ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 1, pp. 223-237

Title:

Existence of solutions for a variational inequality on the half-line

Author(s):

O. Frites, T. Moussaoui and D. O'Regan

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 43 (2017), No. 1, pp. 223–237 Online ISSN: 1735-8515

EXISTENCE OF SOLUTIONS FOR A VARIATIONAL INEQUALITY ON THE HALF-LINE

O. FRITES, T. MOUSSAOUI* AND D. O'REGAN

(Communicated by Maziar Salahi)

ABSTRACT. In this paper we study the existence of nontrivial solutions for a variational inequality on the half-line. Our approach is based on the non-smooth critical point theory for Szulkin-type functionals. **Keywords:** Variational inequality, critical point, mountain pass theorem, minimization, Szulkin-type functionals. **MSC(2010):** Primary: 47J20; Secondary: 49J40.

1. Introduction

Variational inequalities have applications in physics, mechanics, engineering and optimization (see [3-6] and [10]) and they arise for example in obstacle problems (see [6, 12, 14] and the references therein). We note that variational inequalities are generalizations of integral equations.

In [8], the author developed a theory of variational inequalities for demicontinuous S-contractive maps in reflexive smooth Banach spaces and studied the existence of nonzero positive weak solutions for p-Laplacian elliptic inequalities. In [9], the author introduced a new class of operators and established some existence results for general variational inequalities.

In this paper, we consider the variational inequality, denoted by (P): Find $u \in K$ such that

$$\int_{0}^{+\infty} u'(t)(v'(t) - u'(t))dt + \int_{0}^{+\infty} u(t)(v(t) - u(t))dt$$
$$\int_{0}^{+\infty} q(t)f(t, u(t))(v(t) - u(t))dt \ge 0, \quad \forall v \in K,$$

O2017 Iranian Mathematical Society

Article electronically published on February 22, 2017.

Received: 27 February 2015, Accepted: 6 November 2015.

^{*}Corresponding author.

where $f : [0, +\infty) \times \mathbb{R} \longrightarrow \mathbb{R}$ is a continuous function which satisfies the following condition:

 (H_f) For any constant R > 0, we assume $\sup\{|f(t, \frac{1}{p(t)}y)| : t \in [0, \infty), y \in [-R, R]\} < \infty$.

Here K is a closed convex set in the Sobolev space $H_0^1(0, +\infty)$ with $0 \in K$, and $p : [0, +\infty) \longrightarrow (0, +\infty)$ is continuously differentiable and bounded, $q : [0, +\infty) \longrightarrow \mathbb{R}_+$ with $\frac{q}{p} \in L^1[0, +\infty)$ and

$$M = 2\max(\|p\|_{L^2}, \|p'\|_{L^2}) < +\infty.$$

In Section 3, we use the abstract theory from [13] using some motivating ideas initiated in [7]. In particular we use non-smooth critical point theory for Szulkin-type functionals to obtain nontrivial solutions for (P). In our analysis we will use a new compactness result (the embedding $H_0^1(0, +\infty) \hookrightarrow C_{l,p}[0, +\infty)$ is compact) obtained in Section 2.

The authors in [7] studied a variational inequality posed on a very special set K in $W^{1,2}(0,\infty)$, namely

$$K = \{ u \in W^{1,2}(0,\infty) : u \ge 0, u \text{ is nonincreasing on } (0,\infty) \}.$$

Our variational inequality is posed on a very general set, namely on any convex closed subset in $W_0^{1,2}(0,\infty)$. The results in [7] do not extend to general convex closed subsets of $W^{1,2}(0,\infty)$. Moreover the authors in [7] considered nonlinear terms of the form f(t,u) = f(u) whereas in our paper we consider the general form f(t,u). Also the hypotheses in our paper are quite different from those in [7]; see for example (f3) in [7] and our hypothesis (H_f) .

2. Preliminaries

We endow the space $H_0^1(0, +\infty)$ with its natural norm

$$||u|| = \left(\int_0^{+\infty} u^2(t)dt + \int_0^{+\infty} u'^2(t)dt\right)^{\frac{1}{2}},$$

associated with the scalar product

$$(u,v) = \int_0^{+\infty} u(t)v(t)dt + \int_0^{+\infty} u'(t)v'(t)dt.$$

Note that if $u \in H_0^1(0, +\infty)$, then $u(0) = u(+\infty) = 0$, (see [1, Corollary 8.9]). Let

$$C_{l,p}[0,+\infty) = \{ u \in C([0,+\infty), \mathbb{R}) : \lim_{t \to +\infty} p(t)u(t) \text{ exists } \}$$

endowed with the norm

$$\|u\|_{\infty,p}=\sup_{t\in[0,+\infty)}p(t)|u(t)|.$$

Definition 2.1. A Banach space X is embedded continuously in a Banach space $Y (X \hookrightarrow Y)$ if

(i) $X \subseteq Y$,

(ii) the canonical injection $j: X \longrightarrow Y$ is a continuous (linear) operator. Moreover, if the canonical injection $j: X \longrightarrow Y$ is compact, then we say that X is compactly embedded in Y.

