Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 1, pp. 223-237

Title:

Existence of solutions for a variational inequality on the half-line
Author(s):
O. Frites, T. Moussaoui and D. O'Regan

Published by Iranian Mathematical Society

EXISTENCE OF SOLUTIONS FOR A VARIATIONAL INEQUALITY ON THE HALF-LINE

O. FRITES, T. MOUSSAOUI* AND D. O'REGAN

(Communicated by Maziar Salahi)

Abstract

In this paper we study the existence of nontrivial solutions for a variational inequality on the half-line. Our approach is based on the non-smooth critical point theory for Szulkin-type functionals. Keywords: Variational inequality, critical point, mountain pass theorem, minimization, Szulkin-type functionals. MSC(2010): Primary: 47J20; Secondary: 49J40.

1. Introduction

Variational inequalities have applications in physics, mechanics, engineering and optimization (see [3-6] and [10]) and they arise for example in obstacle problems (see $[6,12,14]$ and the references therein). We note that variational inequalities are generalizations of integral equations.

In [8], the author developed a theory of variational inequalities for demicontinuous S-contractive maps in reflexive smooth Banach spaces and studied the existence of nonzero positive weak solutions for p-Laplacian elliptic inequalities. In [9], the author introduced a new class of operators and established some existence results for general variational inequalities.

In this paper, we consider the variational inequality, denoted by (P) : Find $u \in K$ such that

$$
\begin{aligned}
& \int_{0}^{+\infty} u^{\prime}(t)\left(v^{\prime}(t)-u^{\prime}(t)\right) \mathrm{d} t+\int_{0}^{+\infty} u(t)(v(t)-u(t)) \mathrm{d} t \\
- & \int_{0}^{+\infty} q(t) f(t, u(t))(v(t)-u(t)) \mathrm{d} t \geq 0, \quad \forall v \in K
\end{aligned}
$$

[^0]where $f:[0,+\infty) \times \mathbb{R} \longrightarrow \mathbb{R}$ is a continuous function which satisfies the following condition:
$\left(H_{f}\right)$ For any constant $R>0$, we assume $\sup \left\{\left|f\left(t, \frac{1}{p(t)} y\right)\right|: t \in[0, \infty), y \in\right.$ $[-R, R]\}<\infty$.
Here K is a closed convex set in the Sobolev space $H_{0}^{1}(0,+\infty)$ with $0 \in K$, and $p:[0,+\infty) \longrightarrow(0,+\infty)$ is continuously differentiable and bounded, q : $[0,+\infty) \longrightarrow \mathbb{R}_{+}$with $\frac{q}{p} \in L^{1}[0,+\infty)$ and
$$
M=2 \max \left(\|p\|_{L^{2}},\left\|p^{\prime}\right\|_{L^{2}}\right)<+\infty
$$

In Section 3, we use the abstract theory from [13] using some motivating ideas initiated in [7]. In particular we use non-smooth critical point theory for Szulkin-type functionals to obtain nontrivial solutions for (P). In our analysis we will use a new compactness result (the embedding $H_{0}^{1}(0,+\infty) \hookrightarrow$ $C_{l, p}[0,+\infty)$ is compact) obtained in Section 2.

The authors in [7] studied a variational inequality posed on a very special set K in $W^{1,2}(0, \infty)$, namely

$$
K=\left\{u \in W^{1,2}(0, \infty): u \geq 0, u \text { is nonincreasing on }(0, \infty)\right\}
$$

Our variational inequality is posed on a very general set, namely on any convex closed subset in $W_{0}^{1,2}(0, \infty)$. The results in [7] do not extend to general convex closed subsets of $W^{1,2}(0, \infty)$. Moreover the authors in [7] considered nonlinear terms of the form $f(t, u)=f(u)$ whereas in our paper we consider the general form $f(t, u)$. Also the hypotheses in our paper are quite different from those in [7]; see for example (f3) in [7] and our hypothesis $\left(H_{f}\right)$.

2. Preliminaries

We endow the space $H_{0}^{1}(0,+\infty)$ with its natural norm

$$
\|u\|=\left(\int_{0}^{+\infty} u^{2}(t) d t+\int_{0}^{+\infty} u^{\prime 2}(t) d t\right)^{\frac{1}{2}}
$$

associated with the scalar product

$$
(u, v)=\int_{0}^{+\infty} u(t) v(t) d t+\int_{0}^{+\infty} u^{\prime}(t) v^{\prime}(t) d t
$$

Note that if $u \in H_{0}^{1}(0,+\infty)$, then $u(0)=u(+\infty)=0$, (see [1, Corollary 8.9]). Let

$$
C_{l, p}[0,+\infty)=\left\{u \in C([0,+\infty), \mathbb{R}): \lim _{t \rightarrow+\infty} p(t) u(t) \text { exists }\right\}
$$

endowed with the norm

$$
\|u\|_{\infty, p}=\sup _{t \in[0,+\infty)} p(t)|u(t)| .
$$

Definition 2.1. A Banach space X is embedded continuously in a Banach space $Y(X \hookrightarrow Y)$ if
(i) $X \subseteq Y$,
(ii) the canonical injection $j: X \longrightarrow Y$ is a continuous (linear) operator.

