ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 1, pp. 193-204

Title:

On semi- Π -property of subgroups of finite group

Author(s):

A. Liu and B. Li

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 43 (2017), No. 1, pp. 193–204 Online ISSN: 1735-8515

ON SEMI-II-PROPERTY OF SUBGROUPS OF FINITE GROUP

A. LIU AND B. LI*

(Communicated by Ali Reza Ashrafi)

ABSTRACT. Let G be a group and H a subgroup of G. Then H is said to have semi- Π -property in G if there is a subgroup T of G such that G = HT and $H \cap T$ has Π -property in T. In this paper, investigating on semi- Π -property of subgroups, we shall obtain some new description of finite groups.

Keywords: Finite group, semi-Π-property, SE subgroup, *p*-nilpotent. MSC(2010): Primary: 20D10; Secondary: 20D20.

1. Introduction

Throughout this paper, all groups are finite. We use standard terminology, as in Huppert [7] or Guo [5]. G always is a group, and |G| is the order of G; $\pi(G)$ denotes the set of all primes dividing |G|. Also \mathbb{P} is the set of all primes and π denotes a subset of \mathbb{P} ; π' is the complement of π in \mathbb{P} . A group G is said to be a π -group if $\pi(G)$ is a subset of π .

Subgroups play a very important role in group theory and different properties of subgroups have been studied by mathematicians, such as normality, quasinormality [10], S-quasinormality (cf. [3], etc), C-normality [14], weakly spermutability [12], *s*-embedded and *n*-embedded property [6] and cover-avoidance property (cf. [4, A(10.8)]). A property of subgroups was proposed as the following in [8], to uniform some recent results.

Definition 1.1. Let H be a subgroup of G. H is said to have Π -property in G if for any G-chief factor L/K, $|G/K : N_{G/K}(HK/K \cap L/K)|$ is a π $(HK/K \cap L/K)$ -number.

Li proved in [8] that there are many examples of embedding properties of subgroups implying the possession of the Π -property. After the work in [8],

O2017 Iranian Mathematical Society

Article electronically published on February 22, 2017.

Received: 6 April 2015, Accepted: 2 November 2015.

^{*}Corresponding author.

¹⁹³

some new research has been done by many mathematicians (cf. [2, 13], etc). Let H and T be two subgroups of G. Recall that T is called a supplement of H in G if G=HT, and if furthermore $H \cap T=1$, then T is said to be a complement of H in G. To develop the work of Π -property of subgroups, we introduce the following new concept in this paper.

Definition 1.2. Let H be a subgroup of G. Then H is said to have semi- Π -property in G, if there is a subgroup T of G such that G = HT and $H \cap T$ has Π -property in T.

Remark 1.3. (1) If H is a complement, then H has semi- Π -property in G (cf. Lemma 2.2 in Section 2).

(2) It is clear that if H has Π -property in G then H has semi- Π -property, but the reverse is not true. For example, the Sylow 5-subgroups of A_5 are complement in A_5 and hence have semi- Π -property in A_5 , but there is no non-trivial subgroup of A_5 with Π -property.

(3) If H has a supersolvable supplement in G, then H has semi- Π -property in G (cf. Lemma 2.2 in Section 2).

(4) In [8], if HT = G and $H \cap T \leq I \leq H$, where I is a subgroup having II-property in G, then H is called II-supplemented in G. The following example shows that a subgroup H satisfying semi-II-property in G can not be II-supplemented in G.

Example 1.4. Let $X = \langle x \rangle \times \langle y \rangle$, where |x| = |y| = 25. The maps $\alpha : x \mapsto x^7$, $y \mapsto y^{-7}$ and $\beta : x \mapsto y^{-1}$, $y \mapsto x$ are automorphisms of X and generate a subgroup $A \leq \operatorname{Aut}(X)$ of order 8 (A is isomorphic with the quaternion group). Let G = [X]A. Then the subgroup $H = \langle x^5, \alpha \rangle$ has a supplement $T = \langle X, \beta \rangle$ in G. Since T is supersolvable, H has semi-II-property in G. On the other hand, since x^5 belongs to $\Phi(X)$ and X is the normal Sylow 5-subgroup of G and $x^5 \in T$ for any supplement T of H in G. That is $\langle x^5 \rangle \leq H \cap T \leq H$. But neither $\langle x^5 \rangle$ nor H has the II-property in G, so H is not a II-supplement in G.

Recall that a normal subgroup H of G is said to be SE in G if every chief factor of G lying in H is cyclic, and, there is a unique maximal SE subgroup of G, which is denoted by SE(G). It is (cf. [15, 1.7]). Similarly, we call that a normal subgroup H of G is SE_p in G if every pd-chief factor of G which lies in H is cyclic. The unique maximal SE_p subgroup of G is denoted by SE_p(G). If $G \neq 1$ is p-solvable, then G has a nontrivial p-nilpotent normal subgroup. The product of all p-nilpotent normal subgroup of G is denoted by $F_p(G)$. A group G is said quasinilpotent if all of its elements induce an inner automorphism on each chief factor of G. In a group G, the product of all quasinilpotent normal subgroups is called the generalized Fitting subgroup of G is denoted by $F^*(G)$.