Lemma 2.2. $H_0^1(0, +\infty)$ embeds continuously in $C_{l,p}[0, +\infty)$.

Proof. For $u \in H_0^1(0, +\infty)$, we have

$$\begin{aligned} |p(t)u(t)| &= |p(t)u(t) - p(0)u(0)| \\ &= \left| \int_{0}^{t} (pu)'(s)ds \right| \\ &\leq \left| \int_{0}^{t} p'(s)u(s)ds \right| + \left| \int_{0}^{t} p(s)u'(s)ds \right| \\ &\leq \left(\int_{0}^{+\infty} p'^{2}(s)ds \right)^{\frac{1}{2}} \left(\int_{0}^{+\infty} u^{2}(s)ds \right)^{\frac{1}{2}} \\ &+ \left(\int_{0}^{+\infty} p^{2}(s)ds \right)^{\frac{1}{2}} \left(\int_{0}^{+\infty} u'^{2}(s)ds \right)^{\frac{1}{2}} \\ &\leq 2 \max(\|p'\|_{L^{2}}, \|p\|_{L^{2}}) \|u\|. \end{aligned}$$

Hence

$$\|u\|_{\infty,p} \le M \|u\|.$$

г			
L	_		

Let

$$C_l[0, +\infty) = \{ u \in C([0, +\infty), \mathbb{R}) : \lim_{t \to +\infty} u(t) \text{ exists } \},\$$

endowed with the norm $||u||_{\infty} = \sup_{t \in [0,+\infty)} |u(t)|$. Note if p(t) = 1, $\forall t \in [0,+\infty)$ then $C_{l,p}[0,+\infty) = C_l[0,+\infty)$.

To prove that $H_0^1(0, +\infty)$ embeds compactly in $C_{l,p}[0, +\infty)$, we need the following Corduneanu compactness criterion.

Lemma 2.3. ([2]) Let $D \subset C_l([0, +\infty), \mathbb{R})$ be a bounded set. Then D is relatively compact if the following conditions hold:

(a) D is equicontinuous on any compact sub-interval of \mathbb{R}^+ , i.e.

$$\begin{array}{l} \forall \, J \subset [0, +\infty) \;\; compact, \forall \, \varepsilon > 0, \; \exists \, \delta > 0, \; \forall \, t_1, t_2 \in J : \\ |t_1 - t_2| < \delta \Longrightarrow |u(t_1) - u(t_2)| \le \varepsilon, \forall \, u \in D, \end{array}$$

(b) D is equiconvergent at $+\infty$ i.e.,

$$\begin{aligned} \forall \, \varepsilon > 0, \exists \, T = T(\varepsilon) > 0 \, \, such \, \, that \\ \forall \, t : t \ge T(\varepsilon) \Longrightarrow |u(t) - u(+\infty)| \le \varepsilon, \, \forall \, u \in D. \end{aligned}$$

Lemma 2.4. Let $D \subset C_{l,p}([0, +\infty), \mathbb{R})$ be a bounded set. Then D is relatively compact if the following conditions hold: (a) D is equicontinuous on any compact sub-interval of \mathbb{R}^+ , i.e.

$$\forall J \subset [0, +\infty) \ compact, \forall \varepsilon > 0, \exists \delta > 0, \forall t_1, t_2 \in J : \\ |t_1 - t_2| < \delta \Longrightarrow |p(t_1)u(t_1) - p(t_2)u(t_2)| \le \varepsilon, \forall u \in D,$$

(b) D is equiconvergent at $+\infty$ i.e.,

$$\forall \varepsilon > 0, \exists T = T(\varepsilon) > 0 \text{ such that} \\ \forall t : t \ge T(\varepsilon) \Longrightarrow |p(t)u(t) - (pu)(+\infty)| \le \varepsilon, \forall u \in D.$$

Proof. It is easy to see that $D' = \{v : v(t) = p(t)u(t), u \in D\} \subseteq C_l$ satisfies the conditions of Lemma 2.3. Thus there exists a sequence $(v_n) \subset D'$ and $v_0 \in C_l$ such that $\lim_{n \to +\infty} ||v_n - v_0||_{C_l} = 0$. Let $u_n(t) = \frac{1}{p(t)}v_n(t)$ for $n = 1, 2, \ldots$, and $u_0(t) = \frac{1}{p(t)}v_0(t)$. Obviously, $(u_n) \subset D$, $u_0 \in C_{l,p}$ and $\lim_{n \to +\infty} ||u_n - u_0||_{C_{l,p}} = \lim_{n \to +\infty} ||v_n - v_0||_{C_l} = 0$. \Box

Lemma 2.5. The embedding

$$H_0^1(0, +\infty) \hookrightarrow C_{l,p}[0, +\infty)$$

is compact.