Moreover, if the canonical injection $j: X \longrightarrow Y$ is compact, then we say that X is compactly embedded in Y.

Lemma 2.2. $H_{0}^{1}(0,+\infty)$ embeds continuously in $C_{l, p}[0,+\infty)$.
Proof. For $u \in H_{0}^{1}(0,+\infty)$, we have

$$
\begin{aligned}
|p(t) u(t)| & =|p(t) u(t)-p(0) u(0)| \\
& =\left|\int_{0}^{t}(p u)^{\prime}(s) d s\right| \\
& \leq\left|\int_{0}^{t} p^{\prime}(s) u(s) d s\right|+\left|\int_{0}^{t} p(s) u^{\prime}(s) d s\right| \\
& \leq\left(\int_{0}^{+\infty} p^{\prime 2}(s) d s\right)^{\frac{1}{2}}\left(\int_{0}^{+\infty} u^{2}(s) d s\right)^{\frac{1}{2}} \\
& +\left(\int_{0}^{+\infty} p^{2}(s) d s\right)^{\frac{1}{2}}\left(\int_{0}^{+\infty} u^{\prime 2}(s) d s\right)^{\frac{1}{2}} \\
& \leq 2 \max \left(\left\|p^{\prime}\right\|_{L^{2}},\|p\|_{L^{2}}\right)\|u\| .
\end{aligned}
$$

Hence

$$
\|u\|_{\infty, p} \leq M\|u\| .
$$

Let

$$
C_{l}[0,+\infty)=\left\{u \in C([0,+\infty), \mathbb{R}): \lim _{t \rightarrow+\infty} u(t) \text { exists }\right\}
$$

endowed with the norm $\|u\|_{\infty}=\sup _{t \in[0,+\infty)}|u(t)|$. Note if $p(t)=1, \forall t \in$ $[0,+\infty)$ then $C_{l, p}[0,+\infty)=C_{l}[0,+\infty)$.

To prove that $H_{0}^{1}(0,+\infty)$ embeds compactly in $C_{l, p}[0,+\infty)$, we need the following Corduneanu compactness criterion.

Lemma 2.3. ([2]) Let $D \subset C_{l}([0,+\infty), \mathbb{R})$ be a bounded set. Then D is relatively compact if the following conditions hold:
(a) D is equicontinuous on any compact sub-interval of \mathbb{R}^{+}, i.e.

$$
\begin{gathered}
\forall J \subset[0,+\infty) \text { compact, } \forall \varepsilon>0, \exists \delta>0, \forall t_{1}, t_{2} \in J: \\
\left|t_{1}-t_{2}\right|<\delta \Longrightarrow\left|u\left(t_{1}\right)-u\left(t_{2}\right)\right| \leq \varepsilon, \forall u \in D
\end{gathered}
$$

(b) D is equiconvergent at $+\infty$ i.e.,

$$
\begin{gathered}
\forall \varepsilon>0, \exists T=T(\varepsilon)>0 \text { such that } \\
\forall t: t \geq T(\varepsilon) \Longrightarrow|u(t)-u(+\infty)| \leq \varepsilon, \forall u \in D .
\end{gathered}
$$

Lemma 2.4. Let $D \subset C_{l, p}([0,+\infty), \mathbb{R})$ be a bounded set. Then D is relatively compact if the following conditions hold:
(a) D is equicontinuous on any compact sub-interval of \mathbb{R}^{+}, i.e.

$$
\begin{aligned}
& \forall J \subset[0,+\infty) \text { compact }, \forall \varepsilon>0, \exists \delta>0, \forall t_{1}, t_{2} \in J: \\
& \left|t_{1}-t_{2}\right|<\delta \Longrightarrow\left|p\left(t_{1}\right) u\left(t_{1}\right)-p\left(t_{2}\right) u\left(t_{2}\right)\right| \leq \varepsilon, \forall u \in D
\end{aligned}
$$

(b) D is equiconvergent at $+\infty$ i.e.,

$$
\begin{gathered}
\forall \varepsilon>0, \exists T=T(\varepsilon)>0 \text { such that } \\
\forall t: t \geq T(\varepsilon) \Longrightarrow|p(t) u(t)-(p u)(+\infty)| \leq \varepsilon, \forall u \in D .
\end{gathered}
$$

Proof. It is easy to see that $D^{\prime}=\{v: v(t)=p(t) u(t), u \in D\} \subseteq C_{l}$ satisfies the conditions of Lemma 2.3. Thus there exists a sequence $\left(v_{n}\right) \subset D^{\prime}$ and $v_{0} \in C_{l}$ such that $\lim _{n \rightarrow+\infty}\left\|v_{n}-v_{0}\right\|_{C_{l}}=0$. Let $u_{n}(t)=\frac{1}{p(t)} v_{n}(t)$ for $n=1,2, \ldots$, and $u_{0}(t)=\frac{1}{p(t)} v_{0}(t)$. Obviously, $\left(u_{n}\right) \subset D, u_{0} \in C_{l, p}$ and $\lim _{n \rightarrow+\infty}\left\|u_{n}-u_{0}\right\|_{C_{l, p}}=\lim _{n \rightarrow+\infty}\left\|v_{n}-v_{0}\right\|_{C_{l}}=0$.

