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1. Introduction

Variational inequalities have applications in physics, mechanics, engineering
and optimization (see [3—6] and [10]) and they arise for example in obstacle
problems (see [6,12, 141] and the references therein). We note that variational
inequalities are generalizations of integral equations.

In [8], the author developed a theory of variational inequalities for demicon-
tinuous S-contractive maps in reflexive smooth Banach spaces and studied the
existence of nonzero positive weak solutions for p-Laplacian elliptic inequali-
ties. In [9], the author introduced a new class of operators and established
some existence results for general variational inequalities.

In this paper, we consider the variational inequality, denoted by (P):

Find v € K such that

+o0 oo
/u'(t)(v/(t)fu'(t))dt+ /u(t)(v(t)fu(t))dt
0 0

+oo

- / 9t F(t,u(®)((t) — u(t)dt > 0, Vo€ K,
0
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Solutions for a variational inequality 224

where f : [0,400) x R — R is a continuous function which satisfies the
following condition:

(Hy) For any constant R > 0, we assume sup{|f(¢, ﬁyﬂ : t€[0,00),y €
[-R,R]} < cc.

Here K is a closed convex set in the Sobolev space H{(0,+o00) with 0 € K,
and p : [0,4+00) — (0,+00) is continuously differentiable and bounded, ¢ :
[0, +00) — Ry with 1 € L'[0, +-00) and

M = 2max(||pl| 2, [Ip'[| 2) < +oo.

In Section 3, we use the abstract theory from [l3] using some motivating
ideas initiated in [7]. In particular we use non-smooth critical point theory
for Szulkin-type functionals to obtain nontrivial solutions for (P). In our
analysis we will use a new compactness result (the embedding Hg (0, +00) —
C1.p[0,400) is compact) obtained in Section 2.

The authors in [7] studied a variational inequality posed on a very special
set K in W12(0,00) , namely

K ={ucW"?(0,00) : u >0, u is nonincreasing on (0, 00)}.

Our variational inequality is posed on a very general set, namely on any convex
closed subset in W, %(0, 00). The results in [7] do not extend to general convex
closed subsets of W2(0, 00). Moreover the authors in [7] considered nonlinear
terms of the form f(¢,u) = f(u) whereas in our paper we consider the general
form f(t,u). Also the hypotheses in our paper are quite different from those
in [7]; see for example (f3) in [7] and our hypothesis (Hy).

2. Preliminaries

We endow the space H{ (0, +00) with its natural norm

ul| = (/O+o° w2 (t)dt + /()+OO u’2(t)dt)é ,

associated with the scalar product

+oo +oo
(u,v) = /0 u(t)v(t)dt —l—/o u'(t)v'(t)dt.

Note that if u € Hg(0,+00), then u(0) = u(+00) = 0, (see [1, Corollary 8.9]).
Let

Cipl0,400) = {u € C([0,+00),R) : lim p(t)u(t) exists }

t——+o0

endowed with the norm

[ulloop = sup  p(t)|u(t)].
t€[0,4+00)
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Definition 2.1. A Banach space X is embedded continuously in a Banach
space Y (X < Y) if

(i) XCY,

(ii) the canonical injection j : X — Y is a continuous (linear) operator.
Moreover, if the canonical injection j : X — Y is compact, then we say that
X is compactly embedded in Y.

Lemma 2.2. H{(0,+00) embeds continuously in C [0, +00).
Proof. For u € H(0,+00), we have

pu®)] = [p@)u(t) — p(0)u(0)|
[ s)as

< /tp/(s)u(s)ds + /tp(s)ul(s)ds
0 0
too 3 /oo 2
< /p/Q(S)dS /UQ(S)dS
0 0
oo 3 /400 2
+ /pQ(s)ds /UI2(3)d5
0 0
< 2max(||p'|| 2, [pllz2)||ul-
Hence
ulloo,p < M|l
(|
Let

Ci[0, +00) = {u € C(]0, +0),R) : , lim wu(t) exists },

—+o0

endowed with the norm [ullc = sup;ejo 4o0) [u(t)]- Note if p(t) = 1, Vt €
[0, 400) then C} [0, +00) = C4[0, +00).

To prove that H{(0,+00) embeds compactly in Cj,[0,+00), we need the
following Corduneanu compactness criterion.

Lemma 2.3. ([2]) Let D C Ci([0,+00),R) be a bounded set. Then D is
relatively compact if the following conditions hold:
(a) D is equicontinuous on any compact sub-interval of RT, i.e.