Proof. Let $D \subset H_0^1(0, +\infty)$ be a bounded set. Then it is bounded in $C_{l,p}[0, +\infty)$ by Lemma 2.2. Let R > 0 be such that for all $u \in D$, $||u|| \leq R$. We will apply Lemma 2.4

(a) D is equicontinuous on every compact interval of $[0, +\infty)$. Let $u \in D$ and $t_1, t_2 \in J \subset [0, +\infty)$ where J is a compact sub-interval. By using the Cauchy-Schwarz inequality, we have

$$\begin{aligned} |p(t_{1})u(t_{1}) - p(t_{2})u(t_{2})| &= \left| \int_{t_{2}}^{t_{1}} (pu)'(s)ds \right| \\ &= \left| \int_{t_{2}}^{t_{1}} p'(s)u(s) + u'(s)p(s)ds \right| \\ &\leq \left(\int_{t_{2}}^{t_{1}} p'^{2}(s)ds \right)^{\frac{1}{2}} \left(\int_{t_{2}}^{t_{1}} u^{2}(s)ds \right)^{\frac{1}{2}} \\ &+ \left(\int_{t_{2}}^{t_{1}} p^{2}(s)ds \right)^{\frac{1}{2}} \left(\int_{t_{2}}^{t_{1}} u'^{2}(s)ds \right)^{\frac{1}{2}} \\ &\leq 2 \max \left[\left(\int_{t_{2}}^{t_{1}} p'^{2}(s)ds \right)^{\frac{1}{2}}, \left(\int_{t_{2}}^{t_{1}} p^{2}(s)ds \right)^{\frac{1}{2}} \right] ||u|| \\ &\leq 2R \max \left[\left(\int_{t_{2}}^{t_{1}} p'^{2}(s)ds \right)^{\frac{1}{2}}, \left(\int_{t_{2}}^{t_{1}} p^{2}(s)ds \right)^{\frac{1}{2}} \right] \longrightarrow 0, \end{aligned}$$

as $|t_1 - t_2| \to 0$.

(b) D is equiconvergent at $+\infty$. For $t \in [0, +\infty)$ and $u \in D$, using the fact that $(pu)(+\infty) = 0$ (note $u(\infty) = 0$ and p is bounded) and using the Cauchy-Schwarz inequality, we have

$$\begin{aligned} |(pu)(t) - (pu)(+\infty)| &= \left| \int_{t}^{+\infty} (pu)'(s)ds \right| \\ &= \left| \int_{t}^{+\infty} p'(s)u(s) + u'(s)p(s)ds \right| \\ &\leq 2 \max\left[\left(\int_{t}^{+\infty} p'^{2}(s)ds \right)^{\frac{1}{2}}, \left(\int_{t}^{+\infty} p^{2}(s)ds \right)^{\frac{1}{2}} \right] ||u|| \\ &\leq 2R \max\left[\left(\int_{t}^{+\infty} p'^{2}(s)ds \right)^{\frac{1}{2}}, \left(\int_{t}^{+\infty} p^{2}(s)ds \right)^{\frac{1}{2}} \right] \longrightarrow 0, \end{aligned}$$

as $t \to +\infty$.

3. Szulkin-type functionals

Let X be a real Banach space, X^* its dual and let $E \in C^1(X, \mathbb{R})$ (the space of continuously differentiable functions from X to \mathbb{R}). Also let $\psi : X \longrightarrow \mathbb{R} \cup \{+\infty\}$ be a proper (i.e., $\psi \neq +\infty$), convex, lower semicontinuous functional. We say then that, $I = E + \psi$ is a Szulkin-type functional, (see [13]).

Definition 3.1. A functional $\psi : X \longrightarrow \mathbb{R} \cup \{+\infty\}$ is called lower semicontinuous at a point u_0 if for every sequence $\{u_n\} \subset X$ with $u_n \to u_0$, we have $\psi(u_0) \leq \liminf_{n \to +\infty} \psi(u_n)$.

Definition 3.2. An element $u \in X$ is called a critical point of $I = E + \psi$ if

$$(3.1) E'(u)(v-u) + \psi(v) - \psi(u) \ge 0 \text{ for all } v \in X,$$

which is equivalent to

$$0 \in E'(u) + \partial \psi(u)$$
 in X^* ;

here $\partial \psi(u)$ is the subdifferential of the convex functional ψ at $u \in X$ (see [11]).

Definition 3.3. A functional $I : X \longrightarrow \mathbb{R} \cup \{+\infty\}$ is called coercive if $\lim_{\|u\|_X \to +\infty} I(u) = +\infty$.

Definition 3.4. The functional $I = E + \psi$ satisfies the Palais-Smale condition at level $c \in \mathbb{R}$, denoted by $(PSZ)_c$ if every sequence $\{u_n\} \subset X$ such that $\lim_{n \to \infty} I(u_n) = c$ and

$$\langle E'(u_n), v - u_n \rangle_X + \psi(v) - \psi(u_n) \ge -\varepsilon_n ||v - u_n||$$
 for all $v \in X$,

where $\varepsilon_n \to 0$, possesses a convergent subsequence.