Based on the concept of semi- $\Pi\-$ property, we shall mainly prove the following theorems.

Theorem A. Let E be a p-solvable normal subgroup of G and P a Sylow psubgroup of $F_p(E)$. Then $E \leq SE_p(G)$ if and only if every cyclic subgroup of P of order p or 4(if P is a non-abelian 2-group) has semi- Π -property in G.

Theorem 1.5 (Theorem B). Let E be a normal subgroup of G. Then $E \leq SE(G)$ if and only if every cyclic subgroup of $F^*(E)$ of prime order or of order 4 (if the Sylow 2-subgroup is non-abelian) has semi- Π -property in G.

2. Preliminaries

Lemma 2.1. Let H be a subgroup of G and N a normal subgroup of G. (1) If $H \leq T \leq G$ and H has Π -property in T, then HN/N has Π -property in TN/N.

(2) If H has Π -property in G, then H has semi- Π -property in G. (3) If H has semi- Π -property in G, then HN/N has semi- Π -property in G/N when $H \subseteq N$ or (|H|, |N|) = 1.

Proof. (1) Since H has Π -property in T, hence by [8, Proposition 2(1)] $H(T \cap N)/(T \cap N)$ has Π -property in $T/T \cap N$. On the other hand, by using the isomorphism

$$\sigma: T/T \cap N \longrightarrow TN/N$$
$$t(T \cap N) \longmapsto tN$$

we may replace $H(T \cap N)/(T \cap N)$ by HN/N. So HN/N has Π -property in TN/N.

(2) It is obvious by choosing T = G

(3) Suppose that H has semi- Π -property in G, then there is a subgroup T of G such that G = HT and $H \cap T$ has Π -property in T. If $N \subseteq H$, then $(H/N) \cap (TN/N) = (H \cap T)N/N$, and $(H \cap T)N/N$ has Π -property in TN/N by (1). Thus H/N has semi- Π -property in G/N. If (|H|, |N|) = 1, then $N \subseteq T$ since N is normal in G. Similarly as above, we have H/N has semi- Π -property in G/N.

Lemma 2.2. Let H be a subgroup of G. Then H has semi- Π -property in G if one of the following holds:

(1) H is complement in G; (2) H has a supersolvable supplement in G.

Proof. (1) Assume that T is a complement of H in G. Then, $H \cap T = 1$ has II-property in T and hence H has semi-II-property in G.

(2) Assume that T is supersolvable and G = HT. Then every subgroup of T has Π -property in T by [8, Proposition 2.11]. In particular, $H \cap T$ has Π -property in T and therefore, H has semi- Π -property in G.

195

Lemma 2.3. ([8, Proposition 2.9]) Let H be a p-subgroup of G for some prime divisor p of |G|, and assume that H has Π -property in G. Then any G-chief factor L/K which does not avoid H is a p-factor and hence is abelian.

Lemma 2.4. ([8, Proposition 2.7]) Let H be a p-group of G and N a minimal normal subgroup of G. Assume that H has Π -property in G. If there is a Sylow p-subgroup G_p of G such that $H \leq G_p$, then $H \cap N = N$ or 1.

Lemma 2.5. Let N be a normal subgroup of order p in G and $a \in G$ is an element of order p. If $H = \langle N, a \rangle$ has Π -property in G then so does $A = \langle a \rangle$.

Proof. Let L/K be an arbitrary chief factor of G. By the definition, we only need to prove that $|G/K : N_{G/K}((A \cap L)K/K)|$ is a *p*-number. If $A \leq K$, then it is clear. Assume that $A \not\leq K$. By [8, Proposition 2.1 (1)], HN/N has II-property in G/N. If $N \leq K$ then $H \subseteq AK$ and so, $(A \cap L)K = (H \cap L)K$. It follows that $|G/K : N_{G/K}((A \cap L)K/K)| = |G/K : N_{G/K}((H \cap L)K/K)|$ is a p-number since H has Π -property in G. If $N \not\leq K$, then the hypotheses still hold for G/K. By induction, if $K \neq 1$, then AK/K has Π -property in G/K. This induces that $|G/K: N_{G/K}((A \cap L)K/K)|$ is a p-number. Assume that K = 1 and hence L is a minimal normal subgroup of G. Since N is also minimal normal in G, we see that L = N or $L \cap N = 1$. If L = N, then $A \cap L = 1$ or A = N and thus $|G: N_G(A \cap L)| = 1$. Assume that $L \cap N = 1$. Since H has order p^2 , $H \cap L = 1$ or cyclic of order p. On the other hand, Since A is cyclic of order $p, A \cap L = 1$ or is cyclic of order p, too. If $A \cap L = 1$, then $|G: N_G(A \cap L)| = 1$. If $A \cap L$ is of order p, we should have $A \cap L = H \cap L$ and hence $|G: N_G(A \cap L)| = |G: N_G(H \cap L)|$ is a *p*-number. This shows that the lemma holds.

