Title:

On semi-II-property of subgroups of finite group

Author(s):

A. Liu and B. Li
ON SEMI-II-PROPERTY OF SUBGROUPS OF FINITE GROUP

A. LIU AND B. LI*

(Communicated by Ali Reza Ashrafi)

ABSTRACT. Let G be a group and H a subgroup of G. Then H is said to have semi-II-property in G if there is a subgroup T of G such that $G = HT$ and $H \cap T$ has II-property in T. In this paper, investigating on semi-II-property of subgroups, we shall obtain some new description of finite groups.

Keywords: Finite group, semi-II-property, SE subgroup, p-nilpotent.

1. Introduction

Throughout this paper, all groups are finite. We use standard terminology, as in Huppert [7] or Guo [5]. G always is a group, and $|G|$ is the order of G; $\pi(G)$ denotes the set of all primes dividing $|G|$. Also \mathbb{P} is the set of all primes and π denotes a subset of \mathbb{P}; π' is the complement of π in \mathbb{P}. A group G is said to be a π-group if $\pi(G)$ is a subset of π.

Subgroups play a very important role in group theory and different properties of subgroups have been studied by mathematicians, such as normality, quasinormality [10], S-quasinormality (cf. [3], etc), C-normality [14], weakly s-permutability [12], s-embedded and n-embedded property [6] and cover-avoidance property (cf. [4, A(10.8)]). A property of subgroups was proposed as the following in [8], to uniform some recent results.

Definition 1.1. Let H be a subgroup of G. H is said to have II-property in G if for any G-chief factor L/K, $|G/K : N_{G/K}(HK/K \cap L/K)|$ is a π $(HK/K \cap L/K)$-number.

Li proved in [8] that there are many examples of embedding properties of subgroups implying the possession of the II-property. After the work in [8],...
some new research has been done by many mathematicians (cf. [2, 13], etc). Let \(H \) and \(T \) be two subgroups of \(G \). Recall that \(T \) is called a supplement of \(H \) in \(G \) if \(G=HT \), and if furthermore \(H \cap T=1 \), then \(T \) is said to be a complement of \(H \) in \(G \). To develop the work of \(\Pi \)-property of subgroups, we introduce the following new concept in this paper.

Definition 1.2. Let \(H \) be a subgroup of \(G \). Then \(H \) is said to have \(\Pi \)-property in \(G \), if there is a subgroup \(T \) of \(G \) such that \(G = HT \) and \(H \cap T \) has \(\Pi \)-property in \(T \).

Remark 1.3. (1) If \(H \) is a complement, then \(H \) has \(\Pi \)-property in \(G \) (cf. Lemma 2.2 in Section 2).
(2) It is clear that if \(H \) has \(\Pi \)-property in \(G \) then \(H \) has \(\Pi \)-property, but the reverse is not true. For example, the Sylow 5-subgroups of \(A_5 \) are complement in \(A_5 \) and hence have \(\Pi \)-property in \(A_5 \), but there is no non-trivial subgroup of \(A_5 \) with \(\Pi \)-property.
(3) If \(H \) has a supersolvable supplement in \(G \), then \(H \) has \(\Pi \)-property in \(G \) (cf. Lemma 2.2 in Section 2).
(4) In [8], if \(HT = G \) and \(H \cap T \leq I \leq H \), where \(I \) is a subgroup having \(\Pi \)-property in \(G \), then \(H \) is called \(\Pi \)-supplemented in \(G \). The following example shows that a subgroup \(H \) satisfying \(\Pi \)-property in \(G \) can not be \(\Pi \)-supplemented in \(G \).