Theorem 3.5. ([13]) Let X be a Banach space, $I = E + \psi : X \longrightarrow \mathbb{R} \cup \{+\infty\}$ is a Szulkin-type functional and is bounded from below. If I satisfies the $(PSZ)_c$ condition for

$$c = \inf_{u \in X} I(u),$$

then c is a critical value.

Szulkin proved the following version of the Mountain Pass theorem.

Theorem 3.6. ([13]) Let X be a Banach space, $I = E + \psi : X \longrightarrow \mathbb{R} \cup \{+\infty\}$ a Szulkin-type functional and we assume that (i) $I(u) \ge \alpha$ for all $||u|| = \rho$ with $\alpha, \rho > 0$, and I(0) = 0; (ii) there is $e \in X$ with $||e|| > \rho$ and $I(e) \le 0$. If I satisfies the $(PSZ)_c$ -condition for

$$c = \inf_{\gamma \in \Gamma} \sup_{t \in [0,1]} I(\gamma(t)),$$

with

$$\Gamma = \{ \gamma \in C([0,1], X) : \gamma(0) = 0, \gamma(1) = e \},\$$

then c is a critical value of I and $c \geq \alpha$.

4. Main results

We give now the main results of this paper. We denote by F the primitive of f with respect to its second variable, i.e., $F(t, x) = \int_0^x f(t, s) ds$.

Theorem 4.1. Let f satisfy (H_f) and the following condition:

(f₁) there exists positive functions $\beta_1, \beta_2 \in L^{\infty}(0, +\infty)$ with $\beta_1^* = \sup_{t \in [0, +\infty)} \beta_1(t)$

< 1 and $\beta_2^* = \sup_{t \in [0, +\infty)} \beta_2(t) < +\infty$ such that

$$|f(t,x)| \leq \frac{\beta_1(t)}{q(t)}|x| + \beta_2(t), \text{ for all } t \in [0,+\infty) \text{ and all } x \in \mathbb{R}$$

Then, problem (P) has at least one solution $u \in K$.

Theorem 4.2. Let f satisfy (H_f) and the following conditions:

 (h_1) there exist positive functions r_1, r_2 , with $r_1q, r_2q \in L^1(\mathbb{R}^+, \mathbb{R}^+)$, and $\nu > 2$ such that

- (1) $F(t,x) \ge r_1(t)|x|^{\nu} r_2(t)$ for all $t \in [0,+\infty), \forall x \in \mathbb{R} \setminus \{0\}.$
- (2) $\nu F(t,x) \leq xf(t,x)$, for all $t \in [0, +\infty)$, $\forall x \in \mathbb{R}$.

 $(h_2) There exists a function \ \gamma \in L^{\infty}(0,+\infty) \ with \ \gamma^* = \sup_{t \in [0,+\infty)} |(p^2 \gamma)(t)| < \infty$

 $\frac{1}{2}$ such that

$$\limsup_{|x|\to 0} \frac{F(t, \frac{1}{p(t)}x)}{\frac{1}{q(t)}|x|^2} \le \gamma(t), \text{ uniformly with respect to } t \in [0, +\infty).$$

Then, problem (P) has at least one nontrivial solution $u \in K$.

We define the functional $E: H_0^1(0, +\infty) \longrightarrow \mathbb{R}$ by

$$E(u) = \frac{1}{2} ||u||^2 - \int_0^{+\infty} q(t)F(t, u(t)) dt.$$

Since $f : [0, +\infty) \times \mathbb{R} \longrightarrow \mathbb{R}$ is continuous, using the Lebesgue dominated convergence theorem and the compact embedding of $H_0^1(0, +\infty)$ in $C_{l,p}[0, +\infty)$, (Lemma 2.5) and (H_f) we have that $E \in C^1(H_0^1(0, +\infty), \mathbb{R})$. Define the indicator functional of the set K by

$$\psi_K(u) = \begin{cases} 0, & \text{if } u \in K, \\ +\infty, & \text{if } u \notin K. \end{cases}$$

We remark that the functional ψ_K is convex, proper, and lower semicontinuous. Then, $I = E + \psi_K$ is a Szulkin-type functional.

Proposition 4.3. Every critical point $u \in H_0^1(0, +\infty)$ of $I = E + \psi_K$ is a solution of (P).

Proof. Since $u \in H_0^1(0, +\infty)$ is a critical point of $I = E + \psi_K$, then

$$E'(u)(v-u) + \psi_K(v) - \psi_K(u) \ge 0, \quad \forall v \in H^1_0(0, +\infty).$$

We claim u belongs to K. If not, then $\psi_K(u) = +\infty$ and taking then, $v = 0 \in K$ in the above inequality, we obtain a contradiction. Thus $u \in K$. Fix $v \in K$. Since

$$E'(u)(v-u) = \int_{0}^{+\infty} u'(t)(v'(t) - u'(t))dt + \int_{0}^{+\infty} u(t)(v(t) - u(t))dt$$

-
$$\int_{0}^{+\infty} q(t)f(t, u(t))(v(t) - u(t))dt,$$

then u is a solution of (P).