Lemma 2.5. The embedding

$$
H_{0}^{1}(0,+\infty) \hookrightarrow C_{l, p}[0,+\infty)
$$

is compact.

Proof. Let $D \subset H_{0}^{1}(0,+\infty)$ be a bounded set. Then it is bounded in $C_{l, p}[0,+\infty)$ by Lemma 2.2. Let $R>0$ be such that for all $u \in D,\|u\| \leq R$. We will apply Lemma 2.4
(a) D is equicontinuous on every compact interval of $[0,+\infty)$. Let $u \in D$ and $t_{1}, t_{2} \in J \subset[0,+\infty)$ where J is a compact sub-interval. By using the

Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
\left|p\left(t_{1}\right) u\left(t_{1}\right)-p\left(t_{2}\right) u\left(t_{2}\right)\right|= & \left|\int_{t_{2}}^{t_{1}}(p u)^{\prime}(s) d s\right| \\
= & \left|\int_{t_{2}}^{t_{1}} p^{\prime}(s) u(s)+u^{\prime}(s) p(s) d s\right| \\
\leq & \left(\int_{t_{2}}^{t_{1}} p^{\prime 2}(s) d s\right)^{\frac{1}{2}}\left(\int_{t_{2}}^{t_{1}} u^{2}(s) d s\right)^{\frac{1}{2}} \\
& +\left(\int_{t_{2}}^{t_{1}} p^{2}(s) d s\right)^{\frac{1}{2}}\left(\int_{t_{2}}^{t_{1}} u^{\prime 2}(s) d s\right)^{\frac{1}{2}} \\
\leq & 2 \max \left[\left(\int_{t_{2}}^{t_{1}} p^{\prime 2}(s) d s\right)^{\frac{1}{2}},\left(\int_{t_{2}}^{t_{1}} p^{2}(s) d s\right)^{\frac{1}{2}}\right]\|u\| \\
\leq & 2 R \max \left[\left(\int_{t_{2}}^{t_{1}} p^{\prime 2}(s) d s\right)^{\frac{1}{2}},\left(\int_{t_{2}}^{t_{1}} p^{2}(s) d s\right)^{\frac{1}{2}}\right] \longrightarrow 0
\end{aligned}
$$

as $\left|t_{1}-t_{2}\right| \rightarrow 0$.
(b) D is equiconvergent at $+\infty$. For $t \in[0,+\infty)$ and $u \in D$, using the fact that $(p u)(+\infty)=0$ (note $u(\infty)=0$ and p is bounded) and using the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
|(p u)(t)-(p u)(+\infty)| & =\left|\int_{t}^{+\infty}(p u)^{\prime}(s) d s\right| \\
& =\left|\int_{t}^{+\infty} p^{\prime}(s) u(s)+u^{\prime}(s) p(s) d s\right| \\
& \leq 2 \max \left[\left(\int_{t}^{+\infty} p^{\prime 2}(s) d s\right)^{\frac{1}{2}},\left(\int_{t}^{+\infty} p^{2}(s) d s\right)^{\frac{1}{2}}\right]\|u\| \\
& \leq 2 R \max \left[\left(\int_{t}^{+\infty} p^{\prime 2}(s) d s\right)^{\frac{1}{2}},\left(\int_{t}^{+\infty} p^{2}(s) d s\right)^{\frac{1}{2}}\right] \longrightarrow 0
\end{aligned}
$$

as $t \rightarrow+\infty$.

3. Szulkin-type functionals

Let X be a real Banach space, X^{*} its dual and let $E \in C^{1}(X, \mathbb{R})$ (the space of continuously differentiable functions from X to $\mathbb{R})$. Also let $\psi: X \longrightarrow$ $\mathbb{R} \cup\{+\infty\}$ be a proper (i.e., $\psi \neq+\infty$), convex, lower semicontinuous functional. We say then that, $I=E+\psi$ is a Szulkin-type functional, (see [13]).
Definition 3.1. A functional $\psi: X \longrightarrow \mathbb{R} \cup\{+\infty\}$ is called lower semicontinuous at a point u_{0} if for every sequence $\left\{u_{n}\right\} \subset X$ with $u_{n} \rightarrow u_{0}$, we have $\psi\left(u_{0}\right) \leq \liminf _{n \rightarrow+\infty} \psi\left(u_{n}\right)$.
Definition 3.2. An element $u \in X$ is called a critical point of $I=E+\psi$ if

