c
∣∣ a2n−3

= b2 = c4 = 1, c2 =

a2
n−4

, [a, b] = a−2, [c, a] = [c, b] = 1⟩, then G is one of the following pairwise
non-isomorphic groups:

(1) ⟨a, b, c
∣∣ a2n−2

= b2 = c4 = 1, c2 = a2
n−3

, [a, b] = a−2, [c, a] = [c, b] = 1⟩;
(2) ⟨a, b, c

∣∣ a8 = b2 = c2
n−3

= 1, a4 = c2
n−4

, [b, a] = c, [c, a] = [c, b] = c−2⟩.

Proof. It is easy to see G′ ≤ ⟨a, c⟩ and ⟨a2n−4⟩ = ⟨c2⟩ ≤ Z(G). Take a suitable

d ∈ G \M such that [a2
n−5

c, d] = 1. Then, by Lemma 5.1, ⟨a, c, d⟩ is abelian

and a ∈ ⟨a2n−4

, d, a2
n−5

c⟩. Without loss of generality, we may assume d2 = a

or ac. Then [d2, b] = [a, b] = a−2. By calculation, [d, b] = a−1 or a2
n−4−1. If

d2 = a and [d, b] = a−1 or a2
n−4−1, then G = ⟨b, c, d⟩ is isomorphic to the group

of type (1). Let d1 = bd, c1 = a−1 if d2 = ac, [d, b] = a−1, and let d1 = bd,

c1 = a2
n−4−1 if d2 = ac, [d, b] = a2

n−4−1. In either case, we have G = ⟨b, c1, d1
∣∣

b2 = d81 = c2
n−3

1 = 1, d41 = c2
n−4

1 , [d1, b] = c1, [c1, b] = [c1, d1] = c−2
1 ⟩. Thus G is

the type (2). □

Lemma 5.15. Let G be a CAC-2-group of order 2n and n ≥ 7. Then there is

not a maximal subgroup M in G such that M ∼= ⟨a, b, c
∣∣ a2n−3

= b2 = c4 =

1, c2 = a2
n−4

, [b, a] = c, [c, b] = c2, [c, a] = 1⟩.

Proof. Otherwise, G′ ≤ ⟨a, c⟩. Take a suitable d ∈ G\M such that [a2
n−5

c, d] =

1. Then, by Lemma 5.1, ⟨a, c, d⟩ is abelian and a ∈ ⟨a2n−5

c, a2
n−4

, d⟩. It follows
that [b, d2] = ci, where i is odd. However it is impossible. □

By checking the list of groups of order 25, we get the following result:

Theorem 5.16. Let G be a group of order 25. Then G is a CAC-2-group if
and only if G is one of the following pairwise non-isomorphic groups:

(1) metacyclic minimal non-abelian 2-groups;
(2) 2-groups of maximal class;
(3) D24 × C2;
(4) SD24 × C2;
(5) Q24 × C2;
(6) M2(2, 2, 1);
(7) M2(2, 2)× C2;
(8) D8 ∗ C23 ;
(9) ⟨a, b

∣∣ a4 = b8 = 1, [b, a] = b−2⟩;
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(10) ⟨a, b
∣∣ a4 = b8 = 1, [b, a] = b2⟩;

(11) ⟨a, b
∣∣ a8 = b8 = 1, a4 = b4, [b, a] = b2⟩;

(12) ⟨a, b, c
∣∣ a4 = b4 = 1, c2 = a2b2, [b, a] = b2, [c, a] = [c, b] = 1⟩;

(13) ⟨a, b, c
∣∣ a4 = b4 = 1, c2 = a2b2, [b, a] = b2, [c, a] = a2, [c, b] = 1⟩;

(14) ⟨a, b, c
∣∣ a4 = b4 = c4 = 1, a2 = b2, [b, a] = a2, [c, a] = c2, [c, b] = 1⟩;

(15) ⟨a, b, c
∣∣ a4 = b2 = c4 = 1, [b, a] = c, [c, a] = [c, b] = c−2⟩;