V.J C [0,400) compact,Ve > 0,35 >0,Vit,ts € J:
|t1 _tQ‘ <) = |’U,(t1) —U(t2)| < E,Vu (S D,
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(b) D is equiconvergent at +00 i.e.,

Ve >0,3T =T(c) >0 such that
Vit >T(e) = |u(t) —u(+o00)| <&, Vu e D.

Lemma 2.4. Let D C C;,([0,+00),R) be a bounded set. Then D is relatively
compact if the following conditions hold:
(a) D is equicontinuous on any compact sub-interval of RY, i.e.

VJ C[0,+00) compact,¥e > 0,36 >0, Vity,ta € J:
[t1 — t2| <6 = [p(t1)u(ts) — p(t2)ultz)| < e,Vu € D,

(b) D is equiconvergent at +oo i.e.,

Ve >0,3T =T(c) > 0 such that
Vit >T(e) = [p(t)u(t) — (pu)(+o0)| <&, Vu e D.

Proof. 1t is easy to see that D' = {v : v(t) = p(t)u(t), v € D} C C
satisfies the conditions of Lemma 2.3. Thus there exists a sequence (v,) C D’

and vg € C; such that nll)rilooﬂvn —vlle, = 0. Let u,(t) = ﬁvn(t) for
n = 1,2,..., and up(t) = ﬁvo(t). Obviously, (u,) C D, up € Cj, and
tim s~ uolle,, = lim v~ volle; =01 0

Lemma 2.5. The embedding
Hg (0, +00) = Cy,[0, +00)

18 compact.

Proof. Let D C H}(0,+00) be a bounded set. Then it is bounded in C; ,[0, +00)
by Lemma 2.2. Let R > 0 be such that for all w € D, |Ju| < R. We will apply
Lemma 2.4

(a) D is equicontinuous on every compact interval of [0,4+00). Let u € D
and t1,ta € J C [0,400) where J is a compact sub-interval. By using the



227 Frites, Moussaoui and O’Regan

Cauchy-Schwarz inequality, we have

Ip(t)u(ty) — p(t2)u(tz)] =

/ " (pu (s)ds

ta

/ 1 P (s)u(s) +u'(s)p(s)ds

ta
1 1
ty 2 ty 2
< /p’z(s)ds /uQ(s)ds
to to
1
ty 2 ty 2
+ /pz(s)ds /u’Q(s)ds
to to
t 3 t 3

AN
[\
g
&
"
’E\
[\S]
—
»
~—
QU
V)
=
N
@
~—
QU
V)
=

IA

2R max /p'z(s)ds , /pQ(s)ds — 0,

as |t1 — t2| — 0.

(b) D is equiconvergent at +oo. For ¢ € [0,400) and v € D, using the
fact that (pu)(+o00) = 0 (note u(co) = 0 and p is bounded) and using the
Cauchy-Schwarz inequality, we have

+oo
(pu) (1) — (pu) (+00)] = / (pu)'(s)ds

+
8
Nl
+
8
N|=

< 2Rmax
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3. Szulkin-type functionals

Let X be a real Banach space, X* its dual and let E € C*(X,R) (the
space of continuously differentiable functions from X to R). Alsolet ¢ : X —
RU{+0o0} be a proper (i.e., ¢ # +00), convex, lower semicontinuous functional.
We say then that, I = E 4 ¢ is a Szulkin-type functional, (see [13]).

Definition 3.1. A functional ¢ : X — R U {+oo} is called lower semi-
continuous at a point ug if for every sequence {u,} C X with u, — ug, we
have ¥ (ugp) < liminf ¢ (uy,).

n—-+4oo

Definition 3.2. An element u € X is called a critical point of I = E + ¢ if
(3.1) E'(u)(v—u) +(v) —(u) >0 for all v € X,
which is equivalent to
0€ E' (u)+ 0¢(u) in X*;
here 0y(u) is the subdifferential of the convex functional ¢ at u € X (see [11]).

Definition 3.3. A functional I : X — R U {+oo} is called coercive if
lim  I(u) = 4o0.

lleellx =00

Definition 3.4. The functional I = F + 1) satisfies the Palais-Smale condition

at level ¢ € R, denoted by (PSZ). if every sequence {u,} C X such that

lim I(u,)=cand
n—oo

(E'(upn),v —un)x + () —Y(un) > —en|lv — u,|| for all v € X,
where €, — 0, possesses a convergent subsequence.

Theorem 3.5. ([13]) Let X be a Banach space, I = E+1 : X — RU{+o00} is
a Szulkin-type functional and is bounded from below. If I satisfies the (PSZ).-
condition for

°= i,

then c is a critical value.
Szulkin proved the following version of the Mountain Pass theorem.

