
...

Bulletin of the

.

Iranian Mathematical Society

.

ISSN: 1017-060X (Print)

.

ISSN: 1735-8515 (Online)

.

Vol. 43 (2017), No. 1, pp. 205–215

.

Title:

.

Infinitely many solutions for a class of p-biharmonic equation in RN

.

Author(s):

.

Q. Chen and C. Chen

.

Published by Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 43 (2017), No. 1, pp. 205–215
Online ISSN: 1735-8515

INFINITELY MANY SOLUTIONS FOR A CLASS OF

p-BIHARMONIC EQUATION IN RN

Q. CHEN∗ AND C. CHEN

(Communicated by Asadollah Aghajani)

Abstract. Using variational arguments, we prove the existence of in-
finitely many solutions to a class of p-biharmonic equation in RN . The
existence of nontrivial solution is established under a new set of hypothe-
ses on the potential V (x) and the weight functions h1(x), h2(x).
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1. Introduction and main result

In this paper, we are interested in the existence of multiple solutions for the
p-biharmonic equation{

∆(|∆u|p−2∆u) + V (x)|u|p−2u = f(x, u), x ∈ RN ,

u ∈ E = D2,p(RN ) ∩ Lp(RN , V ),
(1.1)

where f(x, u) = h1(x)|u|m−2u+ h2(x)|u|q−2u, 2p < N, 1 < p < q < m < p∗ =
pN

N−2p and V (x) > 0 is a potential function.

When Ω is a bounded domain of RN , the problem{
∆2u = h(x, u), x ∈ Ω

u = ∆u = 0, x ∈ ∂Ω
(1.2)

has been studied extensively in recent years. Problem (1.2) arises in the study
of traveling waves in suspension bridges and the study of the static deflection of
an elastic plate in a fluid, see [10,16,27]. Since then, more nonlinear biharmonic
equations and p-biharmonic equations have been studied, and the existence of
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solutions for nonlinear fourth order differential equations have been paid a great
deal of interest, see [3, 12, 13,17]. In those papers, the equation

∆(|∆u|p−2∆u) = h(x, u), x ∈ Ω(1.3)

with suitable boundary condition is studied. For p = 2 and Ω = RN , fourth-
order elliptic problem (1.3) also attracts a lot of attention, see [5,8,19,26,28,29].

However, to the author’s knowledge, it seems that very few results are de-
voted to the elliptic equations of p-biharmonic type in unbounded domain RN .

The main purpose of this paper is to investigate the existence of multiple
solutions of problem (1.1). Different from some known works, the equation that
we considered is quasilinear, which might have degeneracy or singularity. In
fact, if p > 2, the equation is degenerate at the points where ∆u = 0; while if
1 < p < 2, then the equation has singularity at the points where ∆u = 0. Since
the nonlinear term f(x, u), in general, is not radially symmetric with respect
to x, it is inappropriate to seek for the radial solutions. Here, we use the
variational methods to study the existence of nontrivial solutions for problem
(1.1). In particular, we are interested in the existence of solutions depending
on the potential function V (x) and the weight functions h1(x), h2(x) in (1.1).

Many authors have also considered the existence and multiplicity of solutions
for the equation
(1.4)
− div(|∇u|p−2∇u) + V (x)|u|p−2u = λh1(x)|u|q−2u+ h2(x)|u|m−2u, x ∈ RN

and we observe that interesting conditions on V (x) have been studied. For
examples, the paper due to Berestycki and Lions [4] with the potential V (x) =
b > 0 in RN was considered, also see [9, 14, 27]. In Jeanjean and Tanaka [15],
Liu [18], the potential V (x) has been assumed asymptotic to a positive constant,
that is, there is α > 0 such that

0 < V (x) ≤ α ∀x ∈ RN and lim
|x|→∞

V (x) = α.(1.5)

In Miyagaki [23], Mihăilescu and Rădulescu [22], the authors have focused
attention on the case in that V (x) is coercive, that is, V (x) → ∞ as |x| → ∞.
In Barstch and Wang [2], a more weak condition than coercivity on V (x) has
been assumed, more precisely, it was supposed that for all M > 0,

meas({x ∈ RN : V (x) ≤ M}) < ∞.(1.6)

This assumption guarantees that the embedding W 1,2(RN ) ↪→ Ls(RN ) is com-
pact for 2 ≤ s < 2∗ = 2N/(N − 2). The potential V (x) vanishing at infinity,
that is, V (x) → 0 as |x| → ∞, has also received much attention, see [1, 7, 20]
and the references therein.
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In this paper, we are motivated by the above papers and interested in the
existence of multiple solutions for problem (1.1) by considering a new set of hy-
potheses on the potential V (x) and the weight functions h1(x), h2(x). Through-
out this paper, we make the following hypotheses.