(16) ⟨a, b, c
∣∣ a4 = b4 = c4 = 1, b2 = c2, [b, a] = c, [c, a] = [c, b] = c−2⟩;

(17) ⟨a, b, c
∣∣ a8 = b2 = c4 = 1, a4 = c2, [a, b] = a−2, [c, a] = [c, b] = 1⟩;

(18) ⟨a, b, c
∣∣ a2 = b4 = c4 = 1, [b, a] = c2, [c, a] = b2, [c, b] = 1⟩;

(19) ⟨a, b, c
∣∣ a2 = b4 = c4 = 1, [b, a] = c2, [c, a] = b2c2, [c, b] = 1⟩;

(20) ⟨a, b, c
∣∣ a2 = b4 = c4 = 1, [b, a] = b2, [c, a] = c2, [c, b] = 1⟩;

(21) ⟨a, b, c, d
∣∣ a4 = b4 = c2 = d2 = 1, a2 = b2, [b, a] = a2, [c, a] = [d, a] =

[c, b] = [d, b] = [d, c] = 1⟩.

Theorem 5.17. Let G be a group of order 2n and n ≥ 6. Then G is a CAC-2-
group if and only if G is one of the following pairwise non-isomorphic groups:

(1) metacyclic minimal non-abelian 2-groups;
(2) 2-groups of maximal class;
(3) D2n−1 × C2;
(4) SD2n−1 × C2;
(5) Q2n−1 × C2;
(6) D8 ∗ C2n−2 ;

(7) ⟨a, b
∣∣ a4 = b2

n−2

= 1, [b, a] = b−2⟩;
(8) ⟨a, b

∣∣ a4 = b2
n−2

= 1, [b, a] = b2
n−3−2⟩;

(9) ⟨a, b
∣∣ a8 = b2

n−2

= 1, a4 = b2
n−3

, [b, a] = b−2⟩;
(10) ⟨a, b, c

∣∣ a2n−3

= b4 = 1, c2 = a2b2, [b, a] = b2, [c, a] = [c, b] = 1⟩;
(11) ⟨a, b, c

∣∣ a2n−3

= b4 = 1, c2 = a2b2, [b, a] = b2, [c, a] = a2
n−4

, [c, b] = 1⟩;
(12) ⟨a, b, c

∣∣ a4 = b2 = c2
n−3

= 1, [b, a] = c, [c, a] = [c, b] = c−2⟩;
(13) ⟨a, b, c

∣∣ a4 = b4 = c2
n−3

= 1, b2 = c2
n−4

, [b, a] = c, [c, a] = [c, b] = c−2⟩;
(14) ⟨a, b, c

∣∣ a8 = b2 = c2
n−3

= 1, a4 = c2
n−4

, [b, a] = c, [c, a] = [c, b] = c−2⟩;
(15) ⟨a, b, c

∣∣ a2n−2

= b2 = c4 = 1, c2 = a2
n−3

, [b, a] = a2, [c, a] = [c, b] = 1⟩;
(16) ⟨a, b, c

∣∣ a2n−2

= b2 = c4 = 1, c2 = a2
n−3

, [b, a] = c, [c, b] = c2, [c, a] = 1⟩;
(17) ⟨a, b, c, d, e

∣∣ a4 = d2 = e2 = 1, a2 = b2 = c2, [b, a] = a2, [c, a] =
d, [c, b] = e, [d, a] = [e, a] = [d, b] = [e, b] = [c, d] = [c, e] = [d, e] = 1⟩;

(18) ⟨a, b, c, d
∣∣ a4 = b4 = d2 = 1, b2 = c2, [b, a] = b2, [c, a] = a2, [c, b] =

d, [d, a] = [d, b] = [c, d] = 1⟩;
(19) ⟨a, b, c, d

∣∣ a4 = b4 = d2 = 1, a2 = c2, [b, a] = a2, [c, a] = b2c2, [c, b] =
d, [d, a] = [d, b] = [c, d] = 1⟩;