$$
\begin{equation*}
E^{\prime}(u)(v-u)+\psi(v)-\psi(u) \geq 0 \text { for all } v \in X \tag{3.1}
\end{equation*}
$$

which is equivalent to

$$
0 \in E^{\prime}(u)+\partial \psi(u) \text { in } X^{*} ;
$$

here $\partial \psi(u)$ is the subdifferential of the convex functional ψ at $u \in X$ (see [11]).
Definition 3.3. A functional $I: X \longrightarrow \mathbb{R} \cup\{+\infty\}$ is called coercive if $\lim _{\|u\|_{X} \rightarrow+\infty} I(u)=+\infty$.
Definition 3.4. The functional $I=E+\psi$ satisfies the Palais-Smale condition at level $c \in \mathbb{R}$, denoted by $(P S Z)_{c}$ if every sequence $\left\{u_{n}\right\} \subset X$ such that $\lim _{n \rightarrow \infty} I\left(u_{n}\right)=c$ and

$$
\left\langle E^{\prime}\left(u_{n}\right), v-u_{n}\right\rangle_{X}+\psi(v)-\psi\left(u_{n}\right) \geq-\varepsilon_{n}\left\|v-u_{n}\right\| \text { for all } v \in \mathrm{X}
$$

where $\varepsilon_{n} \rightarrow 0$, possesses a convergent subsequence.
Theorem 3.5. ([13]) Let X be a Banach space, $I=E+\psi: X \longrightarrow \mathbb{R} \cup\{+\infty\}$ is a Szulkin-type functional and is bounded from below. If I satisfies the $(P S Z)_{c^{-}}$ condition for

$$
c=\inf _{u \in X} I(u)
$$

then c is a critical value.
Szulkin proved the following version of the Mountain Pass theorem.
Theorem 3.6. ([13]) Let X be a Banach space, $I=E+\psi: X \longrightarrow \mathbb{R} \cup\{+\infty\}$ a Szulkin-type functional and we assume that
(i) $I(u) \geq \alpha$ for all $\|u\|=\rho$ with $\alpha, \rho>0$, and $I(0)=0$;
(ii) there is $e \in X$ with $\|e\|>\rho$ and $I(e) \leq 0$.

If I satisfies the $(P S Z)_{c}$-condition for

$$
c=\inf _{\gamma \in \Gamma} \sup _{t \in[0,1]} I(\gamma(t)),
$$

with

$$
\Gamma=\{\gamma \in C([0,1], X): \gamma(0)=0, \gamma(1)=e\}
$$

then c is a critical value of I and $c \geq \alpha$.

4. Main results

We give now the main results of this paper. We denote by F the primitive of f with respect to its second variable, i.e., $F(t, x)=\int_{0}^{x} f(t, s) d s$.
Theorem 4.1. Let f satisfy $\left(H_{f}\right)$ and the following condition:
$\left(f_{1}\right)$ there exists positive functions $\beta_{1}, \beta_{2} \in L^{\infty}(0,+\infty)$ with $\beta_{1}^{*} \underset{t \in[0,+\infty)}{\sup } \beta_{1}(t)$ <1 and $\beta_{2}^{*}=\sup _{t \in[0,+\infty)} \beta_{2}(t)<+\infty$ such that

$$
|f(t, x)| \leq \frac{\beta_{1}(t)}{q(t)}|x|+\beta_{2}(t), \text { for all } t \in[0,+\infty) \text { and all } x \in \mathbb{R}
$$

Then, problem (P) has at least one solution $u \in K$.
Theorem 4.2. Let f satisfy $\left(H_{f}\right)$ and the following conditions:
$\left(h_{1}\right)$ there exist positive functions r_{1}, r_{2}, with $r_{1} q, r_{2} q \in L^{1}\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$, and $\nu>2$ such that
(1) $F(t, x) \geq r_{1}(t)|x|^{\nu}-r_{2}(t)$ for all $t \in[0,+\infty), \forall x \in \mathbb{R} \backslash\{0\}$.
(2) $\nu F(t, x) \leq x f(t, x)$, for all $t \in[0,+\infty), \forall x \in \mathbb{R}$.
$\left(h_{2}\right)$ There exists a function $\gamma \in L^{\infty}(0,+\infty)$ with $\gamma^{*}=\sup _{t \in[0,+\infty)}\left|\left(p^{2} \gamma\right)(t)\right|<$ $\frac{1}{2}$ such that

$$
\limsup _{|x| \rightarrow 0} \frac{F\left(t, \frac{1}{p(t)} x\right)}{\frac{1}{q(t)}|x|^{2}} \leq \gamma(t), \text { uniformly with respect to } t \in[0,+\infty)
$$