(H1) The power parameters p, q,m satisfy 2p < N and 1 < p < q < m <

p∗ = pN
N−2p .

(H2) V (x) is continuous and positive in RN .
(H3) The functions h1, h2 ∈ L∞(RN ), h1(x) > 0 a.e. in RN and h2(x) ≥ 0

in RN . In addition,

h1

V
,
h2

V
∈ L∞(RN ) and h1(x)|V (x)|

m−p∗
p∗−p → 0, h2(x)|V (x)|

q−p∗
p∗−p → 0 as |x| → ∞.

(H4) The functions h1, h2 ∈ L∞(RN ), h1(x) > 0 a.e. in RN and h2(x) ≥ 0
in RN . In addition,

h1(x) ∈ Lα(RN ), h2(x) ∈ Lβ(RN ), where α =
p∗

p∗ −m
, β =

p∗
p∗ − q

.

Remark 1.1. Assumptions (H3) − (H4) are independent. For example, let
V (x) = 1 and k > N , then the function

h1(x) =

{
1, 0 < |x| < 1,

exp(−|x|k| sinπ|x||1/α), |x| ≥ 1
(1.7)

satisfies (H4), but h1(x) ̸→ 0 as |x| → ∞. On the other hand, the function
h1(x) = 1 for |x| ≤ 1 and h1(x) = |x|−δ for |x| ≥ 1 and any δ > 0 satisfies
(H3), but does not necessarily verify (H4).

Remark 1.2. The authors in [14] studied the existence of infinitely many solu-
tions of (1.4) with p = 2, λ = 1, V (x) = 1 and different assumptions on h1 and
h2. Our assumption (H3) is different from their assumptions.

In order to state our main result, we introduce some Sobolev spaces and norms.
Let

X = D2,p(RN ) =
{
u ∈ Lp∗(RN ) : ∆u ∈ Lp(RN )

}
(1.8)

with the norm ∥u∥X = ∥∆u∥p and

E =

{
u ∈ D2,p(RN ) :

∫
RN

V (x)|u|pdx < ∞
}

(1.9)

with the norm

∥u∥E = (

∫
RN

(|∆u|p + V (x)|u|p)dx)1/p.(1.10)

We denote by S∗ the Sobolev constant, that is,

S∗ = inf
u∈D2,p(RN )\{0}

∫
RN |∆u|pdx

(
∫
RN |u|p∗dx)p/p∗

(1.11)
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and

S∗(

∫
RN

|u|p∗dx)p/p∗ ≤
∫
RN

|∆u|pdx, ∀u ∈ D2,p(RN ).(1.12)

Obviously, the embedding X ↪→ Lp∗(RN ) is continuous.
It is well known that S∗ is achieved by a (unique, up to a multiplicative

constant, and up to dilations and translations in RN ) positive and radially
symmetric function, see [25].

Definition 1.3. A function u ∈ E is said to be a (weak) solution of (1.1) if
for any φ ∈ E, there holds
(1.13)∫

RN

(|∆u|p−2∆u∆φ+ V |u|p−2uφ)dx =

∫
RN

(h1|u|m−2u+ h2|u|q−2u)φdx.

Our main result in this paper is as follows.

Theorem 1.4. Let (H1) − (H2) hold. In addition, suppose that either (H3)
or (H4) is satisfied. Then problem (1.1) admits infinitely many nonnegative
solutions un ∈ E such that J(un) → ∞ as n → ∞.

This paper is organized as follows. In section 2, we set up the variational
framework and establish some lemmas, and then we prove theorem 1.3.

2. Proof of Theorem 1.4

In this section, we first set up the variational framework for problem (1.1),
and in the position of the hypotheses in Theorem 1.4, we derive some lemmas
and finally give the proof of Theorem 1.4.

Let J(u) : E → R be the energy functional associated with problem (1.1)
defined by

J(u) =
1

p
∥u∥pE − 1

m

∫
RN

h1|u|mdx− 1

q

∫
RN

h2|u|qdx, ∀u ∈ E.(2.1)

From the hypotheses on h1 and h2, we see that the functional J ∈ C1(E,R)
and its Gateaux derivative is given by
(2.2)

J ′(u)φ=

∫
RN

(|∆u|p−2∆u∆φ+V |u|p−2uφ)dx−
∫
RN

(h1|u|m−2u+h2|u|q−2u)φdx,∀φ ∈ E.

In order to prove the main theorem, we recall some useful concepts and
results.