(20) ⟨a, b, c
∣∣ a4 = b4 = c4 = 1, [b, a] = c2, [c, a] = b2c2, [c, b] = a2b2⟩;
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(21) ⟨a, b, c, d
∣∣ a4 = b4 = 1, c2 = a2b2, a2 = d2, [a, b] = b2, [a, c] = a2, [a, d] =

b2, [b, c] = 1, [b, d] = a2, [c, d] = c2⟩.
Proof. Assume each maximal subgroup of G is abelian. Then G is minimal
non-abelian. If G is not metacyclic, then we may assume G = ⟨a, b, c

∣∣ a2u =

b2
v

= c2 = 1, [b, a] = c, [c, a] = [c, b] = 1⟩, where u ≥ v ≥ 1. Since n ≥ 6, u ≥ 3.

Noticing that ⟨a2, b, c⟩ ≤ CG(⟨a2
2

, b⟩) and ⟨a2, b, c⟩/⟨a22 , b⟩ is not cyclic, we see
CG(⟨a2

2

, b⟩)/⟨a22 , b⟩ is not cyclic, in contradiction to the hypothesis. Thus G
is of the type (1).

If there exists a M⋖G such that M is not abelian and M is of maximal class,
then there exists a M1 ⋖ G such that M1 is not of maximal class by Lemma
2.7. If M1 is abelian, then G is of the type (2), (3), (4), (5), or (15) according to
Lemma 5.7. Without loss of generality, we may assume that M is not abelian
and M is not of maximal class. By Lemma 3.7, M is a CAC-2-group.

If n ≥ 8, then, by induction hypothesis, M is a group of types (1) and
(3) − (16) with order 2n−1. By Lemma 5.3−5.6 and Lemma 5.8−5.15, G is a
group of types (3)− (16).

Now we consider n = 6 and n = 7.
Case 1. n = 6
In this case, M is one of the groups listed in Theorem 5.16 except the type

(2). If M is a group of types (1), (3) − (5) and (8) − (17) listed in Theorem
5.16, then G is of the type (3)− (16) or (21) according to Lemma 5.3−5.6 and
Lemma 5.8−5.14. Thus, we only need to consider that M is a group of the
types (6), (7), (18), (19), (20), and (21) listed in Theorem 5.16.

If M is of the type (6) in Theorem 5.16, then we may assume M = ⟨a, b, c
∣∣

a4 = b4 = c2 = 1, [a, b] = c, [c, a] = [c, b] = 1⟩. Then Z(M) = ⟨a2, b2, c⟩ ∼= C3
2 .

By Lemma 5.2, Φ(G) = Z(M) and for any g ∈ G \M , x ∈ M \Z(M), we have
[x, g] ̸= 1 and o(g) = 4. It follows fromM ′ = ⟨c⟩ that [x, g] /∈ ⟨c⟩. Thus |G′| > 4
and so G′ = Z(M). Without loss of generality, we may assume g2 = a2, c or
a2c.

If g2 = a2, then o(bg) = 2 if [b, g] = a2b2 and o(abg) = 2 if [ab, g] = b2c.
Thus [b, g] ̸= a2b2 and [ab, g] ̸= b2c. Without loss of generality, we may assume
[a, g] = a2, b2, a2c or b2c. If [a, g] = a2, then [b, g] = b2 or b2c. If [b, g] = b2,
then G = ⟨a, b, c, g

∣∣ a4 = b4 = c2 = 1, a2 = g2, [a, b] = c, [a, g] = a2, [b, g] =

b2, [a, c] = [b, c] = [c, g] = 1⟩. By a simple checking, G is the type (17). If
[b, g] = b2c, then G is also the type (17). If [a, g] = b2, then [b, g] = a2, a2c or
a2b2c. Then G is the type (18) if [b, g] = a2 or a2c, and G is the type (19) if
[b, g] = a2b2c. If [a, g] = a2c, then [b, g] = b2, b2c or a2b2c. It is easy to see that
G is the type (17) if [b, g] = b2, G is the type (18) if [b, g] = b2c and G is the
type (19) if [b, g] = a2b2c. If [a, g] = b2c, then [b, g] = a2, a2c or a2b2c. Thus G
is the type (19) if [b, g] = a2c or a2b2c, and G is the type (18) if [b, g] = a2.