Then, problem (P) has at least one nontrivial solution $u \in K$.
We define the functional $E: H_{0}^{1}(0,+\infty) \longrightarrow \mathbb{R}$ by

$$
E(u)=\frac{1}{2}\|u\|^{2}-\int_{0}^{+\infty} q(t) F(t, u(t)) \mathrm{d} t
$$

Since $f:[0,+\infty) \times \mathbb{R} \longrightarrow \mathbb{R}$ is continuous, using the Lebesgue dominated convergence theorem and the compact embedding of $H_{0}^{1}(0,+\infty)$ in $C_{l, p}[0,+\infty)$, (Lemma 2.5) and $\left(H_{f}\right)$ we have that $E \in C^{1}\left(H_{0}^{1}(0,+\infty), \mathbb{R}\right)$.
Define the indicator functional of the set K by

$$
\psi_{K}(u)= \begin{cases}0, & \text { if } u \in K \\ +\infty, & \text { if } u \notin K\end{cases}
$$

We remark that the functional ψ_{K} is convex, proper, and lower semicontinuous. Then, $I=E+\psi_{K}$ is a Szulkin-type functional.

Proposition 4.3. Every critical point $u \in H_{0}^{1}(0,+\infty)$ of $I=E+\psi_{K}$ is a solution of (P).

Proof. Since $u \in H_{0}^{1}(0,+\infty)$ is a critical point of $I=E+\psi_{K}$, then

$$
E^{\prime}(u)(v-u)+\psi_{K}(v)-\psi_{K}(u) \geq 0, \quad \forall v \in H_{0}^{1}(0,+\infty)
$$

We claim u belongs to K. If not, then $\psi_{K}(u)=+\infty$ and taking then, $v=0 \in K$ in the above inequality, we obtain a contradiction. Thus $u \in K$. Fix $v \in K$. Since

$$
\begin{aligned}
E^{\prime}(u)(v-u) & =\int_{0}^{+\infty} u^{\prime}(t)\left(v^{\prime}(t)-u^{\prime}(t)\right) d t+\int_{0}^{+\infty} u(t)(v(t)-u(t)) d t \\
& -\int_{0}^{+\infty} q(t) f(t, u(t))(v(t)-u(t)) \mathrm{d} t
\end{aligned}
$$

then u is a solution of (P).

5. Proof of Theorem 4.1

Assume the conditions of Theorem 4.1 are satisfied. We prove the existence of a solution for problem (P) using Theorem 3.5.

Proposition 5.1. If the function f satisfies the hypothesis $\left(f_{1}\right)$, then $I=$ $E+\psi_{K}$ is coercive and bounded from below in $H_{0}^{1}(0,+\infty)$.

Proof. We have

$$
I(u)=E(u)=\frac{1}{2}\|u\|^{2}-\int_{0}^{+\infty} q(t) F(t, u(t)) \mathrm{d} t
$$

for every $u \in K$. From hypothesis $\left(f_{1}\right)$, we have

$$
|F(t, x)| \leq \frac{1}{2} \frac{\beta_{1}(t)}{q(t)}|x|^{2}+\beta_{2}(t)|x|
$$

Using the continuous embedding of $H_{0}^{1}(0,+\infty)$ in $L^{2}[0,+\infty)$ with constant of embedding $N=1$ (see [1]) and Lemma 2.2, we have

$$
\begin{aligned}
I(u) \geq & \frac{1}{2}\|u\|^{2}-\int_{0}^{+\infty}\left[\frac{1}{2} \beta_{1}(t) u^{2}(t)+q(t) \beta_{2}(t)|u(t)|\right] d t \\
\geq & \frac{1}{2}\|u\|^{2}-\frac{1}{2} \sup _{t \in[0,+\infty)} \beta_{1}(t) \int_{0}^{+\infty}|u(t)|^{2} d t \\
& -\sup _{t \in[0,+\infty)} \beta_{2}(t) \int_{0}^{+\infty} \frac{q(t)}{p(t)} p(t)|u(t)| d t
\end{aligned}
$$

$$
\begin{aligned}
& \geq \frac{1}{2}\|u\|^{2}-\frac{\beta_{1}^{*}}{2}\|u\|_{L^{2}}^{2}-\beta_{2}^{*}\|u\|_{\infty, p}\left\|\frac{q}{p}\right\|_{L^{1}} \\
& \geq \frac{1}{2}\|u\|^{2}-\frac{\beta_{1}^{*}}{2}\|u\|^{2}-\beta_{2}^{*} M\|u\|\left\|\frac{q}{p}\right\|_{L^{1}} \\
& =\frac{1}{2}\left(1-\beta_{1}^{*}\right)\|u\|^{2}-\beta_{2}^{*} M\left\|\frac{q}{p}\right\|_{L^{1}}\|u\| .
\end{aligned}
$$

Since $\beta_{1}^{*}<1$, this implies that the functional $I=E+\psi_{K}$ is coercive. We claim it is bounded from below on $H_{0}^{1}(0,+\infty)$. If this is not true, there exists a sequence $\left\{u_{n}\right\}$ in $H_{0}^{1}(0,+\infty)$ such that $\left\|u_{n}\right\| \rightarrow+\infty$ and $I\left(u_{n}\right) \rightarrow-\infty$, which is a contradiction with the coerciveness of I.