Example 1.4. Let \(X = \langle x \rangle \times \langle y \rangle \), where \(|x| = |y| = 25 \). The maps \(\alpha : x \mapsto x^7 \), \(y \mapsto y^{-7} \) and \(\beta : x \mapsto y^{-1} \), \(y \mapsto x \) are automorphisms of \(X \) and generate a subgroup \(A \leq \text{Aut}(X) \) of order 8 (\(A \) is isomorphic with the quaternion group). Let \(G = [X]A \). Then the subgroup \(H = \langle x^5, \alpha \rangle \) has a supplement \(T = \langle X, \beta \rangle \) in \(G \). Since \(T \) is supersolvable, \(H \) has \(\Pi \)-property in \(G \). On the other hand, since \(x^5 \) belongs to \(\Phi(X) \) and \(X \) is the normal Sylow 5-subgroup of \(G \) and \(x^5 \in T \) for any supplement \(T \) of \(H \) in \(G \). That is \(\langle x^5 \rangle \leq H \cap T \leq H \). But neither \(\langle x^5 \rangle \) nor \(H \) has the \(\Pi \)-property in \(G \), so \(H \) is not a \(\Pi \)-supplement in \(G \).

Recall that a normal subgroup \(H \) of \(G \) is said to be \(SE \) in \(G \) if every chief factor of \(G \) lying in \(H \) is cyclic, and, there is a unique maximal \(SE \) subgroup of \(G \), which is denoted by \(SE(G) \). It is (cf. [15, 1.7]). Similarly, we call that a normal subgroup \(H \) of \(G \) is \(SE_p \) in \(G \) if every \(pd \)-chief factor of \(G \) which lies in \(H \) is cyclic. The unique maximal \(SE_p \) subgroup of \(G \) is denoted by \(SE_p(G) \). If \(G \neq 1 \) is \(p \)-solvable, then \(G \) has a nontrivial \(p \)-nilpotent normal subgroup. The product of all \(p \)-nilpotent normal subgroup of \(G \) is denoted by \(F_p(G) \). A group \(G \) is said quasinilpotent if all of its elements induce an inner automorphism on each chief factor of \(G \). In a group \(G \), the product of all quasinilpotent normal subgroups is called the generalized Fitting subgroup of \(G \) is denoted by \(F^*(G) \).

Based on the concept of semi-\(\Pi \)-property, we shall mainly prove the following theorems.
Theorem A. Let E be a p-solvable normal subgroup of G and P a Sylow p-subgroup of $F_p(E)$. Then $E \subseteq SE_p(G)$ if and only if every cyclic subgroup of P of order p or 4 (if P is a non-abelian 2-group) has semi-Π-property in G.

Theorem 1.5 (Theorem B). Let E be a normal subgroup of G. Then $E \subseteq SE(G)$ if and only if every cyclic subgroup of $F^*(E)$ of prime order or of order 4 (if the Sylow 2-subgroup is non-abelian) has semi-Π-property in G.

2. Preliminaries

Lemma 2.1. Let H be a subgroup of G and N a normal subgroup of G.
(1) If $H \leq T \leq G$ and H has Π-property in T, then HN/N has Π-property in TN/N.
(2) If H has Π-property in G, then H has semi-Π-property in G.
(3) If H has semi-Π-property in G, then HN/N has semi-Π-property in G/N when $H \subseteq N$ or $(|H|, |N|) = 1$.

Proof. (1) Since H has Π-property in T, hence by [8, Proposition 2(1)] $H(T \cap N)/(T \cap N)$ has Π-property in $T/T \cap N$. On the other hand, by using the isomorphism

$$\sigma : T/T \cap N \rightarrow TN/N$$

$$t(T \cap N) \mapsto tN$$

we may replace $H(T \cap N)/(T \cap N)$ by HN/N. So HN/N has Π-property in TN/N.

(2) It is obvious by choosing $T = G$.

(3) Suppose that H has semi-Π-property in G, then there is a subgroup T of G such that $G = HT$ and $H \cap T$ has Π-property in T. If $N \subseteq H$, then $(H/N) \cap (TN/N) = (H \cap T)N/N$, and $(H \cap T)N/N$ has Π-property in TN/N by (1). Thus H/N has semi-Π-property in G/N. If $(|H|, |N|) = 1$, then $N \subseteq T$ since N is normal in G. Similarly as above, we have H/N has semi-Π-property in G/N.

□

Lemma 2.2. Let H be a subgroup of G. Then H has semi-Π-property in G if one of the following holds:
(1) H is complement in G; (2) H has a supersolvable supplement in G.