If g2 = c, then o(ag) = 2 if [a, g] = a2c and (ag)2 = (ab)2 if [a, g] = b2.
Thus, without loss of generality, we may assume [a, g] = a2 or b2c. Similarly,
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we may assume [b, g] = b2, a2b2 or a2c and [ab, g] = a2c, b2c or a2b2c. It follows
that [a, g] = b2c and [b, g] = a2b2. Thus G is the type (20).

If g2 = a2c, then, without loss of generality, we may assume [a, g] = a2 or
b2 and [b, g] = a2 or b2. It follows that [ab, g] = a2b2. Thus (abg)2 = a2, which
is reduced to the case of g2 = a2.

If M is of the type (7) in Theorem 5.16, then, by using the similar arguments
as that M is of the type (6), we have that G is of the type (17), (18) or (19).

IfM is of the type (21) in Theorem 5.16, then, by using the similar arguments
as that M is of the type (6), we have that G is of the type (17).

If M is of the type (18), (19) or (20) in Theorem 5.16, then, by the same
arguments as in Lemma 5.6, Z(M) = ⟨b2, c2⟩ ≤ Z(G) and G′ = M ′. Since
⟨a, b2, c2⟩ ∼= C3

2 and a /∈ Z(G), we see CG(a) = ⟨a, b2, c2⟩ by Lemma 3.2.
Noticing that [a,M ] = G′, we may take a suitable d ∈ G \ M such that
[a, d] = 1. Then d ∈ CG(a), a contradiction.

Case 2. n = 7
We only need to consider M is a group of types (17), (18), (19), (20) and (21)

listed in theorem.
If M is of the type (17), then M ′ = Z(M) = ⟨a2, d, e⟩ ∼= C3

2 . By Lemma
5.2, G′ = M ′ and for any g ∈ G \ M , x ∈ M \ Z(M), we have [x, g] ̸= 1. It
follows from [a,M ] = ⟨a2, d⟩ that [a, g] /∈ ⟨a2, d⟩. Similarly, [b, g] /∈ ⟨a2, e⟩ and
[c, g] /∈ ⟨d, e⟩. We may take a suitable h ∈ G \ M such that [a, h] = e. Then
[b, h] = d, da2, de or da2e and [c, h] = a2, a2d, a2e or a2de. It follows that
[ac, bh] = 1 if [c, h] = a2 and [ac, cbh] = 1 if [c, h] = a2d. Thus [c, h] = a2e or
a2de. If [c, h] = a2e, then [ab, ch] = 1 if [b, h] = d, [ab, ach] = 1 if [b, h] = da2,
[bc, ah] = 1 if [b, h] = de and [abc, ch] = 1 if [b, h] = da2e. If [c, h] = a2de, then,
by letting h1 = ah, we see [a, h1] = e and [c, h1] = a2e. So we may also have a
contradiction.

If G has a maximal subgroup which is isomorphic to type (18), (19) or (20),
then, by using the similar arguments as that M is of the type (17), we may
have a contradiction.