5. Proof of Theorem 4.1

Assume the conditions of Theorem 4.1 are satisfied. We prove the existence of a solution for problem (P) using Theorem 3.5.

Proposition 5.1. If the function f satisfies the hypothesis (f_1) , then $I = E + \psi_K$ is coercive and bounded from below in $H_0^1(0, +\infty)$.

Proof. We have

$$I(u) = E(u) = \frac{1}{2} ||u||^2 - \int_0^{+\infty} q(t)F(t, u(t))dt$$

for every $u \in K$. From hypothesis (f_1) , we have

$$|F(t,x)| \le \frac{1}{2} \frac{\beta_1(t)}{q(t)} |x|^2 + \beta_2(t) |x|.$$

Using the continuous embedding of $H_0^1(0, +\infty)$ in $L^2[0, +\infty)$ with constant of embedding N = 1 (see [1]) and Lemma 2.2, we have

$$I(u) \geq \frac{1}{2} ||u||^2 - \int_0^{+\infty} \left[\frac{1}{2} \beta_1(t) u^2(t) + q(t) \beta_2(t) |u(t)| \right] dt$$

$$\geq \frac{1}{2} ||u||^2 - \frac{1}{2} \sup_{t \in [0, +\infty)} \beta_1(t) \int_0^{+\infty} |u(t)|^2 dt$$

$$- \sup_{t \in [0, +\infty)} \beta_2(t) \int_0^{+\infty} \frac{q(t)}{p(t)} p(t) |u(t)| dt$$

Frites, Moussaoui and O'Regan

$$\geq \frac{1}{2} \|u\|^2 - \frac{\beta_1^*}{2} \|u\|_{L^2}^2 - \beta_2^* \|u\|_{\infty,p} \|\frac{q}{p}\|_{L^1}$$

$$\geq \frac{1}{2} \|u\|^2 - \frac{\beta_1^*}{2} \|u\|^2 - \beta_2^* M \|u\| \|\frac{q}{p}\|_{L^1}$$

$$= \frac{1}{2} (1 - \beta_1^*) \|u\|^2 - \beta_2^* M \|\frac{q}{p}\|_{L^1} \|u\|.$$

Since $\beta_1^* < 1$, this implies that the functional $I = E + \psi_K$ is coercive. We claim it is bounded from below on $H_0^1(0, +\infty)$. If this is not true, there exists a sequence $\{u_n\}$ in $H_0^1(0, +\infty)$ such that $||u_n|| \to +\infty$ and $I(u_n) \to -\infty$, which is a contradiction with the coerciveness of I.

Proposition 5.2. If the function f satisfies (H_f) , then $I = E + \psi_K$ satisfies $(PSZ)_c$ for every $c \in \mathbb{R}$.

Proof. Let $c \in \mathbb{R}$ be fixed. Let $\{u_n\}$ be a sequence in $H_0^1(0, +\infty)$ such that

(5.1)
$$I(u_n) = E(u_n) + \psi_K(u_n) \to c$$

and

(5.2)
$$E'(u_n)(v - u_n) + \psi_K(v) - \psi_K(u_n) \ge -\varepsilon_n ||v - u_n||,$$

where $\{\varepsilon_n\}$ a sequence in $[0, \infty)$ with $\varepsilon_n \to 0$. By (5.1), we obtain that the sequence $\{u_n\}$ is in K. From Proposition 5.1, since I is coercive on $H_0^1(0, +\infty)$, the sequence $\{u_n\}$ is bounded in K. Since the sequence $\{u_n\}$ is bounded in $H_0^1(0, +\infty)$, there exists a subsequence still denoted by $\{u_n\}$ which converges weakly in $H_0^1(0, +\infty)$. Then there exists $u \in H_0^1(0, +\infty)$ such that

(5.3)
$$u_n \rightharpoonup u \quad \text{in} \quad H^1_0(0, +\infty),$$

(5.4)
$$u_n \to u \quad \text{in} \quad C_{l,p}(0, +\infty)$$

Since K is weakly closed, $u \in K$. Setting v = u in (5.2), we obtain

$$\int_{0}^{+\infty} u'_{n}(t)(u'(t) - u'_{n}(t))dt + \int_{0}^{+\infty} u_{n}(t)(u(t) - u_{n}(t))dt + \int_{0}^{+\infty} q(t)f(t, u_{n}(t))(u_{n}(t) - u(t))dt \\ \geq -\varepsilon_{n} ||u - u_{n}||.$$

Therefore, for large $n \in \mathbb{N}$, we have

$$\begin{aligned} \|u - u_n\|^2 &\leq \int_0^{+\infty} u'(t)(u'(t) - u'_n(t))dt + \int_0^{+\infty} u(t)(u(t) - u_n(t))dt \\ &+ \int_0^{+\infty} q(t)f(t, u_n(t))(u_n(t) - u(t))dt + \varepsilon_n \|u - u_n\| \\ &\leq (u, u - u_n)_{H_0^1} + \|u - u_n\|_{\infty, p} \int_0^{+\infty} \frac{q(t)}{p(t)}f(t, \frac{1}{p(t)}p(t)u_n(t))dt \\ &+ \varepsilon_n \|u - u_n\|. \end{aligned}$$