Definition 2.1. Let E be a real Banach space, J ∈ C1(E,R) and c ∈ R. We
say that J satisfies the (PS)c condition if any (PS)c sequence {un} ⊂ E such
that

(2.3) J(un) → c, J ′(un) → 0 in E∗ as n → ∞
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has a convergent subsequence in E.

Proposition 2.2. (Theorem 6.5, [24]). Let E be an infinite dimensional real
Banach space, J ∈ C1(E,R) be even and satisfy the (PS)c condition and
J(0) = 0. If E = Y ⊕ Z, in which Y is finite dimensional, and J satisfies

(J1) there exist constants ρ, α0 > 0 such that J(z) ≥ α0 on ∂Bρ ∩ Z;
(J2) for each finite dimensional subspace E0 ⊂ E, there is an R = R(E0)

such that J(z) ≤ 0 on E0 \BR, where BR = {z ∈ E : ∥z∥E < R}, ∂BR = {z ∈
E : ∥z∥E = R}.

Then J possesses an unbounded sequence of critical values, i.e. there exists
a sequence {un} ⊂ E such that J ′(un) = 0 and J(un) → ∞ as n → ∞.

In the following, we let all hypotheses in Theorem 1.4 hold.

Lemma 2.3. Any (PS)c sequence {un} of J is bounded in E.

Proof. Let J(un) → c, J ′(un) → 0 in E∗ as n → ∞. Then, for large n, one sees
that

c+ 1 + ∥un∥E ≥ J(un)−
1

q
J ′(un)un ≥ (

1

p
− 1

q
)∥un∥pE .(2.4)

This implies that the sequence {un} is bounded in E and the proof is finished.
□

Lemma 2.4. The space E is compactly embedded in Lm(RN , h1) and Lq(RN , h2).

Proof. Let {un} be a bounded sequence in E. Then there exists a subsequence
of {un}, still denoted by {un}, and v ∈ E such that as n → ∞,

∥un∥E ≤ M, un ⇀ v weakly in E, un → v in Ls
loc(RN ),(2.5)

1 ≤ s < p∗, un(x) → v(x) a.e. in RN

with some constant M > 0.
We begin with assuming (H3). First it is important to observe that for each

fixed x ∈ RN , the function

g(s) = V (x)sp−m + sp∗−m, ∀s > 0(2.6)

attains its minimum λ1|V (x)|
p∗−m
p∗−p at s0 = m−p

p∗−mV (x), where

λ1 =
p∗ − p

p∗ −m

(
m− p

p∗ −m

) p−m
p∗−p

.(2.7)

Hence,

λ1|V (x)|
p∗−m
p∗−p ≤ g(s) = V (x)sp−m + sp∗−m, ∀x ∈ RN , ∀s > 0.(2.8)

By (H3), for any small ϵ > 0, there exists a > 0 such that

0 ≤ h1(x) ≤ ϵλ1[V (x)]
p∗−m
p∗−p , ∀|x| ≥ a(2.9)
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and so

0 ≤ h1(x)|s|m ≤ ϵλ1(V (x)|s|p + |s|p∗) ∀|x| ≥ a, and ∀s ∈ R.(2.10)

Then inequality (2.10) gives∫
Bc

a

h1(x)|un|mdx ≤ ϵλ1

∫
Bc

a

(V (x)|un|p + |un|p∗)dx.(2.11)

where Br = {x ∈ RN : |x| < r} and Bc
r = {x ∈ RN : |x| ≥ r} for r > 0.

On the other hand, it follows from the Young inequality with ε > 0 and
(1.12) that

0 ≤
∫
Ba

h1|un|mdx(2.12)

≤ ϵ

∫
Ba

h1|un|pdx+ Cε

∫
Ba

h1|un|p∗dx

≤ ϵM1∥un∥pp,V +M2Cε∥un∥p∗
E ,

where
(2.13)

M1 = max{λ1, ∥
h1

V
∥∞}, M2 = max{λ1, ∥h1∥∞}, ∥u∥pp,V =

∫
RN

V |u|pdx.