Lemma 2.6. ([9, Lemma 2.7]) Let P be a Sylow p-subgroup of G and N a normal subgroup of G with G = NP. Assume that $N_G(P)$ is p-nilpotent and all subgroups of order p in N are complemented in G. Then G is p-nilpotent.

3. Proofs of Theorems A and B

Lemma 3.1. Let P be a normal p-subgroup of G. If every cyclic subgroup of P of order p or 4(if P is a non-abelian 2-group) has semi- Π -property in G then $P \leq SE(G)$.

Proof. Assume that this lemma does not hold. Then there is a G-chief factor in P which is not of prime order. Choose a G-chief factor L/K in P such that |L/K| is not prime but |U/V| is prime for any chief factor U/V of G in P with |U| < |L|.

Let $W = \bigcap_{U \subseteq K} C_G(U/V)$, where U/V is a *G*-chief factor. Then, by [4, A(12.3)], all elements in *W* of *p'*-order act trivially on *K*. Let $C = C_G(K)$ and assume $L \nsubseteq C$. If $L \subseteq KC$, then $(L \cap C)/(K \cap C) \cong L/K$ is chief factor of *G*. By the choice of L/K, $|L/K| = |(L \cap C)/(K \cap C)|$ is prime, a contradiction. If

 $L \nsubseteq KC$, then it is easy to see that $LC/K = L/K \times KC/K$, and thereby all p'-elements in C act trivially on L/K. It follows that all p'-elements in W act trivially on L/K. Hence $W \subseteq C_G(L/K)$. Since $G/W = G/\bigcap_{U \subseteq K} C_G(U/V)$ is an abelian group of exponent dividing p-1 and $W \subseteq C_G(L/K)$, $G/C_G(L/K)$ is an prime order by [15, I,Lemma 1.3], a contradiction.

Now assume $L \subseteq C$. Then $K \subseteq Z(L)$. Let a, b be elements of order p in L. Suppose p > 2 or P is abelian. Then $(ab)^p = a^p b^p [b, a]^{\frac{p(p-1)}{2}} = 1$. Hence the product of elements of order p is of order p or 1 and hence $\Omega = \{a \in L | a^p = 1\}$ is a subgroup of L. If $\Omega \subseteq K$, then all elements of W with p'-order act trivially on all elements of L with order p since they act trivially on K. It follows from [7, IV, Satz 5.12] that all elements in W of order p' act trivially on L. Thus $W \subseteq C_G(L/K)$ and, as above argument, L/K is of prime order, a contradiction. If $\Omega \not\subseteq K$, then $L = \Omega K$. Choose an element a in $\Omega \setminus K$ such that $\langle a \rangle K/K \subseteq L/K \cap Z(G_p/K)$. Let $H = \langle a \rangle$. Then H has semi-IIproperty in G and so there is a subgroup T of G such that G = HT and $H \cap T$ has Π -property in T. If T = G, then $H \cap T = H$ has Π -property in T = G. By Lemma 2.1 (1), HK/K has Π -property in G/K. It follows from Lemma 2.4 that $L/K = HK/K \cap L/K = HK/K$ is cyclic, a contradiction. Assume that T < G. Clearly, T is maximal in G. If $K \not\subseteq T_G$, then KT_G/T_G is nontrivial. By Bare's Theorem (cf. [4, A(15.2)]), G/T_G has a unique minimal normal subgroup R/T_G which is contained in KT_G/T_G and is self centralized. Clearly $R/T_G \leq KT_G/T_G \leq LT_G/T_G$. Since $R/T_G \leq Z(LT_G/T_G)$ by the property of *p*-group, $KT_G = LT_G$. It follows that $\frac{|K|}{|K \cap T_G|} = \frac{|L|}{|L \cap T_G|}$ and hence $|L/K| = |(L \cap T_G)/(K \cap T_G)|$. Since $K \not\subseteq T_G$, $L \not\subseteq T_G$ and so, $|L \cap T_G| < |L|$. By the choice of L/K, $(L \cap T_G)/(K \cap T_G)$ is of order p and so is L/K, a contradiction. Assume that $K \leq T_G \leq T$. Then T/K is maximal in G/K and $G/K = (\langle a \rangle K/K)(T/K) = (L/K)(T/K)$. It follows that T/K is a complement of L/K in G/K and |L/K| = |G/K : T/K| = |G : T| = |x| = p. Thus L/Kis cyclic. It can be proved that L/K is cyclic similarly when p = 2 and P is a non abelian 2-group. This contradiction shows $P \leq SE(G)$ and the lemma holds.