Since $\{u_n\}$ is bounded in $H_0^1(0, +\infty)$, then it is bounded in $C_{l,p}[0, +\infty)$. From (H_f) we obtain that

$$\|u - u_n\|^2 \le (u, u - u_n)_{H^1_{0,p}} + \|u - u_n\|_{\infty,p} \|\frac{q}{p}\|_{L^1_{t \in [0,\infty), y \in [-R_0, R_0]}} \sup_{y \in [-R_0, R_0]} |f(t, \frac{1}{p(t)}y)| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t, \frac{1}{p(t)}y)\| + \varepsilon_n \|u - u_n\|_{L^2_{t \in [0,\infty), y \in [-R_0, R_0]}} \|f(t,$$

where $R_0 = ||u||_{\infty,p} + 1$. From (5.3) we have

$$\lim_{n} (u, u - u_n)_{H_0^1} = 0.$$

From (5.4), the second term in the last inequality also converges to 0. Since $\varepsilon_n \to 0^+$, $\{u_n\}$ converges strongly to u in $H_0^1(0, +\infty)$. This completes the proof.

From Proposition 5.2, the functional I satisfies the $(PSZ)_c$ condition, and by Proposition 5.1, the functional I is bounded from below. Therefore (Theorem 3.5), the number

$$c_1 = \inf_{u \in H_0^1(0, +\infty)} I(u)$$

is a critical value of I. Proposition 4.3 concludes that the critical point $u_1 \in H_0^1(0, +\infty)$ which corresponds to c_1 , is actually an element of K and a solution of problem (P).

Example 5.3. Consider the function f defined by

$$f(t,x) = \frac{1}{2}e^{-t}x + \sin t,$$

and $q(t) = e^{-2t}$, $p(t) = e^{-t}$ (note $\frac{q}{p} \in L^1$). Let $\beta_1(t) = \frac{1}{2}e^{-3t}$, $\beta_2(t) = |\sin t|$ (note $\beta_1^* < 1, \beta_2^* = 1 < +\infty$). From Theorem 4.1, problem (P) has at least one solution $u \in K$.

Frites, Moussaoui and O'Regan

6. Proof of Theorem 4.2

Assume the conditions of Theorem 4.2 are satisfied. Now we prove the existence of a nontrivial solution for problem (P) using the Mountain Pass theorem of Szulkin type (see Theorem 3.6).

Proposition 6.1. If the function f satisfies (H_f) and (h_1) , then the functional $I = E + \psi_K$ satisfies $(PSZ)_c$ for every $c \in \mathbb{R}$.

Proof. Let $c \in \mathbb{R}$ be a fixed number. Let $\{u_n\}$ be a sequence in $H_0^1(0, +\infty)$ such that

(6.1)
$$I(u_n) = E(u_n) + \psi_K(u_n) \to c$$

and

(6.2)
$$E'(u_n)(v - u_n) + \psi_K(v) - \psi_K(u_n) \ge -\varepsilon_n ||v - u_n||,$$

where $\{\varepsilon_n\}$ is a sequence in $[0, \infty)$ with $\varepsilon_n \to 0$. From (6.1), we obtain that the sequence $\{u_n\}$ belongs to K. We put $v = 2u_n$ in (6.2), and we obtain

$$E'(u_n)(u_n) \ge -\varepsilon_n \|u_n\|$$

Thus

(6.3)
$$\|u_n\|^2 - \int_0^{+\infty} q(t)f(t, u_n(t))u_n(t)dt \ge -\varepsilon_n \|u_n\|.$$

From (6.1) for large $n \in \mathbb{N}$, we obtain

(6.4)
$$c+1 \ge \frac{1}{2} \|u_n\|^2 - \int_0^{+\infty} q(t)F(t, u_n(t)) \mathrm{d}t.$$

Multiplying (6.3) by ν^{-1} and adding this to (6.4) (note $\varepsilon_n \to 0$) and using $(h_1)(2)$, for large $n \in \mathbb{N}$, we obtain that

$$\begin{split} c+1 + \frac{1}{\nu} \|u_n\| &\geq \left(\frac{1}{2} - \frac{1}{\nu}\right) \|u_n\|^2 - \int_0^{+\infty} q(t) \left(F(t, u_n(t)) - \frac{1}{\nu} f(t, u_n(t)) u_n(t)\right) dt \\ &= \left(\frac{1}{2} - \frac{1}{\nu}\right) \|u_n\|^2 - \frac{1}{\nu} \int_0^{+\infty} q(t) (\nu F(t, u_n(t)) - f(t, u_n(t)) u_n(t)) dt \\ &\geq \left(\frac{1}{2} - \frac{1}{\nu}\right) \|u_n\|^2. \end{split}$$