Then we get from (2.11) and (2.12) that

0 ≤
∫
RN

h1(x)|un|mdx ≤ ϵM1∥un∥pp,V +M2Cε∥un∥p∗
E .(2.14)

Similarly, for any ε > 0, there is b > 0 such that

0 ≤
∫
Bb

h2|un|qdx ≤ ϵM3∥un∥pp,V +M4Cε∥un∥p∗
E ,(2.15) ∫

Bc
b

h2|un|qdx ≤ ϵ

∫
Bc

b

(V (x)|un|p + |un|p∗)dx

and ∫
RN

|h2(x)||un|qdx ≤ ϵM3∥un∥pp,V +M4Cε∥un∥p∗
E ,(2.16)

where

M3 = max{1,
∥∥h2

V

∥∥
∞}, M4 = max{1, ∥h2∥∞}.(2.17)

Choosing M0 = max{M1,M3} and ε = 1
4pM0

, we obtain from (2.14) and

(2.16) that

0 ≤
∫
RN

h1|un|mdx+

∫
RN

h2|un|qdx ≤ 1

2p
∥un∥pE + C0∥un∥p∗

E ,(2.18)

with some constant C0 > 0.
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On the other hand, it follows from (2.5) and (2.11) that

0 ≤
∫
Bc

a

h1|un|mdx ≤ 2εMp and 0 ≤
∫
Bc

a

h1|v|mdx ≤ 2εMp,(2.19)

where M is the constant in (2.5). Since m ∈ (p, p∗) and h1 ∈ L∞(RN ), it
follows from Sobolev compact embedding in bounded domain that

lim
n→∞

∫
Ba

h1(x)|un|mdx =

∫
Ba

h1(x)|v|mdx.(2.20)

Then, combining (2.19) with (2.20) yields

lim
n→∞

∫
RN

h1(x)|un|mdx =

∫
RN

h1(x)|v|mdx.(2.21)

Using Brezis-Lieb Lemma [6], we derive

lim
n→∞

∫
RN

h1(x)|un − v|mdx = 0.(2.22)

Similarly, we have

lim
n→∞

∫
RN

h2(x)|un − v|qdx = 0.(2.23)

Arguing as in [30], if (H4) is true, then for every ε > 0, there exists ρ0 > 0
such that ∫

Bc
ρ

|h1(x)|αdx < ε, for ρ > ρ0.(2.24)

Note that h1 is bounded in Bρ and {un} is also bounded in Lp∗(RN ). Thus we
have from Hölder’s inequality that
(2.25)∫

RN

|h1(x)||un−v|mdx ≤ ∥h1∥∞
∫
Bρ

|un−v|mdx+
(∫

Bc
ρ

|h1(x)|αdx
) 1

α
(∫

Bc
ρ

|un−v|p∗dx
) m

p∗ .

Using the fact un → v in Lm(Bρ) and (2.24), we obtain (2.22) from (2.25).
Similarly we have (2.23). This completes the proof of Lemma 2.4. □

Lemma 2.5. Let {un} be a (PS)c sequence and satisfy (2.5). Then the fol-
lowing statements hold.

(i) The weak limit v ∈ E is a critical point of the functional J .
(ii) un → v in E, that is, the functional J satisfies (PS)c condition.

Proof. (i). From (2.5) and Lemma 2.3, one sees that as n → ∞,

(2.26)

∫
RN

|∆un|p−2∆un∆φdx →
∫
RN

|∆v|p−2∆v∆φdx, ∀φ ∈ C∞
0 (RN )
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and
(2.27)∫

RN

V (x)(|un|p−2un − |v|p−2v)φdx → 0,

∫
RN

(f(x, un)− f(x, v))φdx → 0.

Then, it follows from J ′(un) → 0 in E∗ and (2.22)-(2.27) that

0 = lim
n→∞

J ′(un)φ = J ′(v)φ, ∀φ ∈ C∞
0 (RN ).(2.28)

Since the set C∞
0 (RN ) is dense in E, we have J ′(v)φ = 0, ∀φ ∈ E. In

particular, J ′(v)v = 0. Hence, v is a critical point of J in E.
(ii). Denote J ′(un)(un − v) := Pn −Rn, where

Pn =

∫
RN

[|∆un|p−2∆un∆(un − v) + V (x)|un|p−2un(un − v)]dx

Rn =

∫
RN

[h1(x)|un|m−2un + h2(x)|un|q−2un](un − v)dx.

(2.29)

Then the fact J ′(un) → 0 in E∗ implies that J ′(un)(un − v) → 0 as n → ∞.
Moreover, the fact un ⇀ v in E gives Qn → 0, where

Qn :=

∫
RN

[|∆v|p−2∆v∆(un − v) + V (x)|v|p−2v(un − v)]dx.(2.30)

Furthermore, we have from (1.12), (2.5), (2.22) and (2.23) that as n → ∞,
(2.31)∫

RN

|h1(x)||un|m−1|un−v|dx ≤ C1∥h1∥α∥un∥mE
( ∫

RN

|h1(x)||un−v|mdx
)1/m → 0

with some constant C1 > 0. Similarly, we can derive that as n → ∞,
(2.32)∫

RN

|h2(x)||un|q−1|un − v|dx ≤ C1∥h2∥β∥un∥qE
( ∫

RN

|h2(x)||un − v|qdx
)1/q → 0

Hence, we have that for large n, Pn −Qn = on(1), where
(2.33)

Pn−Qn=

∫
RN

[
|∆un|p−2∆un−|∆v|p−2∆v)∆(un−v)+V (x)(|un|p−2un−|v|p−2v)(un−v)

]
dx.