Theorem 3.6. ([13]) Let X be a Banach space, I = E+1) : X — RU{+o00}
a Szulkin-type functional and we assume that
(1) I(u) > a for all ||ul| = p with a, p > 0, and I(0) = 0;
(ii) there is e € X with |le|| > p and I(e) < 0.
If I satisfies the (PSZ).-condition for

c=inf sup I(v(t)),

inf sup (v(®))
with
I'={yeC([0,1],X) : v(0) = 0,~v(1) = e},
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then c is a critical value of I and ¢ > «.

4. Main results

We give now the main results of this paper. We denote by F' the primitive
of f with respect to its second variable, i.e., F(t,z) = [ f(t, s)ds.

Theorem 4.1. Let f satisfy (Hy) and the following condition:

(f1) there exists positive functions By, B2 € L (0, 400) with 87 = sup B1(t)

te[0,4+00)
<1land 5= sup pa(t) <+oo such that
te[0,400)
Ba(t)
If(t, )] < o |x| + Ba(t), for allt € [0,+00) and all z € R.

Then, problem (P) has at least one solution u € K.
Theorem 4.2. Let f satisfy (Hy) and the following conditions:

(h1) there exist positive functions ri,72, with r1q,roq € LY*(RT,RY), and
v > 2 such that
(1) F(t,z) > ri(t)|z]” — ra(t) for all t € [0,400), Vo € R\ {0}.
(2) vF(t,x) < xf(t,x), for all t € [0, +0), Va € R.
(he) There exists a function v € L>(0,4+00) with v* = sup |(p*y)(t)| <
t€[0,400)
% such that
F(t, 5ime)

lim sup < ~(t), uniformly with respect to t € [0, +00).

jal=0 g5 1712
Then, problem (P) has at least one nontrivial solution u € K.

We define the functional E : H}(0,+00) — R by

+oo
B = gl = [ aF ()t

Since f : [0,+00) x R — R is continuous, using the Lebesgue dominated
convergence theorem and the compact embedding of H{ (0, 4+00) in Cy [0, +00),
(Lemma 2.5) and (Hy) we have that E € C1(H{ (0, +00),R).

Define the indicator functional of the set K by

0, ifue K,
wK(u)_{ +oo, ifué¢ K.

We remark that the functional ¢ is convex, proper, and lower semicontinuous.
Then, I = FE + ¢ is a Szulkin-type functional.
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Proposition 4.3. Every critical point uw € H}(0,+00) of I = E + 9k is a
solution of (P).

Proof. Since u € H}(0,+00) is a critical point of I = E + ¢k, then
E'(u)(v —u) + ¢Yr(v) —Yr(u) >0, Yo € H}(0,+oo).

We claim u belongs to K. If not, then 1 (u) = +00 and taking then, v =0 € K
in the above inequality, we obtain a contradiction. Thus v € K. Fix v € K.
Since

+oo “+o0
E(u)v—u) = /uwmmw—wmmv+/umwm—uth
0 0

—+o00
_ A a(t) £ (£, u(D) (0(2) — u(t))dt,

then w is a solution of (P). O

5. Proof of Theorem 4.1

Assume the conditions of Theorem 4.1 are satisfied. We prove the existence
of a solution for problem (P) using Theorem 3.5.

Proposition 5.1. If the function f satisfies the hypothesis (f1), then I =
E + 9k is coercive and bounded from below in H} (0, +00).

Proof. We have

1 +ee
) = Bu) = gl = [ a0 P u)
for every u € K. From hypothesis (f1), we have

15:(t)
2 q(t)

Using the continuous embedding of Hg (0, +00) in L?[0, +00) with constant of
embedding N =1 (see [1]) and Lemma 2.2, we have

[F(t,2)] < |z|* + Ba(t)] |-

+oo
= gl - [ 38000 + a0l a

1 5 1 +oo )
> P 5 sw gm0 [ P
te[0,400) 0
(t)

+oo
~ s 5wa L p(Oluta

£€[0,400) (t)
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1 A x q

> gl =l - B el 2
1 *

> gl = Sl - g5aul 12
1 x R —

— =Bl = 8501 sl

Since BF < 1, this implies that the functional I = E + ¥ is coercive. We
claim it is bounded from below on Hg (0, +00). If this is not true, there exists a
sequence {u,} in H{(0,+o00) such that ||u,| — +oo and I(u,) — —oo, which
is a contradiction with the coerciveness of I. O

Proposition 5.2. If the function f satisfies (Hy), then I = E + ¢k satisfies
(PSZ), for every c € R.