Since $\nu > 2$, we deduce that the sequence $\{u_n\}$ is bounded in K. Then there exits a subsequence which converges weakly in $H_0^1(0, +\infty)$. There exists $u \in H_0^1(0, +\infty)$ such that

$$(6.5) u_n \rightharpoonup u \quad \text{in} \quad H_0^1(0, +\infty),$$

(6.6)
$$u_n \to u \quad \text{in} \quad C_{l,p}[0, +\infty).$$

Since K is weakly closed, $u \in K$. Put v = u in (6.2), and we obtain

$$\int_{0}^{+\infty} p(t)u'_{n}(t)(u'(x) - u'_{n}(t))dt + \int_{0}^{+\infty} u(x)(u(t) - u_{n}(t))dt + \int_{0}^{+\infty} q(t)f(t, u_{n}(t))(u_{n}(t) - u(t))dt \geq -\varepsilon_{n} \|u - u_{n}\|.$$

Then, for large $n \in \mathbb{N}$, we have

$$\begin{aligned} \|u - u_n\|^2 &\leq \int_0^{+\infty} u'(x)(u'(t) - u'_n(t))dt + \int_0^{+\infty} u(x)(u(t) - u_n(t))dt \\ &+ \int_0^{+\infty} q(t)f(t, u_n(t))(u_n(t) - u(t))dt + \varepsilon_n \|u - u_n\| \\ &\leq (u, u - u_n)_{H_0^1} + \|u - u_n\|_{\infty, p} \int_0^{+\infty} \frac{q(t)}{p(t)}f(t, \frac{1}{p(t)}p(t)u(t))dt + \varepsilon_n \|u - u_n\|. \end{aligned}$$

Since $\{u_n\}$ is bounded in $H_0^1(0, +\infty)$, then it is bounded in $C_{l,p}[0, +\infty)$. From (H_f) we obtain that

 $\|u - u_n\|^2 \le (u, u - u_n)_{H_0^1} + \|u - u_n\|_{\infty, p} \|\frac{q}{p}\|_{L^1} \sup_{t \in [0, \infty), \ y \in [-R, R]} |f(t, \frac{1}{p(t)}y)| + \varepsilon_n \|u - u_n\|$

where $R = ||u||_{\infty,p} + 1$. From (6.5), we have

$$\lim_{n} (u, u - u_n)_{H^1_{0,p}} = 0$$

From (6.6), the second term in the last inequality also tends to 0. Since $\varepsilon_n \to 0^+$, $\{u_n\}$ converges strongly to u in $H_0^1(0, +\infty)$. This completes the proof. \Box

Proposition 6.2. If the function f satisfies (h_1) and (h_2) , then the following assertions are true:

(i) there exist constants $\alpha > 0$ and $\rho > 0$ such that $I(u) \ge \alpha$ for all $||u|| = \rho$; (ii) there exists an $e \in H_0^1(0, +\infty)$ with $||e|| > \rho$ and $I(e) \le 0$.

Proof. (i) From condition (h_2) , there exists $\varepsilon > 0$ and $\delta > 0$ such that

$$|x| \le \delta \Longrightarrow |F(t, \frac{1}{p(t)}x)| \le (\gamma(t) - \varepsilon) \frac{1}{q(t)} |x|^2.$$

Therefore, by using the continuous embeddings of $H_0^1(0, +\infty)$ in $L^2[0, +\infty)$ and $H_0^1(0, +\infty)$ in $C_{l,p}[0, +\infty)$ with $||u||_{L^2} \leq ||u||$, and $||u||_{\infty,p} \leq M ||u||$, we have for $||u|| = \rho$ small enough and $\alpha = (\frac{1}{2} - (\gamma^* - \varepsilon \sup_{t \in [0, +\infty)} |p(t)|^2))\rho^2 > 0$, that

 $||u||_{\infty,p} \leq M\rho \leq \delta$ and so we obtain

$$\begin{split} I(u) &= \frac{1}{2} \|u\|^2 - \int_0^{+\infty} q(t) F(t, u(t)) dt \\ &= \frac{1}{2} \|u\|^2 - \int_0^{+\infty} q(t) F(t, \frac{1}{p(t)} p(t) u(t)) dt \\ &\geq \frac{1}{2} \|u\|^2 - \int_0^{+\infty} (\gamma(t) - \varepsilon) |p(t) u(t)|^2 dt \\ &\geq \frac{1}{2} \|u\|^2 - \sup_{t \in [0, +\infty)} \left(|p(t)|^2 (\gamma(t) - \varepsilon) \right) \int_0^{+\infty} |u(t)|^2 dt \\ &\geq \frac{1}{2} \|u\|^2 - (\gamma^* - \varepsilon \sup_{t \in [0, +\infty)} |p(t)|^2) \|u\|_{L^2}^2 \\ &\geq \frac{1}{2} \|u\|^2 - (\gamma^* - \varepsilon \sup_{t \in [0, +\infty)} |p(t)|^2) \|u\|^2 \\ &= (\frac{1}{2} - (\gamma^* - \varepsilon \sup_{t \in [0, +\infty)} |p(t)|^2)) \|u\|^2. \end{split}$$

Then assertion (i) holds.