Proof of Theorem A. The "if" part: assume that $O_{p'}(E) \neq 1$. Then $F_p(E/O_{p'}(E)) = F_p(E)/O_{p'}(E)$. By Lemma 2.1, the hypotheses still hold on $E/O_{p'}(E)$. Then, by induction on |E|, $E/O_{p'}(E) \leq SE_p(G/O_{p'}(E))$ and hence every pd-G-chief factor which lies in E is cyclic, that is $E \leq SE_p(G)$.

Assume that $O_{p'}(E) = 1$. Then $F_p(E) = F(E) = O_p(E)$ is a *p*-group. By Lemma 3.1, $F(E) \leq SE(G)$. Let M_i/N_i , $i = 1, \dots, n$, be all *G*-chief factor in F(E) and $C = \bigcap_{i=1}^n C_G(M_i/N_i)$. Then $F(E) \leq C$. We claim that F(E) = C. Otherwise, let R/F(E) be a *G*-chief factor with $R \leq C$. Since *E* is *p*-solvable, R/F(E) is a *p*-factor or *p'*-factor. In particular, R/F(E) is *p*-nilpotent. But $R \leq C$, so *R* is *p*-nilpotent and hence $R \leq F_p(E) = F(E)$, a contradiction. Thus our claim holds and F(E) = C. If $E \not\leq \operatorname{SE}_p(G)$, then there is a *G*-chief factor L/K in *E* such that L/K is noncyclic, but any *G*-chief factor U/V in *E* with |V| < |K| is cyclic. Let M/N be an arbitrary *G*-chief factor lying in F(E) and put $C_1 = C_E(M/N)$. Since M/N is of prime order, E/C_1 is cyclic and hence $L/L \cap C_1 \cong LC_1/C_1 \leq E/C_1$ is cyclic. It follows that $L \cap C_1 \nleq K$ and so $L = (L \cap C_1)K$. Therefore, $L/K = (L \cap C_1)K/K \cong L \cap C_1/K \cap C_1$ is a *G*-chief factor. By the choice of *K*, we have $K \leq C_1$ and so $L = K(L \cap C_1) =$ $L \cap KC_1 = L \cap C_1$. This induces that $L \leq C_1$ and consequently $L \leq C_E(M/N)$ for any *G*-chief factor M/N of F(E). Thus $L \leq C = F(E)$, a contradiction and hence $E \leq \operatorname{SE}_p(G)$.

The "only if" part: we shall prove that every *p*-subgroup of E has Π -property in G and hence the "only if" part holds. To prove this, by [8, Proposition 2.3], we only need to prove that every *p*-subgroup of E is a CAP-subgroup of G.

Let H be a p-subgroup of E and L/K be a G-chief factor. Since E is normal in G, E covers or avoids L/K. If E avoids L/K then so does H since $H \leq E$. Assume that E covers L/K. Then $L \leq KE$ and hence $L = L \cap KE = (L \cap E)K$. It follows that $L/K = (L \cap E)K/K \cong (L \cap E)/(K \cap E) \leq E/(K \cap E)$. Since $E \leq SE_p(G)$, L/K is either of p'-order or of order p. If L/K is of p'-order, then clearly, H avoids L/K. If L/K is of order p. Then $(H \cap L)K/K = L/K$ or 1. If $(H \cap L)K/K = L/K$ then $L = (H \cap L)K = L \cap HK$ and hence H covers L/K. If $(H \cap L)K/K = 1$ then $H \cap L \leq K$ and hence H avoids L/K. This means that H is a CAP-subgroup of G and hence the theorem holds.

Proof of Theorem B. The "only if" part can be proved similarly to Theorem A and we only prove the "if" part.

We claim that $F^*(E)$ is solvable. Let H be a subgroup of $F^*(E)$ with order 2 and let T be a supplement of H in G. If $H \cap T = 1$ then |G:T| = 2 and hence $T \leq G$. It follows that $F^*(E) \cap T \leq G$ and $F^*(E) \cap T < F^*(E) \leq E$. Clearly, the hypotheses still hold for $(G, F^*(E) \cap T)$ and, by induction on |E|, we have that $F^*(E) \cap T \leq SE(G)$. In particular, $T \cap F^*(E)$ is solvable. Since $F^*(E)/F^*(E) \cap T$ is of order 2, $F^*(E)$ is solvable. Assume that $H \cap T = H$ for any supplement T, then H has Π -property in G by the hypotheses. If the Sylow 2-subgroup of $F^*(E)$ is abelian. Then $F^*(E)$ is 2-nilpotent and hence is solvable by [8, Lemma 3.2]. Assume that the Sylow 2-subgroup of $F^*(E)$ is nonabelian. If $F^*(E)$ is a 2'-group, then it is solvable. Assume that $F^*(E)$ is not a 2'-group. Then $O_{2'}(F^*(E)) < F^*(E)$. Let $R/O_{2'}(F^*(E))$ be a *G*-chief factor in $F^*(E)$. Then |R| is even and R has a subgroup H of order 2. By above argument, H has Π -property in G. Clearly, H does not avoid $R/O_{2'}(F^*(E))$. By Lemma 2.3, $R/O_{2'}(F^*(E))$ is a 2-group and so R is solvable. Since $R \leq F^*(E)$ is quasinilpotent, R is nilpotent and hence $O_2(R) \neq 1$. It follows that $O_2(E) \neq 1$ and by Lemma 3.1, $O_2(E) \leq SE(G)$. Thus, every G-chief factor in $O_2(E)$ is cyclic. Therefore, $O_2(E) \leq Z_{\infty}(G)$. Let X/F(E) be a G-chief factor in $F^*(E)$. If X is solvable, then X is nilpotent since $X \leq F^*(E)$, a contradiction.