Proof. (1) Assume that T is a complement of H in G. Then, $H \cap T = 1$ has Π-property in T and hence H has semi-Π-property in G.

(2) Assume that T is supersolvable and $G = HT$. Then every subgroup of T has Π-property in T by [8, Proposition 2.11]. In particular, $H \cap T$ has Π-property in T and therefore, H has semi-Π-property in G. □
Lemma 2.3. ([8, Proposition 2.9]) Let H be a p-subgroup of G for some prime divisor p of $|G|$, and assume that H has II-property in G. Then any G-chief factor L/K which does not avoid H is a p-factor and hence is abelian.

Lemma 2.4. ([8, Proposition 2.7]) Let H be a p-group of G and N a minimal normal subgroup of G. Assume that H has II-property in G. If there is a Sylow p-subgroup G_p of G such that $H \leq G_p$, then $H \cap N = N$ or 1.

Lemma 2.5. Let N be a normal subgroup of order p in G and $a \in G$ is an element of order p. If $H = \langle N, a \rangle$ has II-property in G then so does $A = \langle a \rangle$.

Proof. Let L/K be an arbitrary chief factor of G. By the definition, we only need to prove that $|G/K : N_{G/K}((A \cap L)K/K)|$ is a p-number. If $A \leq K$, then it is clear. Assume that $A \not\leq K$. By [8, Proposition 2.1 (1)], HN/N has II-property in G/N. If $N \leq K$ then $H \leq AK$ and so, $(A \cap L)K = (H \cap L)K$. It follows that $|G/K : N_{G/K}((A \cap L)K/K)| = |G/K : N_{G/K}((H \cap L)K/K)|$ is a p-number since H has II-property in G. If $N \not\leq K$, then the hypotheses still hold for G/K. By induction, if $K \neq 1$, then AK/K has II-property in G/K. This induces that $|G/K : N_{G/K}((A \cap L)K/K)|$ is a p-number. Assume that $K = 1$ and hence L is a minimal normal subgroup of G. Since N is also minimal normal in G, we see that $L = N$ or $L \cap N = 1$. If $L = N$, then $A \cap L = 1$ or $A = N$ and thus $|G : N_G(A \cap L)| = 1$. Assume that $L \cap N = 1$. Since H has order p^2, $H \cap L = 1$ or cyclic of order p. On the other hand, since A is cyclic of order p, $A \cap L = 1$ or is cyclic of order p, too. If $A \cap L = 1$, then $|G : N_G(A \cap L)| = 1$. If $A \cap L$ is of order p, we should have $A \cap L = H \cap L$ and hence $|G : N_G(A \cap L)| = |G : N_G(H \cap L)|$ is a p-number. This shows that the lemma holds.

Lemma 2.6. ([9, Lemma 2.7]) Let P be a Sylow p-subgroup of G and N a normal subgroup of G with $G = NP$. Assume that $N_G(P)$ is p-nilpotent and all subgroups of order p in N are complemented in G. Then G is p-nilpotent.

3. Proofs of Theorems A and B

Lemma 3.1. Let P be a normal p-subgroup of G. If every cyclic subgroup of P of order p or 4 (if P is a non-abelian 2-group) has semi-II-property in G then $P \leq S(E(G))$.

Proof. Assume that this lemma does not hold. Then there is a G-chief factor in P which is not of prime order. Choose a G-chief factor L/K in P such that $|L/K|$ is not prime but $|U/V|$ is prime for any chief factor U/V of G in P with $|U| < |L|$.

Let $W = \bigcap_{U \leq K} C_G(U/V)$, where U/V is a G-chief factor. Then, by [4, A(12.3)], all elements in W of p'-order act trivially on K. Let $C = C_G(K)$ and assume $L \not\leq C$. If $L \subseteq KC$, then $(L \cap C)/(K \cap C) \cong L/K$ is chief factor of G. By the choice of L/K, $|L/K| = |(L \cap C)/(K \cap C)|$ is prime, a contradiction. If
$L \nsubseteq KC$, then it is easy to see that $LC/K = L/K \times KC/K$, and thereby all p'-elements in C act trivially on L/K. It follows that all p'-elements in W act trivially on L/K. Hence $W \subseteq C_G(L/K)$. Since $G/W = G/\bigcap_{U \subseteq K} C_G(U/V)$ is an abelian group of exponent dividing $p - 1$ and $W \subseteq C_G(L/K)$, $G/C_G(L/K)$ is an prime order by [15, I, Lemma 1.3], a contradiction.