(*ii*) Fix $u_0 \in K \setminus \{0\}$, and let $u = su_0$ (s > 0). From condition (h_1)(1), we have

$$I(su_0) = \frac{1}{2}s^2 ||u_0||^2 - \int_0^{+\infty} q(t)F(t, su_0(t))dt$$

$$\leq \frac{1}{2}s^2 ||u_0||^2 - s^{\nu} \int_0^{+\infty} q(t)r_1(t)|u_0|^{\nu} - \int_0^{+\infty} q(t)r_2(t)dt.$$

Since $\nu > 2$, we obtain that $I(su_0) \to -\infty$ as $s \to +\infty$. Thus, it is possible to take s so large such that for $e = su_0$, we have $||e|| > \rho$ and $I(e) \le 0$. The proof is complete.

From Proposition 6.1, the functional I satisfies the $(PSZ)_c$ -condition $c \in \mathbb{R}$, and I(0) = 0. From Proposition 6.2, it follows that there exist constants $\alpha, \rho > 0$ and $e \in H_0^1(0, +\infty)$ such that I satisfies the conditions of Theorem 3.6 and therefore,

$$c_2 = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I(\gamma(t)),$$

is a critical value of I with $c_2 \ge \alpha > 0$, where

$$\Gamma = \{ \gamma \in C([0,1], X) : \gamma(0) = 0, \gamma(1) = e \}.$$

We remark that the critical point $u_2 \in H_0^1(0, +\infty)$ associated to the critical value c_2 cannot be trivial because $I(u_2) = c_2 > 0 = I(0)$. From Proposition 4.3, we obtain that u_2 is an element of K and then a solution of (P).

Example 6.3. Consider the function f defined by

$$f(t,x) = e^{-3t}x|x|,$$

and $q(t) = e^{-2t}$, $p(t) = e^{-t}$ (note $\frac{q}{p} \in L^1$). Let $r_1(t) = \frac{1}{3}e^{-t}$ and $\nu = 3$ (note $r_1q \in L^1$). From Theorem 4.2, problem (P) has at least one nontrivial solution $u \in K$.

Remark 6.4. It is possible to replace (H_f) with: For any constant R > 0 there exists a nonnegative function ψ_R with $\frac{q}{p}\psi_R \in L^1[0,\infty)$ and $\sup\{|f(t,\frac{1}{p(t)}y)| : y \in [-R,R]\} \le \psi_R(t)$ for a.e. $t \ge 0$, so with obvious adjustments we see that the results in this paper can be extended.

References

- H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2010.
- [2] C. Corduneanu, Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973.
- [3] A. Friedman, Variational Principles and Free Boundary Value Problems, Wiley-Interscience, New York, 1983.
- [4] J. Heinonen, T. Kilpelinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Univ. Press, Oxford, 1993.
- [5] S. Karamardian, Generalized complementarity problem, J. Optim. Theory Appl. 8 (1971) 161–168.
- [6] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Academic Press, New York, 1980.
- [7] A. Kristály, I. Lazăr and N. S. Papageorgiou, A variational inequality on the half line, Nonlinear Anal. 71 (2009) 5003–5009.
- [8] K. Lan, A variational inequality theory in reflexive smooth Banach spaces and applications to p-Laplacian elliptic inequalities, Nonlinear Anal. 113 (2015) 71–86.
- [9] S. László, Some existence results of solutions for general variational inequalities, J. Optim. Theory Appl. 150 (2011) 425–443.
- [10] O. Mancino and G. Stampacchia, Convex programming and variational inequalities, J. Optim. Theory Appl. 9 (1972) 3–23.
- [11] N. S. Papageorgiou and S. K. Yiallourou, Handbook of Applied Analysis, Springer, New York, 2009.
- [12] J. F. Rodrigues, Obstacle Problems in Mathematical Physics, Mathematics Studies 134, Elsevier, 1987.
- [13] A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986), no. 2, 77–109.
- [14] G. M. Troianiello, Elliptic Differential Equations and Obstacle Problems, The University Series in Mathematics, Springer, 1987.

(Ouided Frites) LABORATORY OF FIXED POINT THEORY AND APPLICATIONS, ÉCOLE NOR-MALE SUPÉRIEURE, KOUBA, ALGIERS, ALGERIA.

E-mail address: ofrites@yahoo.fr

(Toufik Moussaoui) LABORATORY OF FIXED POINT THEORY AND APPLICATIONS, ÉCOLE NORMALE SUPÉRIEURE, KOUBA, ALGIERS, ALGERIA.

 $E\text{-}mail \ address: \verb"moussaoui@ens-kouba.dz"$

(Donal O'Regan) School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland, NAAM Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.

 $E\text{-}mail\ address:\ \texttt{donal.oregan@nuigalway.ie}$