Thus X and so X/F(E) is not solvable. Since X is not solvable, there is a minimal non-2-nilpotent subgroup M in X. By the structure of a minimal non-p-nilpotent group, $M = A \rtimes B$, where A is a 2-group of exponent 2 or 4(when A is nonabelian 2-group) and B is a p'-group. If all elements of X of order 2 and 4 are in $O_2(E)$, then all such elements are in $O_2(E) \leq Z_{\infty}(G)$. Thus $A \leq Z_{\infty}(G)$. It follows that $A \leq M \cap Z_{\infty}(G) \leq Z_{\infty}(M)$ and so M is nilpotent, a contradiction. Hence there must be some element x of order 2 or 4 such that $x \in X$ and $x \notin O_2(E)$. Furthermore, we can choose that $x^2 \in O_2(E)$. By the hypotheses, $H = \langle x \rangle$ has semi- Π -property in G. Let T be a supplement of H in G. Assume T < G. If $O_2(E) \leq T$, then |G:T| = 2 since $x^2 \in O_2(E) \leq T$ and HT = G. Thus $T \leq G$. By a similar argument as above, $F^*(E)$ is solvable. If $O_2(E) \not\subseteq T$, then there must be a subgroup D of $O_2(E)$ such that DT is a subgroup of G and |G:DT| = 2 since $O_2(E) \leq Z_{\infty}(G)$ and |G:T| = 2 or 4. Then $DT \leq G$ and similarly as above, $F^*(E)$ is solvable. Finally, assume that G is the only supplement of H in G. Then H has Π -property in G. By Lemma 2.3, X/F(E) is abelian, a contradiction. This contradiction shows that $F^*(E)$ is solvable and our claim holds.

Now, let $F^*(E) = F(E)$ be the direct product of primary subgroups. By Lemma 3.1, $F^*(E) \leq SE(G)$. Similar to the proof of Theorem A, $E \leq SE(G)$ and the theorem holds.

4. On *p*-nilpotency of groups

Theorem 4.1. Let G be a group and p a prime with (|G|, p-1) = 1. Assume that E is a normal subgroup of G with p-nilpotent quotient. Let P be a Sylow p-subgroup of E. If every subgroup of P of order p or 4 (if P is a nonabelian 2-group) has semi- Π -property in G, then G is p-nilpotent.

Proof. By a similar argument as in the proof of Theorem B, we can obtain that E is solvable. Then, it follows from Theorem A that $E \leq \operatorname{SE}_p(G)$. Thus every pd-chief factor H/K of G in E is cyclic of order p. Since $G/C_G(H/K)$ is isomorphic to some subgroup of $\operatorname{Aut}(H/K)$, which is cyclic of order p-1, and (|G|, p-1) = 1, we see that $G/C_G(H/K) = 1$ and H/K is central, that is, every G-chief factor in E is either of p'-order or central in G. Since G/E is p-nilpotent, we obtain that G is also p-nilpotent.

It is easy to show that if $(|G|, p^2 - 1) = 1$, then G has no chief factor of order p^2 and so if $p^3 \nmid |G|$ then G is p-nilpotent. A more general result can be found in [1, Lemma 2.12]. Considering groups in which every subgroup of order p^2 has semi- Π -property, we obtain the following theorem.

Theorem 4.2. Let G be a group and p a prime with $(|G|, p^2 - 1) = 1$. Assume that E is a normal subgroup of G with p-nilpotent quotient. Let P be a Sylow

p-subgroup of E. If every subgroup of P of order p^2 has semi- Π -property in G, then G is p-nilpotent.

Proof. Assume that theorem is not true, and G is a counterexample of minimal order. We prove the theorem via the following steps:

(1) $O_{p'}(G) = 1.$

By Lemma 2.1, the hypotheses still hold on $G/O_{p'}(G)$. If $O_{p'}(G) \neq 1$, then we can assume that $G/O_{p'}(G)$ is *p*-nilpotent by the choice of *G*. It follows that *G* is *p*-nilpotent, a contradiction. Hence $O_{p'}(G) = 1$.