Proof. Let ¢ € R be fixed. Let {u,} be a sequence in H}(0,+00) such that

(5.1) I(un) = E(un) + ¢k (un) — ¢
and
(5.2) E'(un)(v —Up) + Vi (V) = Vi (Un) > —en|lv — ugl|,

where {e,} a sequence in [0, 00) with €, — 0. By (5.1), we obtain that the se-
quence {uy,} is in K. From Proposition 5.1, since I is coercive on H (0, +00),
the sequence {u,} is bounded in K. Since the sequence {u,} is bounded in
H}(0,+00), there exists a subsequence still denoted by {u,,} which converges
weakly in HE(0,400). Then there exists u € H}(0,4+00) such that

(5.3) Up —u in H(0,400),
(5.4) U, > u in Cpp(0,+00).

Since K is weakly closed, u € K. Setting v = u in (5.2), we obtain

+00 +oo
[ 0 @) =t nae+ [ (o) - u @)
0 0
“+o0

+ [a(@)f (s un () (un(t) — u(t))dt

v ob

—enllu — un|.

Therefore, for large n € N, we have
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+00 +oo
lu -l < / ! (£) (u (£) — (1))t + / w(t)(ut) — 1, (1))t
0 o 0
4 / QE) (1)) (tn (1) — w(£))dE + | — 1|
0 T 1
< (= un) gy + o= oo / Ot st (1)

+enllu — upl|.

Since {u,} is bounded in Hg (0, +00), then it is bounded in Cj [0, +00). From
(Hy) we obtain that
2 q 1
u—un||” < (u,u—up) g1 +||[u—tnl|oo,pl|| = L1 sup ft, —=y)|+en|lu—un|,
I [ Vg, I p||p||Lt6[0’oo)’y€[_R0’R(\)] ( o) )+enl |

where Ry = ||u]|co,p + 1. From (5.3) we have

lim(u, u — uy ) g = 0.

From (5.4), the second term in the last inequality also converges to 0. Since
en — 0%, {u,} converges strongly to u in H}(0,+00). This completes the
proof. O

From Proposition 5.2, the functional I satisfies the (PSZ). condition, and by
Proposition 5.1, the functional I is bounded from below. Therefore (Theorem
3.5), the number

= inf I(u)
u€H} (0,400)
is a critical value of I. Proposition 4.3 concludes that the critical point u; €

H} (0, +00) which corresponds to ci, is actually an element of K and a solution
of problem (P).

Example 5.3. Consider the function f defined by
1
ft,z) = ie_tar + sint,

and q(t) = e=%, p(t) = e~ (note 1e LY). Let Bi(t) = e73, Bo(t) = |sint|

(note By < 1,83 =1 < +00). From Theorem 4.1, problem (P) has at least one
solution u € K.
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6. Proof of Theorem 4.2

Assume the conditions of Theorem 4.2 are satisfied. Now we prove the
existence of a nontrivial solution for problem (P) using the Mountain Pass
theorem of Szulkin type (see Theorem 3.6).

Proposition 6.1. If the function f satisfies (Hy¢) and (h1), then the functional
I = E + ¢k satisfies (PSZ). for every ¢ € R.

Proof. Let ¢ € R be a fixed number. Let {u,} be a sequence in H}(0,+0o0)
such that

(6.1) I(up) = E(up) + ¥ (un) — ¢
and
(6.2) E'(un) (v = un) + Yr(v) = Y (un) > —enllv —unl,

where {e,} is a sequence in [0, c0) with &,, — 0. From (6.1), we obtain that the
sequence {u, } belongs to K. We put v = 2u,, in (6.2), and we obtain

E' (up)(un) = —enlltnl|.
Thus
+oo
(6:3) Juall = [ 4O () () = ]|
0

From (6.1) for large n € N, we obtain
1 e
(6.4) ct+1> 5||un||2 7/ q(t)F(t, up,(t))dt.
0

Multiplying (6.3) by v~! and adding this to (6.4) (note £, — 0) and using
(h1)(2), for large n € N, we obtain that

1 11 , [T 1
et Lt —funll = | 5 == ) lunll™=[ q(t) { F(tunt)) = —f(t un(t))un(t) | dt

v 2 v 0 v

“+oo
(53 ) el = [ O Pt Ot w0 )