Proposition 5.2. If the function f satisfies $\left(H_{f}\right)$, then $I=E+\psi_{K}$ satisfies $(P S Z)_{c}$ for every $c \in \mathbb{R}$.

Proof. Let $c \in \mathbb{R}$ be fixed. Let $\left\{u_{n}\right\}$ be a sequence in $H_{0}^{1}(0,+\infty)$ such that

$$
\begin{equation*}
I\left(u_{n}\right)=E\left(u_{n}\right)+\psi_{K}\left(u_{n}\right) \rightarrow c \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
E^{\prime}\left(u_{n}\right)\left(v-u_{n}\right)+\psi_{K}(v)-\psi_{K}\left(u_{n}\right) \geq-\varepsilon_{n}\left\|v-u_{n}\right\|, \tag{5.2}
\end{equation*}
$$

where $\left\{\varepsilon_{n}\right\}$ a sequence in $[0, \infty)$ with $\varepsilon_{n} \rightarrow 0$. By (5.1), we obtain that the sequence $\left\{u_{n}\right\}$ is in K. From Proposition 5.1, since I is coercive on $H_{0}^{1}(0,+\infty)$, the sequence $\left\{u_{n}\right\}$ is bounded in K. Since the sequence $\left\{u_{n}\right\}$ is bounded in $H_{0}^{1}(0,+\infty)$, there exists a subsequence still denoted by $\left\{u_{n}\right\}$ which converges weakly in $H_{0}^{1}(0,+\infty)$. Then there exists $u \in H_{0}^{1}(0,+\infty)$ such that

$$
\begin{array}{ll}
u_{n} \rightharpoonup u \quad \text { in } \quad H_{0}^{1}(0,+\infty) \\
u_{n} \rightarrow u \quad \text { in } \quad C_{l, p}(0,+\infty) \tag{5.4}
\end{array}
$$

Since K is weakly closed, $u \in K$. Setting $v=u$ in (5.2), we obtain

$$
\begin{aligned}
\int_{0}^{+\infty} u_{n}^{\prime}(t)\left(u^{\prime}(t)-u_{n}^{\prime}(t)\right) d t & +\int_{0}^{+\infty} u_{n}(t)\left(u(t)-u_{n}(t)\right) d t \\
& +\int_{0}^{+\infty} q(t) f\left(t, u_{n}(t)\right)\left(u_{n}(t)-u(t)\right) \mathrm{d} t \\
& \geq-\varepsilon_{n}\left\|u-u_{n}\right\|
\end{aligned}
$$

Therefore, for large $n \in \mathbb{N}$, we have

$$
\begin{aligned}
\left\|u-u_{n}\right\|^{2} \leq & \int_{0}^{+\infty} u^{\prime}(t)\left(u^{\prime}(t)-u_{n}^{\prime}(t)\right) d t+\int_{0}^{+\infty} u(t)\left(u(t)-u_{n}(t)\right) d t \\
& +\int_{0}^{+\infty} q(t) f\left(t, u_{n}(t)\right)\left(u_{n}(t)-u(t)\right) \mathrm{d} t+\varepsilon_{n}\left\|u-u_{n}\right\| \\
\leq & \left(u, u-u_{n}\right)_{H_{0}^{1}}+\left\|u-u_{n}\right\|_{\infty, p} \int_{0}^{+\infty} \frac{q(t)}{p(t)} f\left(t, \frac{1}{p(t)} p(t) u_{n}(t)\right) d t \\
& +\varepsilon_{n}\left\|u-u_{n}\right\| .
\end{aligned}
$$

Since $\left\{u_{n}\right\}$ is bounded in $H_{0}^{1}(0,+\infty)$, then it is bounded in $C_{l, p}[0,+\infty)$. From $\left(H_{f}\right)$ we obtain that

$$
\left\|u-u_{n}\right\|^{2} \leq\left(u, u-u_{n}\right)_{H_{0, p}^{1}}+\left\|u-u_{n}\right\|_{\infty, p}\left\|\frac{q}{p}\right\|_{L_{t \in[0, \infty)}^{1}, y \in\left[-R_{0}, R_{0}\right]} \sup _{R_{0}}\left|f\left(t, \frac{1}{p(t)} y\right)\right|+\varepsilon_{n}\left\|u-u_{n}\right\|,
$$

where $R_{0}=\|u\|_{\infty, p}+1$. From (5.3) we have

$$
\lim _{n}\left(u, u-u_{n}\right)_{H_{0}^{1}}=0 .
$$

From (5.4), the second term in the last inequality also converges to 0 . Since $\varepsilon_{n} \rightarrow 0^{+},\left\{u_{n}\right\}$ converges strongly to u in $H_{0}^{1}(0,+\infty)$. This completes the proof.