(2) Let N be a minimal normal subgroup of G. If $N \leq O_p(G)$, then N is cyclic of order p.

Since $N \leq O_p(G)$, N is a p-group. If $N \not\subseteq E$, then NE/E is a chief factor of G/E. But G/E is p-nilpotent, so $N \cong NE/E$ is cyclic of order p. Assume that $N \subseteq E$. If $|N| > p^2$, then N has a proper subgroup H of order p^2 with $H \trianglelefteq G_p$, a Sylow p-subgroup of G. By the hypotheses, H has semi-II-property in G, and so there is a subgroup T of G such that G = TH and $H \cap T$ has II-property in T. Clearly, G = NT. Thus $N \cap T \trianglelefteq G$ since N is abelian. If $T \neq G$, then $N \cap T \neq N$. It follows that $N \cap T = 1$ since N is minimal normal in G. Hence $|N| = |G:T| \leq |H| = p^2$, a contradiction. If T = G, then $H \cap T = H$ has II-property in T = G. By Lemma 2.4, N = H is of order p^2 , which contradicts to $|N| > p^2$ and thus $|N| \leq p^2$.

If $|N| = p^2$, then Aut(N) is of order $(p^2 - 1)(p^2 - p)$. Since $G/C_G(N)$ is isomorphic to some subgroup of Aut(N), $|G/C_G(N)|$ is a divisor of $(p^2 - 1)(p^2 - p)$. But $(|G|, p^2 - 1) = 1$, so $|G/C_G(N)|$ is a *p*-number. It follows from [5, Lemma 1.7.11] that $|G/C_G(N)| = 1$ and hence $N \subseteq Z(G)$. It follows that all subgroups of N are normal in G. This is not true for $|N| = p^2$ and N is a minimal normal subgroup G. Therefore, $|N| \neq p^2$ and so |N| = p.

(3) p = 2.

If $p \neq 2$, then G is of odd order since $(|G|, p^2 - 1) = 1$. Thus G is solvable and so $O_p(G) \neq 1$ by (1). Then (2) implies that G has a minimal normal subgroup N of order p. By Lemma 2.1(3) and the hypotheses, every subgroup of order p in E/N has semi-II-property in G/N. By Theorem A, $E/N \leq SE_p(G/N)$. Since N is cyclic, $E \leq SE_p(G)$. Similar to the proof of Theorem 4.1, we have that G is p-nilpotent, contrary to the choice of G. Thus p = 2 and (3) holds.

(4) Let $N \leq E$ be a minimal normal subgroup of G, then N is of order 2 and hence is contained in Z(G).

Assume that L is a minimal normal subgroup of N. If N is not a 2-group, then, since $O_{p'}(G) = 1$ by (1), L is a nonabelian simple group. By [11, (10.1.9)] and $(|G|, p^2 - 1) = 1$, the order of a Sylow 2-subgroup of L is greater than 4. Choose H to be a subgroup of L of order 4. We claim that G is the only supplement of H in G. In fact, if H has a proper supplement T in G, then |G:T| = 2 or 4. If |G:T| = 2, then T is normal in G. Since LT = HT = G, $|L: L \cap T| = |G:T| = 2$. This shows that $L \cap T \leq L$, a contradiction. If

|G:T| = 4, then $|L:T \cap L| = 4$. Considering the permutation of L on the right coset of $L \cap T$, we can see that $L/(L \cap T)_G$ is isomorphic to some subgroup of the symmetric group S_4 of degree 4. Since $(|G|, p^2 - 1) = 1$, $L/(L \cap T)_G$ is a 2-group. But L is simple, a contradiction. Thus our claim holds and therefore, H has Π -property in G. Applying Lemma 2.3, N is abelian and hence is a 2-group. By Theorem A, N is cyclic and thus (4) holds.

(5) $\operatorname{Soc}(E) \cap \Phi(G) \neq 1$.

If $\operatorname{Soc}(E) \cap \Phi(G) = 1$ then $\operatorname{Soc}(E)$ is complement in G and hence is complement in E. By (4), $\operatorname{Soc}(E) \leq Z(G)$. If $E = \operatorname{Soc}(E)$, then $E \leq Z(G)$ and hence G is p-nilpotent since G/E is. If Soc(E) < E and let M be a complement of Soc(E) in E, then $M \neq 1$. Moreover, since $Soc(E) \leq Z(G)$, $M \leq E$ and hence $M \cap \text{Soc}(E) \neq 1$, a contradiction. Thus (5) holds.

(6) Every cyclic subgroup of order 2 or 4 in E has semi- Π -property in G.