Now assume $L \subseteq C$. Then $K \subseteq Z(L)$. Let a, b be elements of order p in L. Suppose $p > 2$ or P is abelian. Then $(ab)^p = a^p b^p [b, a]^{a^p b^{-1}} = 1$. Hence the product of elements of order p is of order p or 1 and hence $\Omega = \{a \in L | a^p = 1\}$ is a subgroup of L. If $\Omega \nsubseteq K$, then all elements of W with p'-order act trivially on all elements of L with order p since they act trivially on K. It follows from [7, IV, Satz 5.12] that all elements in W of order p' act trivially on L. Thus $W \subseteq C_G(L/K)$ and, as above argument, L/K is of prime order, a contradiction. If $\Omega \subseteq K$, then $L = \Omega K$. Choose an element a in $\Omega \setminus K$ such that $\langle a \rangle K/K \subseteq L/K \cap Z(G_p/K)$. Let $H = \langle a \rangle$. Then H has semi-II-property in G and so there is a subgroup T of G such that $G = HT$ and $H \cap T$ has II-property in T. If $T = G$, then $H \cap T = H$ has II-property in $T = G$. By Lemma 2.1 (1), HK/K has II-property in G/K. It follows from Lemma 2.4 that $L/K = HK/K \cap L/K = HK/K$ is cyclic, a contradiction.

Assume that $T < G$. Clearly, T is maximal in G. If $K \nsubseteq T$, then KT_G/T_G is nontrivial. By Bare’s Theorem (cf. [1, A(15.2)]), G/T_G has a unique minimal normal subgroup R/T_G which is contained in KT_G/T_G and is self-centralized. Clearly $R/T_G \leq KT_G/T_G \leq LT_G/T_G$. Since $R/T_G \leq Z(LT_G/T_G)$ by the property of p-group, $KT_G = LT_G$. It follows that $\frac{|K|}{|R|} = \frac{|L|}{|U|}$ and hence $|L/K| = (|L \cap T_G|/(K \cap T_G))$. Since $K \nsubseteq T_G$, $L \nsubseteq T_G$ and so, $|L \cap T_G| < |L|$. By the choice of L/K, $(L \cap T_G)/(K \cap T_G)$ is of order p and so is L/K, a contradiction. Assume that $K \subseteq T_G \leq T$. Then T/K is maximal in G/K and $G/K = ((a)K/K)(T/K) = (L/K)(T/K)$. It follows that T/K is isomorphic to L/K in G/K and $|L/K| = |G/K : T/K| = |G : T| = |x| = p$. Thus L/K is cyclic. It can be proved that L/K is cyclic similarly when $p = 2$ and P is a non abelian 2-group. This contradiction shows $P \leq SE(G)$ and the lemma holds.

Proof of Theorem A. The “if” part: assume that $O_{p'}(E) \neq 1$. Then $F_p(E/O_{p'}(E)) = F_p(E)/O_{p'}(E)$. By Lemma 2.1, the hypotheses still hold on $E/O_{p'}(E)$. Then, by induction on $|E|$, $E/O_{p'}(E) \leq SE_p(G/O_{p'}(E))$ and hence every pd-G-chief factor which lies in E is cyclic, that is $E \leq SE_p(G)$.