From Proposition 5.2, the functional I satisfies the $(P S Z)_{c}$ condition, and by Proposition 5.1, the functional I is bounded from below. Therefore (Theorem 3.5), the number

$$
c_{1}=\inf _{u \in H_{0}^{1}(0,+\infty)} I(u)
$$

is a critical value of I. Proposition 4.3 concludes that the critical point $u_{1} \in$ $H_{0}^{1}(0,+\infty)$ which corresponds to c_{1}, is actually an element of K and a solution of problem (P).

Example 5.3. Consider the function f defined by

$$
f(t, x)=\frac{1}{2} e^{-t} x+\sin t
$$

and $q(t)=e^{-2 t}, p(t)=e^{-t}\left(\right.$ note $\left.\frac{q}{p} \in L^{1}\right)$. Let $\beta_{1}(t)=\frac{1}{2} e^{-3 t}, \beta_{2}(t)=|\sin t|$ (note $\beta_{1}^{*}<1, \beta_{2}^{*}=1<+\infty$). From Theorem 4.1, problem (P) has at least one solution $u \in K$.

6. Proof of Theorem 4.2

Assume the conditions of Theorem 4.2 are satisfied. Now we prove the existence of a nontrivial solution for problem (P) using the Mountain Pass theorem of Szulkin type (see Theorem 3.6).
Proposition 6.1. If the function f satisfies $\left(H_{f}\right)$ and $\left(h_{1}\right)$, then the functional $I=E+\psi_{K}$ satisfies $(P S Z)_{c}$ for every $c \in \mathbb{R}$.

Proof. Let $c \in \mathbb{R}$ be a fixed number. Let $\left\{u_{n}\right\}$ be a sequence in $H_{0}^{1}(0,+\infty)$ such that

$$
\begin{equation*}
I\left(u_{n}\right)=E\left(u_{n}\right)+\psi_{K}\left(u_{n}\right) \rightarrow c \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
E^{\prime}\left(u_{n}\right)\left(v-u_{n}\right)+\psi_{K}(v)-\psi_{K}\left(u_{n}\right) \geq-\varepsilon_{n}\left\|v-u_{n}\right\| \tag{6.2}
\end{equation*}
$$

where $\left\{\varepsilon_{n}\right\}$ is a sequence in $[0, \infty)$ with $\varepsilon_{n} \rightarrow 0$. From (6.1), we obtain that the sequence $\left\{u_{n}\right\}$ belongs to K. We put $v=2 u_{n}$ in (6.2), and we obtain

$$
E^{\prime}\left(u_{n}\right)\left(u_{n}\right) \geq-\varepsilon_{n}\left\|u_{n}\right\|
$$

Thus

$$
\begin{equation*}
\left\|u_{n}\right\|^{2}-\int_{0}^{+\infty} q(t) f\left(t, u_{n}(t)\right) u_{n}(t) \mathrm{d} t \geq-\varepsilon_{n}\left\|u_{n}\right\| \tag{6.3}
\end{equation*}
$$

From (6.1) for large $n \in \mathbb{N}$, we obtain

$$
\begin{equation*}
c+1 \geq \frac{1}{2}\left\|u_{n}\right\|^{2}-\int_{0}^{+\infty} q(t) F\left(t, u_{n}(t)\right) \mathrm{d} t \tag{6.4}
\end{equation*}
$$

Multiplying (6.3) by ν^{-1} and adding this to (6.4) (note $\varepsilon_{n} \rightarrow 0$) and using $\left(h_{1}\right)(2)$, for large $n \in \mathbb{N}$, we obtain that

$$
\begin{aligned}
c+1+\frac{1}{\nu}\left\|u_{n}\right\| & \geq\left(\frac{1}{2}-\frac{1}{\nu}\right)\left\|u_{n}\right\|^{2}-\int_{0}^{+\infty} q(t)\left(F\left(t, u_{n}(t)\right)-\frac{1}{\nu} f\left(t, u_{n}(t)\right) u_{n}(t)\right) d t \\
& =\left(\frac{1}{2}-\frac{1}{\nu}\right)\left\|u_{n}\right\|^{2}-\frac{1}{\nu} \int_{0}^{+\infty} q(t)\left(\nu F\left(t, u_{n}(t)\right)-f\left(t, u_{n}(t)\right) u_{n}(t)\right) d t \\
& \geq\left(\frac{1}{2}-\frac{1}{\nu}\right)\left\|u_{n}\right\|^{2} .
\end{aligned}
$$