It follows directly and Step (3) that every subgroup of order 4 has semi- Π property in G. Let $A = \langle a \rangle$ be a subgroup of order 2. By (4) and (5), G has a minimal normal subgroup $N \leq E \cap \Phi(G)$ and $N = \langle b \rangle$ is of order 2. Obviously, $N \leq Z(G)$. If A = N, then it is clear that A has semi- Π -property. Assume $A \neq N$. Then H = AN is of order 4. By hypotheses, H has semi- Π -property in G. Suppose G = HT and $H \cap T$ has Π -property in T. If T = G, then H has Π -property in G. It follows from Lemma 2.5 that A has Π -property in G. If T < G, then |G:T| = 2 or 4 since |H| = 4. If |G:T| = 2, then T is maximal in G and hence $N \leq T$. Thereby, $A \cap T = 1$, otherwise $H = AN \leq T$ and G = HT = T. Also, AT = ANT = G. Thus A has semi- Π -property in G in this case. If |G:T| = 4, then $N \leq T$ and $T_1 = NT$ is maximal in G, and then T_1 is a complement of A in G and A has semi- Π -property in G. Thus (6) holds. (7) The final contradiction.

By (6) and Theorem A, $E \leq SE_p(G)$. It follows from G/E is p-nilpotent that G is *p*-nilpotent. This is the final contradiction and the theorem holds.

Theorem 4.3. Let G be a group and p an odd prime divisor of |G|. Assume that E is a normal subgroup of G with p-nilpotent quotient. Suppose that P is a Sylow p-subgroup of E and $N_G(P)$ is p-nilpotent. If every minimal subgroup of P has semi- Π -property in G, then G is p-nilpotent.

Proof. Assume that the theorem is not true and let G be a counter example of minimal order, we prove the theorem via the following steps.

(1) $O_{p'}(G) = 1.$

If $O_{p'}(G) \neq 1$, then the hypotheses still hold on $G/O_{p'}(G)$. Hence we can assume that $G/O_{p'}(G)$ is p-nilpotent by the choice of G. It follows that G is *p*-nilpotent, a contradiction and then $O_{p'}(G) = 1$.

(2) $O_p(E) \neq 1$ and $O_p(E) = F(E) = F^*(E)$.

Let N be a minimal normal subgroup of G contained in E. Then, by (1), p devides |N|. By the hypotheses, every subgroup of order p in N has semi-IIproperty in G. If all subgroups of order p in N are complemented in G, then

201

by Lemma 2.6, NP is *p*-nilpotent and so is N. Since $O_{p'}(G) = 1$ by (1), N is a *p*-group. Assume there is a subgroup H of order p in N not complemented in G. Then G is the only supplement of H in G. Hence H must have Π -property in G. By Lemma 2.3, N is a *p*-group and so $O_p(E) \neq 1$.

Since $O_{p'}(E) \leq O_{p'}(G) = 1$, it is easy to see that $F(E) = O_p(E)$. If $F(E) \neq 0$ $F^*(E)$, then we can choose a G-chief factor R/F(E) with $R \subseteq F^*(E)$. Let $Q = O^p(R) = \langle a \in R | p \nmid | a | \rangle$ and $O = O_p(E) \cap O^p(R)$. Then $Q/O \cong R/O_p(G)$ is a chief factor of G and is characteristically simple. Choose M/O to be a minimal normal subgroup of Q/O. Then $Q/O \cong M/O \times \cdots \times M/O$. Clearly, M is not solvable, otherwise, $M \subseteq F(E)$. Let x be an element of $F^*(E)$ of order p'. Then x induces an inner automorphism on each chief factor of $F^*(E)$ and so acts trivially on all abelian chief factors. In particular, x acts trivially on all G-chief factors of F(E). By [4, A,12.3], x acts trivially on $O_n(E)$. Thus all p'-elements in $F^*(E)$ act trivially on $O_p(E)$. It follows that Q and so $O^p(M)$ act trivially on $O_p(E)$. Clearly, M is not p-nilpotent, so M has a subgroup X, which is not *p*-nilpotent, but all of its proper subgroups are *p*-nilpotent. Then $X = A \rtimes B$, where A is a p-group and B is a cyclic p'-group. Assume $B = \langle x \rangle$. Then $x \in F^*(E)$ and x acts trivially on $O_p(E)$. If all elements of order p in A are contained in $O_p(E)$, then B acts trivially on A by [7, Satz IV.5.12]. This is contrary to the choice of X. Thus there must be elements of order p in $A \setminus O_p(E)$. Then $\langle x \rangle$ does not avoid Q/O. If $\langle x \rangle$ has Π -property in G, then, by Lemma 2.3, Q/O is a p-factor. This is not true and hence $\langle x \rangle$ does not have Π -property in G. On the other hand, since |x| = p, if $\langle x \rangle$ is not complemented in G, then $\langle x \rangle$ is contained in every supplement of it in G and it follows that $\langle x \rangle$ has Π -property in G since $\langle x \rangle$ has semi- Π -property in G by the hypotheses. Therefore, $\langle x \rangle$ is complemented in G and so is in M. Choose T to be a complement of $\langle x \rangle$ in M. Then |M:T| = p. By considering the action of M on the right coset of T in M, one can find that M/T_M is isomorphic to a subgroup of S_p , the symmetric group of degree p. Hence the Sylow p-subgroups of M/T_M are of order p. If T_M is not contained in $O_p(E)$, then M/T_M is a p-group since $M/M \cap O_p(E)$ is simple. It follows that $x \in O^p(M) \subseteq T$, a contradiction. Thus $T_M \subseteq O_p(E)$ and so the Sylow p-subgroups of $M/M \cap O_p(E) = M/O$ are of order p. Since $x \in M \setminus O_p(E)$ and |x| = p, every non trivial p-group of M/O is a conjugate of $\langle x \rangle O/O$, that is, for every subgroup of H of order p in M/O there is a subgroup H of order p in M such that $\overline{H} = HO/O$. Furthermore, by the choice of M, we see that for every subgroup \overline{H} of order p in Q there is also a subgroup H of order p in Q such that $\overline{H} = HO/O$.