If M is of the type (21), then Ω1(M) = Z(M) = M ′ = Φ(M) = ⟨a2, b2⟩ ≤
Z(G). We claim exp(G) = 4. Otherwise, there exists an element g ∈ G\M such
that o(g) = 8. Assume g2 = x1. It is clear that there exist x2 ∈ M \ ⟨a2, b2, x1⟩
and x3 ∈ ⟨a2, b2⟩ such that [x1, x2] = 1 and ⟨x1, x3⟩ is not cyclic. By Lemma
5.1, we see x2 ∈ CM (x1) ≤ ⟨x3, g⟩ and so x2 ∈ ⟨x1, x3⟩, a contradiction. Thus
the claim holds. Hence for any x ∈ G \M , x2 ∈ Ω1(M) ≤ Z(G) and therefore
Φ(G) ≤ Z(G). So G′ = M ′. Noticing that [c,M ] = G′, we may take a suitable
x ∈ G \M such that [c, x] = 1. By Lemma 5.1, we see b ∈ CM (c) ≤ ⟨c, x, a2⟩.
However it is impossible. So we may not have a CAC-2-group.

It is easy to see that those groups in theorem are pairwise non-isomorphic.
In following we prove those groups in theorem are CAC-2-groups.

If G is of the type (1), then G is a CAC-2-group by Lemma 3.4.
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If G is of the type (2), then G is metacyclic and Φ(G) is cyclic. Let H be a
non-cyclic abelian subgroup of G and H ≰ Z(G), then H ≰ Φ(G) and so H ≰
Φ(CG(H)). Since G is metacyclic, CG(H) is metacyclic. Thus d(CG(H)) ≤ 2.
It follows that there exists an element g ∈ G such that CG(H) = ⟨H, g⟩. Hence
CG(H)/H = ⟨ḡ⟩ is cyclic. So G is a CAC-2-group.

If G is of the type (3), then assume G = ⟨a, b, c
∣∣ a2n−2

= b2 = c2 = 1, [a, b] =

a−2, [c, a] = [c, b] = 1⟩. Let H be a non-cyclic abelian subgroup of G and H ≰
Z(G), then there exists an element x ∈ H with x ̸∈ Z(G). Assume x = aibjck

with j = 1 or 2. If j = 2, then H ≤ CG(H) ≤ CG(a
ick) = ⟨a, c⟩ ∼= C2n−2 ×C2.

Thus CG(H)/H is cyclic. If j = 1, then CG(H) ≤ CG(a
ibck) = ⟨aib, c, a2n−3⟩.

Thus |CG(H)| ≤ 8. Since |H| ≥ 4, CG(H)/H is cyclic. So G is a CAC-2-group.
Similarly, if G is a group of types (4), (5), (7)− (9), and (12)− (15), then G

is a CAC-2-group.
If G is of the type (6), then Z(G) is a cyclic subgroup of index 4. So G is a

CAC-2-group by Lemma 3.8.
If G is a group of types (10), (11) and (16), then |Z(G)| ≥ 2n−3, Φ(G) ≤

Z(G) or Φ(G) is cyclic. Let H be a non-cyclic abelian subgroup of G and
H ≰ Z(G). Noticing that HZ(G) ≤ Z(CG(H)) and |CG(H)/HZ(G)| ≤ 2, we
see CG(H) is abelian. It is easy to check r(G) = 2. Then d(CG(H)) ≤ 2. Since
Φ(G) ≤ Z(G) or Φ(G) is cyclic, we have H ≰ Φ(G) and so H ≰ Φ(CG(H)).
Thus there exists an element g ∈ CG(H) such that CG(H) = ⟨H, g⟩. Hence
CG(H)/H = ⟨ḡ⟩. So G is a CAC-2-group.

If G is a group of types (17) − (21), then Ω1(G) = Z(G) and G has no
abelian maximal subgroup. Let H be a non-cyclic abelian subgroup of G and
H ≰ Z(G). Then there exists an element x ∈ H such that o(x) = 4. Thus
|H| ≥ 8. If G is a group of types (17) − (20), then, since |Z(G)| = 8, we
see |Z(G)H| ≥ 16. It follows that |CG(H)| = 16. If G is the type (21), then
|Z(G)| = 4. It is easy to check Z(M) = Z(G) for all subgroups M of order
32. It follows that |CG(H)| ≤ 16. Thus |CG(H)/H| ≤ 2 and therefore G is a
CAC-2-group. □
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