Assume that $O_{p'}(E) = 1$. Then $F_p(E) = F(E) = O_p(E)$ is a p-group. By Lemma 3.1, $F(E) \leq SE(G)$. Let M_i/N_i, $i = 1, \ldots, n$, be all G-chief factor in $F(E)$ and $C = \bigcap_{i=1}^n C_G(M_i/N_i)$. Then $F(E) \leq C$. We claim that $F(E) = C$. Otherwise, let $R/F(E)$ be a G-chief factor with $R \leq C$. Since E is p-solvable, $R/F(E)$ is a p-factor or p'-factor. In particular, $R/F(E)$ is p-nilpotent. But $R \leq C$, so R is p-nilpotent and hence $R \leq F_p(E) = F(E)$, a contradiction.
Thus our claim holds and $F(E) = C$. If $E \not\leq \text{SE}_p(G)$, then there is a G-chief factor L/K in E such that L/K is noncyclic, but any G-chief factor U/V in E with $|V| < |K|$ is cyclic. Let M/N be an arbitrary G-chief factor lying in $F(E)$ and put $C_1 = C_E(M/N)$. Since M/N is of prime order, E/C_1 is cyclic and hence $L/L \cap C_1 \cong LC_1/C_1 \leq E/C_1$ is cyclic. It follows that $L \cap C_1 \not\leq K$ and so $L = (L \cap C_1)K$. Therefore, $L/K = (L \cap C_1)K/K \cong L \cap C_1/K \cap C_1$ is a G-chief factor. By the choice of K, we have $K \leq C_1$ and so $L = K(L \cap C_1) = L \cap KC_1 = L \cap C_1$. This induces that $L \leq C_1$ and consequently $L \leq C_E(M/N)$ for any G-chief factor M/N of $F(E)$. Thus $L \leq C = F(E)$, a contradiction and hence $E \leq \text{SE}_p(G)$.

The “only if” part: we shall prove that every p-subgroup of E has II-property in G and hence the “only if” part holds. To prove this, by [8, Proposition 2.3], we only need to prove that every p-subgroup of E is a CAP-subgroup of G.

Let H be a p-subgroup of E and L/K be a G-chief factor. Since E is normal in G, E covers or avoids L/K. If E avoids L/K then so does H since $H \leq E$. Assume that E covers L/K. Then $L \leq KE$ and hence $L = L \cap KE = (L \cap E)K$. It follows that $L/K = (L \cap E)K/K \cong (L \cap E)/(K \cap E) \leq E/(K \cap E)$. Since $E \leq \text{SE}_p(G)$, L/K is either of p-order or of order p. If L/K is of p-order, then clearly, H avoids L/K. If L/K is of order p, then $(H \cap L)K/K = L/K$ or 1. If $(H \cap L)K/K = L/K$ then $L = (H \cap L)K = L \cap HK$ and hence H covers L/K. If $(H \cap L)K/K = 1$ then $H \cap L \leq K$ and hence H avoids L/K. This means that H is a CAP-subgroup of G and hence the theorem holds.

\textbf{Proof of Theorem B}. The “only if” part can be proved similarly to Theorem A and we only prove the “if” part.