1 1
> (5-3) hual?.
14

Since v > 2, we deduce that the sequence {u,} is bounded in K. Then
there exits a subsequence which converges weakly in H{(0,4o0). There ex-
ists u € H}(0,+00) such that

(6.5) U, —u in Hy(0,+00),
(6.6 U, = u in Cppl0,+00).
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Since K is weakly closed, u € K. Put v = u in (6.2), and we obtain

+oo —+oo

Then, for large n € N, we have

—+o0

—+oo
lu— w2 < / o () (' (1) — iy (£))dt + / () (u(t) — un ()t

0

oo
+ / G0 F (1w (8)) (un (1) — u(®))dt + enlu — |
0

<= )y + = | A g0, L pOu(®)dt + e~
<(u, v — un) g U — Un ||oo,p . o) 7p(t)p u enllu — unll.
Since {uy,} is bounded in Hj (0, +00), then it is bounded in Cj [0, +00). From
(Hy) we obtain that

1
l[u—un||* < (u7u_u'ﬂ)H(}+Hu_u"||°0»P||g||L1 sup [f(t —~y)tenllu—unll
P te[0,00), yE[— R, R p(t)

where R = ||u]|o,p + 1. From (6.5), we have

1i7rln(u, u— un)Hész =0.

From (6.6), the second term in the last inequality also tends to 0. Since &, —
0%, {u,} converges strongly to u in H}(0, +00). This completes the proof. [

Proposition 6.2. If the function f satisfies (h1) and (ha), then the following
assertions are true:

(2) there exist constants o >0 and p > 0 such that I(u) > « for all |ul| = p;
(ii) there exists an e € H}(0,+00) with |le]| > p and I(e) < 0.

Proof. (i) From condition (hg), there exists € > 0 and § > 0 such that

1 1
— )| < (y(t) — &) —|z|?.
)l < (0 = &)l
Therefore, by using the continuous embeddings of H} (0, +00) in L?[0, +00) and
HE(0,+00) in Cyp[0,+00) with |lullzz < [Jull, and |ullecp < M]ul|, we have
for |lul| = p small enough and o = (3 — (v* —¢ sup [p(t)|?))p? > 0, that
t€[0,400)

lz] < § = |F(¢,
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|t]loo,p < Mp < 6 and so we obtain
L, Hoo
I = g~ [ a0 P

“+o0
_ %Hu“?_/o q(t)F(t, ——=p(t)u(t))dt

1 Hoe
> gl = [ 6 - bun P

1 2 2 e 2
> S~ s (pOPGO -2) [ lu(oPa

te[0,400) 0

1 *

>l (e s 0Pl
te[0,4+00)

1 *

> P (7 e sup p(OP)ful?

te[0,400)

1 X
— (5_(7 —¢e sup  |p(®)*)]ul?.
te[0,+00)

Then assertion (¢) holds.

(#) Fix up € K\{0}, and let u = sup (s > 0). From condition (h1)(1), we
have

+oo
I(sup) = %SZHuOHQ—/O () F (¢, suo(t))dt

IN

1 2 2 v e v e
s lunll =5 [ an @l - [ gttt
0 0

Since v > 2, we obtain that I(sug) — —oo as s — 4o00. Thus, it is possible to
take s so large such that for e = sug, we have |le|| > p and I(e) < 0. The proof
is complete. O

From Proposition 6.1, the functional I satisfies the (PSZ).-condition ¢ € R,
and I(0) = 0. From Proposition 6.2, it follows that there exist constants o, p > 0
and e € H}(0,+00) such that I satisfies the conditions of Theorem 3.6 and
therefore,

= inf I
cz = inf max (v(1)),

is a critical value of I with ¢y > « > 0, where

I = {7 € C(0,1], X) : 4(0) = 0,7(1) = e}.

We remark that the critical point us € H{(0,+00) associated to the critical
value ¢y cannot be trivial because I(uz) = c2 > 0 = I(0). From Proposition
4.3, we obtain that us is an element of K and then a solution of (P).
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Example 6.3. Consider the function f defined by
f(t,r) = e—th‘xl’

and g(t) = e, p(t) = ™" (note 4 € L'). Let r1(t) = ge~" and v = 3 (note
r1q € L'). From Theorem 4.2, problem (P) has at least one nontrivial solution
u € K.

Remark 6.4. It is possible to replace (Hy) with: For any constant R > 0 there
exists a nonnegative function ¥ g with %wR € L'[0,00) and sup{|f(t, ﬁt)yﬂ :

y € [-R,R]} < ¢g(t) for a.e. t > 0, so with obvious adjustments we see that
the results in this paper can be extended.
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