Now, we claim that every subgroup of order p in Q/O is complemented in G/O. Choose $\overline{H} = HO/O$ to be a subgroup of order p in Q/O, where H is a subgroup of order p. Then by above argument, H is complemented in G. Assume that T is a complement of H in G. Then T is maximal in G. Let Q_1 be

a minimal supplement of O in Q. Then, by [5, Lemma 2.3.4], $Q_1 \cap O \subseteq \Phi(Q_1)$. So, Q_1 is generated by all its p'-elements. Since, by the above argument, $O \leq Z_{\infty}(Q)$, we have $O \leq C_Q(Q_1)$. Hence $Q_1 \leq Q$. Thus $Q = O^p(Q) \leq Q_1$ and so $Q = Q_1$. It follows that $O = O \cap Q \subseteq \Phi(Q) \subseteq \Phi(G) \subseteq T$. Hence HO/Ois complemented in G/O and T/O is a complement of it. Our claim holds.

It is easy to see that $N_{G/O}(P/O)$ is *p*-nilpotent. Hence, by Lemma 2.6. QP/O is *p*-nilpotent and so is Q. But this is not true and so (2) holds.

(3) The final contradiction.

By Theorem B and Step (2), we have that $E \leq SE(E)$. In particular, E is supersolvable. Since $O_{p'}(G) = 1$ by (1), P, the Sylow *p*-subgroup of E, is normal in E and hence is normal in G. Thus $G = N_G(P)$ is *p*-nilpotent. The theorem holds.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No. 11471055) and a Scientific Research Foundation of CUIT (Grants No. J201512)

References

- X. Chen and W. Go, On weakly S-embedded and weakly τ-embedded subgroups, Sib. Math. J. 54 (2013), no. 5, 931–945.
- [2] X. Chen and W. Guo, On the partial Π-property of subgroups of finite groups, J. Group Theory 16 (2013), no. 5, 745–766.
- [3] W. E. Deskins, On quasinormal subgroups of finite groups, Math. Z. 82 (1963) 125–132.
- [4] K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, 1992.
- [5] W. Guo, The Theory of Classes of Groups, Kluwer Acad. Publ. Group, Dordrecht, 2000.
- [6] W. Guo and A.N. Skiba, Finite groups with given s-embedded and n-embedded subgroups, J. Algebra 321 (2009), no. 10, 2843–2860.
- [7] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
- [8] B. Li, On Π-property and Π-normality of subgroups of finite groups, J. Algebra 334 (2011), no. 11, 321–337.
- [9] B. Li, Finite groups with Π-supplemented minimal subgroups, Comm. Algebra 41 (2013), no. 6, 2060–2070.
- [10] O. Ore, Contributions to the theory of groups of finite order, Duke Math. J. 5 (1939), no. 2, 431–460.
- [11] D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, 2nd edition, New York, 1996.
- [12] A. Skiba, On weakly s-permutable subgroups of finite groups, J. Algebra 315 (2007), no. 1, 192–209.
- [13] N. Su, Y. Li, and Y. Wang, A criterion of *p*-hypercyclically embedded subgroups of finite groups, J. Algebra 400 (2014) 82–93.
- [14] Y. Wang, c-normality of groups and its properties, J. Algebra 180 (1996), no. 3, 954–965.
- [15] M. Weinstein (ed.), Between Nilpotent and Solvable, Polygonal Publ. House, Washington, NJ, 1982.

(Aming Liu) School of Applied Mathematics, Chengu Information Technology, CHENGDU 610225, P. R. CHINA. E-mail address: aming8809@163.com

(Baojun Li) School of Applied Mathematics, Chengu Information Technology, Chengdu 610225, P. R. China.

 $E\text{-}mail \ address: \texttt{baojunli@cuit.edu.cn}$