We claim that $F^*(E)$ is solvable. Let H be a subgroup of $F^*(E)$ with order 2 and let T be a supplement of H in G. If $H \cap T = 1$ then $|G : T| = 2$ and hence $T \leq G$. It follows that $F^*(E) \cap T \leq G$ and $F^*(E) \cap T < F^*(E) \leq E$. Clearly, the hypotheses still hold for $(G, F^*(E) \cap T)$ and, by induction on $|E|$, we have that $F^*(E) \cap T \leq \text{SE}(G)$. In particular, $T \cap F^*(E)$ is solvable. Since $F^*(E)/F^*(E) \cap T$ is of order 2, $F^*(E)$ is solvable. Assume that $H \cap T = H$ for any supplement T, then H has II-property in G by the hypotheses. If the Sylow 2-subgroup of $F^*(E)$ is abelian. Then $F^*(E)$ is 2-nilpotent and hence is solvable by [8, Lemma 3.2]. Assume that the Sylow 2-subgroup of $F^*(E)$ is nonabelian. If $F^*(E)$ is a 2-group, then it is solvable. Assume that $F^*(E)$ is not a 2-group. Then $O_2(F^*(E)) < F^*(E)$. Let $R/O_2(F^*(E))$ be a G-chief factor in $F^*(E)$. Then $|R|$ is even and R has a subgroup H of order 2. By above argument, H has II-property in G. Clearly, H does not avoid $R/O_2(F^*(E))$. By Lemma 2.3, $R/O_2(F^*(E))$ is a 2-group and so R is solvable. Since $R \leq F^*(E)$ is quasinilpotent, R is nilpotent and hence $O_2(R) \neq 1$. It follows that $O_2(E) \neq 1$ and by Lemma 3.1, $O_2(E) \leq \text{SE}(G)$. Thus, every G-chief factor in $O_2(E)$ is cyclic. Therefore, $O_2(E) \leq Z(G)$. Let $X/F(E)$ be a G-chief factor in $F^*(E)$. If X is solvable, then X is nilpotent since $X \leq F^*(E)$, a contradiction.
Thus X and so $X/F(E)$ is not solvable. Since X is not solvable, there is a minimal non-2-nilpotent subgroup M in X. By the structure of a minimal non-p-nilpotent group, $M = A \times B$, where A is a 2-group of exponent 2 or 4 (when A is nonabelian 2-group) and B is a p'-group. If all elements of X of order 2 and 4 are in $O_2(E)$, then all such elements are in $O_2(E) \leq Z_{\infty}(G)$. Thus $A \leq Z_{\infty}(G)$. It follows that $A \leq M \cap Z_{\infty}(G) \leq Z_{\infty}(M)$ and so M is nilpotent, a contradiction. Hence there must be some element x of order 2 or 4 such that $x \in X$ and $x \notin O_2(E)$. Furthermore, we can choose that $x^2 \in O_2(E)$. By the hypotheses, $H = \langle x \rangle$ has semi-II-property in G. Let T be a supplement of H in G. Assume $T < G$. If $O_2(E) \leq T$, then $|G : T| = 2$ since $x^2 \in O_2(E) \leq T$ and $HT = G$. Thus $T \leq G$. By a similar argument as above, $F^*(E)$ is solvable. If $O_2(E) \nsubseteq T$, then there must be a subgroup D of $O_2(E)$ such that DT is a subgroup of G and $|G : DT| = 2$ since $O_2(E) \leq Z_{\infty}(G)$ and $|G : T| = 2$ or 4. Then $DT \leq G$ and similarly as above, $F^*(E)$ is solvable. Finally, assume that G is the only supplement of H in G. Then H has II-property in G. By Lemma 2.3, $X/F(E)$ is abelian, a contradiction. This contradiction shows that $F^*(E)$ is solvable and our claim holds.

Now, let $F^*(E) = F(E)$ be the direct product of primary subgroups. By Lemma 3.1, $F^*(E) \leq SE(G)$. Similar to the proof of Theorem A, $E \leq SE(G)$ and the theorem holds.

\section{4. On p-nilpotency of groups}

\textbf{Theorem 4.1.} Let G be a group and p a prime with $([G], p-1) = 1$. Assume that E is a normal subgroup of G with p-nilpotent quotient. Let P be a Sylow p-subgroup of E. If every subgroup of P of order p or 4 (if P is a nonabelian 2-group) has semi-II-property in G, then G is p-nilpotent.

\textit{Proof.} By a similar argument as in the proof of Theorem B, we can obtain that E is solvable. Then, it follows from Theorem A that $E \leq SE_p(G)$. Thus every pd-chief factor H/K of G in E is cyclic of order p. Since $G/C_G(H/K)$ is isomorphic to some subgroup of $\text{Aut}(H/K)$, which is cyclic of order $p-1$, and $([G], p-1) = 1$, we see that $G/C_G(H/K) = 1$ and H/K is central, that is, every G-chief factor in E is either of p'-order or central in G. Since G/E is p-nilpotent, we obtain that G is also p-nilpotent. \hfill \square

It is easy to show that if $([G], p^2-1) = 1$, then G has no chief factor of order p^2 and so if $p^3 \mid |G|$ then G is p-nilpotent. A more general result can be found in [1, Lemma 2.12]. Considering groups in which every subgroup of order p^2 has semi-II-property, we obtain the following theorem.