For any k ∈ N, using the standard inequality [11] given by

(2.34)

(|x|p−2x− |y|p−2y)(x− y) ≥ cp|x− y|p, p ≥ 2, ∀x, y ∈ Rk

(|x|p−2x− |y|p−2y)(x− y) ≥ cp|x− y|p

(|x|+ |y|)2−p
, 1 < p < 2, ∀x, y ∈ Rk,

we have from (2.33) and (2.34) that ∥un − v∥E → 0 as n → ∞. Thus J(u)
satisfies (PS)c condition on E and the proof of Lemma 2.5 is finished. □
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Proof of Theorem 1.4. Clearly, the functional J defined by (2.1) is even in
E and J(0) = 0. By Lemma 2.4, the functional J satisfies the (PS)c condition.

By dint of Proposition 2.1, we verify the conditions (J1) and (J2). For
assumption (H3), it follows from (2.18) that

J(u) ≥ 1

2p
∥u∥pE − C0∥u∥p∗

E , u ∈ E.(2.35)

Let ∥u∥E = ρ = ( 1
4pC0

)1/(p∗−p) and then

J(u) ≥ 1

4p
ρp ≡ α0 > 0, with ∥u∥E = ρ.(2.36)

So, the condition (J1) is satisfied.
For assumption (H4), we have from Hölder inequality and (1.12) that

(2.37) 0 ≤
∫
RN

(h1|u|m + h2|u|q)dx ≤ C2(∥h1∥α∥u∥mE + ∥h2∥β∥u∥qE), u ∈ E,

and

J(u) ≥ 1

p
∥u∥pE − C2(∥h1∥α∥u∥mE + ∥h2∥β∥u∥qE), u ∈ E,(2.38)

with some constant C2 > 0. Similarly, (J1) is satisfied.
We now verify condition (J2). For any finite dimensional subspace E0 ⊂ E,

we assert that there holds J(un) → −∞ as ∥un∥E → ∞, un ∈ E0. Arguing by
contradiction, suppose that for some sequence {un} ⊂ E0 with ∥un∥E → ∞,

there is η > 0 such that J(un) ≥ −η, ∀n ∈ N. Set vn(x) = un(x)
∥un∥E

, then ∥vn∥E =

1. Passing to a subsequence, we may assume that vn ⇀ v in E, vn(x) → v(x)
a.e on RN . Since E0 is finite dimensional, then vn → v in E0, v ̸≡ 0 in RN and
∥v∥E = 1. Set A = {x ∈ RN : v(x) ̸= 0}. Then meas(A) > 0. For a.e. x ∈ A,
we have limn→∞ |un(x)| = ∞. Hence, A ⊂ Zn = {x ∈ RN : |un(x)| ≥ 1} for
large n ∈ N. Then, it follows from (2.1) that

0 = lim
n→∞

−η

∥un∥pE
≤ lim

n→∞

J(un)

∥un∥pE
≤ lim

n→∞

[1
p
− 1

m

∫
RN

h1|un|m−p|vn|pdx
]

≤ 1

p
−
∫
RN

lim inf
n→∞

(
h1(x)|un(x)|m−pχZn(x)|vn(x)|p

)
dx = −∞.

(2.39)

Hence we conclude a contradiction. So, there is R = R(E0) > 0 such that
J(u) < 0 for u ∈ E0 and ∥u∥E ≥ R. Then the application of Proposition
2.1 proves that problem (1.1) admits infinitely many solutions un ∈ E with
J(un) → ∞ as n → ∞. The solutions un can be supposed nonnegative since
J(un) = J(|un|). Then, we complete the proof of Theorem 1.4. □



Infinitely many solutions for a class of p-biharmonic equation in RN 214

Acknowledgements

The authors would like to thank the referee for the valuable suggestions and
comments. This work is supported by the Fundamental Research Funds for
the Central Universities of China (2014B06314).

References

[1] C. O. Alves and M. A. S. Souto, Existence of solutions for a class of elliptic equations in
RN with vanishing potentials, J. Differential Equations 252 (2012), no. 10, 5555–5568.

[2] T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear

elliptic problems on RN , Comm. Partial Differential Equations 20 (1995), no. 9-10,
1725–1741.
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