\textbf{Theorem 4.2.} Let G be a group and p a prime with $([G], p^2-1) = 1$. Assume that E is a normal subgroup of G with p-nilpotent quotient. Let P be a Sylow
p-subgroup of E. If every subgroup of P of order p^2 has semi-Π-property in G, then G is p-nilpotent.

Proof. Assume that the theorem is not true, and G is a counterexample of minimal order. We prove the theorem via the following steps:

1. $O_p'(G) = 1$.

By Lemma 2.1, the hypotheses still hold on $G/O_p'(G)$. If $O_p'(G) \neq 1$, then we can assume that $G/O_p'(G)$ is p-nilpotent by the choice of G. It follows that G is p-nilpotent, a contradiction. Hence $O_p'(G) = 1$.

2. Let N be a minimal normal subgroup of G. If $N \leq O_p(G)$, then N is cyclic of order p. Since $N \not\leq E$, then NE/E is a chief factor of G/E. But G/E is p-nilpotent, so $N \cong NE/E$ is cyclic of order p. Assume that $N \subseteq E$. If $|N| > p^2$, then N has a proper subgroup H of order p^2 with $H \lneq G_p$, a Sylow p-subgroup of G. By the hypotheses, H has semi-Π-property in G, and so there is a subgroup T of G such that $G = TH$ and $H \cap T$ has Π-property in T. Clearly, $G = NT$. Thus $N \cap T \leq G$ since N is abelian. If $T \neq G$, then $N \cap T \neq N$. It follows that $N \cap T = 1$ since N is minimal normal in G. Hence $|N| = |G : T| \leq |H| = p^2$, a contradiction. If $T = G$, then $H \cap T = H$ has Π-property in $T = G$. By Lemma 2.4, $N = H$ is of order p^2, which contradicts to $|N| > p^2$ and thus $|N| \leq p^2$.

If $|N| = p^2$, then $\Aut(N)$ is of order $(p^2 - 1)(p^2 - p)$. Since $G/C_G(N)$ is isomorphic to some subgroup of $\Aut(N)$, $|G/C_G(N)|$ is a divisor of $(p^2 - 1)(p^2 - p)$. But $(|G|, p^2 - 1) = 1$, so $|G/C_G(N)|$ is a p-number. It follows from [5, Lemma 1.7.11] that $|G/C_G(N)| = 1$ and hence $N \subseteq Z(G)$. It follows that all subgroups of N are normal in G. This is not true for $|N| = p^2$ and N is a minimal normal subgroup G. Therefore, $|N| \neq p^2$ and so $|N| = p$.

3. $p = 2$.

If $p \neq 2$, then G is of odd order since $(|G|, p^2 - 1) = 1$. Thus G is solvable and so $O_p(G) \neq 1$ by (1). Then (2) implies that G has a minimal normal subgroup N of order p. By Lemma 2.1(3) and the hypotheses, every subgroup of order p in E/N has semi-Π-property in G/N. By Theorem A, $E/N \leq \SE_p(G/N)$. Since N is cyclic, $E \leq \SE_p(G)$. Similar to the proof of Theorem 4.1, we have that G is p-nilpotent, contrary to the choice of G. Thus $p = 2$ and (3) holds.

4. Let $N \leq E$ be a minimal normal subgroup of G, then N is of order 2 and hence is contained in $Z(G)$.

Assume that L is a minimal normal subgroup of N. If N is not a 2-group, then, since $O_p'(G) = 1$ by (1), L is a nonabelian simple group. By [11, (10.1.9)] and $(|G|, p^2 - 1) = 1$, the order of a Sylow 2-subgroup of L is greater than 4. Choose H to be a subgroup of L of order 4. We claim that G is the only supplement of H in G. In fact, if H has a proper supplement T in G, then $|G : T| = 2$ or 4. If $|G : T| = 2$, then T is normal in G. Since $LT = HT = G$, $|L : L \cap T| = |G : T| = 2$. This shows that $L \cap T \leq L$, a contradiction. If
If the theorem is not true and let j, t be a counter example of minimal order, we prove the theorem via the following steps.

(1) $O_p'(G) = 1$.

If $O_p'(G) \neq 1$, then the hypotheses still hold on $G/O_p'(G)$. Hence we can assume that $G/O_p'(G)$ is p-nilpotent by the choice of G. It follows that G is p-nilpotent, a contradiction and then $O_p'(G) = 1$.

(2) $O_p(E) \neq 1$ and $O_p(E) = F(E) = F^*(E)$.

Let N be a minimal normal subgroup of G contained in E. Then, by (1), p divides $|N|$. By the hypotheses, every subgroup of order p in N has semi-II-property in G. If all subgroups of order p in N are complemented in G,
by Lemma 2.6, NP is p-nilpotent and so is N. Since $O_p'(G) = 1$ by (1), N is a p-group. Assume there is a subgroup H of order p in N not complemented in G. Then G is the only supplement of H in G. Hence H must have II-property in G. By Lemma 2.3, N is a p-group and so $O_p(E) \neq 1$.

Since $O_p'(E) \leq O_p'(G) = 1$, it is easy to see that $F(E) = O_p(E)$. If $F(E) \neq F^*(E)$, then we can choose a G-chief factor $R/F(E)$ with $R \subseteq F^*(E)$. Let $Q = O^p(R) = \langle a \in R \mid p \mid [a] \rangle$ and $O = O_p(E) \cap O^p(R)$. Then $Q/O \cong R/O_p(G)$ is a chief factor of G and is characteristically simple. Choose M/O to be a minimal normal subgroup of Q/O. Then $Q/O \cong M/O \times \cdots \times M/O$. Clearly, M is not solvable, otherwise, $M \subseteq F(E)$. Let x be an element of $F^*(E)$ of order p'. Then x induces an inner automorphism on each chief factor of $F^*(E)$ and so acts trivially on all abelian chief factors. In particular, x acts trivially on all G-chief factors of $F(E)$. By [4, A.12.3], x acts trivially on $O_p(E)$. Thus all p'-elements in $F^*(E)$ act trivially on $O_p(E)$. It follows that Q and so $O^p(M)$ act trivially on $O_p(E)$. If all elements of order p in A are contained in $O_p(E)$, then B acts trivially on $O_p(E)$.

Now, we claim that every subgroup of order p in Q/O is complemented in G/O. Choose $\overline{H} = HO/O$ to be a subgroup of order p in Q/O, where H is a subgroup of order p. Then by above argument, H is complemented in G. Assume that T is a complement of H in G. Then T is maximal in G. Let Q_1 be
a minimal supplement of O in Q. Then, by [5, Lemma 2.3.4], $Q_1 \cap O \subseteq \Phi(Q_1)$. So, Q_1 is generated by all its p'-elements. Since, by the above argument, $O \leq Z_\infty(Q)$, we have $O \leq C_Q(Q_1)$. Hence $Q_1 \unlhd Q$. Thus $Q = O^p(Q) \leq Q_1$ and so $Q = Q_1$. It follows that $O = O \cap Q \subseteq \Phi(Q) \subseteq \Phi(G) \leq T$. Hence HO/O is complemented in G/O and T/O is a complement of it. Our claim holds.

It is easy to see that $N_{G/O}(P/O)$ is p-nilpotent. Hence, by Lemma 2.6, QP/O is p-nilpotent and so is Q. But this is not true and so (2) holds.

(3) The final contradiction.

By Theorem B and Step (2), we have that $E \leq S(E)$. In particular, E is supersolvable. Since $O_{p'}(G) = 1$ by (1), P, the Sylow p-subgroup of E, is normal in E and hence is normal in G. Thus $G = N_G(P)$ is p-nilpotent. The theorem holds. \qed

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No. 11471055) and a Scientific Research Foundation of CUIT (Grants No. J201512)

References

(Aming Liu) School of Applied Mathematics, Chengdu Information Technology, Chengdu 610225, P. R. China.
E-mail address: aming8809@163.com

(Baojun Li) School of Applied Mathematics, Chengdu Information Technology, Chengdu 610225, P. R. China.
E-mail address: baojunli@cuit.edu.cn