Since $\nu>2$, we deduce that the sequence $\left\{u_{n}\right\}$ is bounded in K. Then there exits a subsequence which converges weakly in $H_{0}^{1}(0,+\infty)$. There exists $u \in H_{0}^{1}(0,+\infty)$ such that

$$
\begin{align*}
& u_{n} \rightharpoonup u \quad \text { in } \quad H_{0}^{1}(0,+\infty) \tag{6.5}\\
& u_{n} \rightarrow u \quad \text { in } \quad C_{l, p}[0,+\infty) \tag{6.6}
\end{align*}
$$

Since K is weakly closed, $u \in K$. Put $v=u$ in (6.2), and we obtain

$$
\begin{aligned}
\int_{0}^{+\infty} p(t) u_{n}^{\prime}(t)\left(u^{\prime}(x)-u_{n}^{\prime}(t)\right) d t & +\int_{0}^{+\infty} u(x)\left(u(t)-u_{n}(t)\right) d t \\
& +\int_{0}^{+\infty} q(t) f\left(t, u_{n}(t)\right)\left(u_{n}(t)-u(t)\right) \mathrm{d} t \\
& \geq-\varepsilon_{n}\left\|u-u_{n}\right\|
\end{aligned}
$$

Then, for large $n \in \mathbb{N}$, we have

$$
\begin{aligned}
\left\|u-u_{n}\right\|^{2} \leq & \int_{0}^{+\infty} u^{\prime}(x)\left(u^{\prime}(t)-u_{n}^{\prime}(t)\right) d t+\int_{0}^{+\infty} u(x)\left(u(t)-u_{n}(t)\right) d t \\
& +\int_{0}^{+\infty} q(t) f\left(t, u_{n}(t)\right)\left(u_{n}(t)-u(t)\right) \mathrm{d} t+\varepsilon_{n}\left\|u-u_{n}\right\| \\
\leq & \left(u, u-u_{n}\right)_{H_{0}^{1}}+\left\|u-u_{n}\right\|_{\infty, p} \int_{0}^{+\infty} \frac{q(t)}{p(t)} f\left(t, \frac{1}{p(t)} p(t) u(t)\right) d t+\varepsilon_{n}\left\|u-u_{n}\right\| .
\end{aligned}
$$

Since $\left\{u_{n}\right\}$ is bounded in $H_{0}^{1}(0,+\infty)$, then it is bounded in $C_{l, p}[0,+\infty)$. From $\left(H_{f}\right)$ we obtain that
$\left\|u-u_{n}\right\|^{2} \leq\left(u, u-u_{n}\right)_{H_{0}^{1}}+\left\|u-u_{n}\right\|_{\infty, p}\left\|\frac{q}{p}\right\|_{L^{1}} \sup _{t \in[0, \infty), y \in[-R, R]}\left|f\left(t, \frac{1}{p(t)} y\right)\right|+\varepsilon_{n}\left\|u-u_{n}\right\|$
where $R=\|u\|_{\infty, p}+1$. From (6.5), we have

$$
\lim _{n}\left(u, u-u_{n}\right)_{H_{0, p}^{1}}=0
$$

From (6.6), the second term in the last inequality also tends to 0 . Since $\varepsilon_{n} \rightarrow$ $0^{+},\left\{u_{n}\right\}$ converges strongly to u in $H_{0}^{1}(0,+\infty)$. This completes the proof.

Proposition 6.2. If the function f satisfies $\left(h_{1}\right)$ and $\left(h_{2}\right)$, then the following assertions are true:
(i) there exist constants $\alpha>0$ and $\rho>0$ such that $I(u) \geq \alpha$ for all $\|u\|=\rho$;
(ii) there exists an $e \in H_{0}^{1}(0,+\infty)$ with $\|e\|>\rho$ and $I(e) \leq 0$.

Proof. (i) From condition $\left(h_{2}\right)$, there exists $\varepsilon>0$ and $\delta>0$ such that

$$
|x| \leq \delta \Longrightarrow\left|F\left(t, \frac{1}{p(t)} x\right)\right| \leq(\gamma(t)-\varepsilon) \frac{1}{q(t)}|x|^{2}
$$

Therefore, by using the continuous embeddings of $H_{0}^{1}(0,+\infty)$ in $L^{2}[0,+\infty)$ and $H_{0}^{1}(0,+\infty)$ in $C_{l, p}[0,+\infty)$ with $\|u\|_{L^{2}} \leq\|u\|$, and $\|u\|_{\infty, p} \leq M\|u\|$, we have for $\|u\|=\rho$ small enough and $\alpha=\left(\frac{1}{2}-\left(\gamma^{*}-\varepsilon \sup _{t \in[0,+\infty)}|p(t)|^{2}\right)\right) \rho^{2}>0$, that
$\|u\|_{\infty, p} \leq M \rho \leq \delta$ and so we obtain

$$
\begin{aligned}
I(u) & =\frac{1}{2}\|u\|^{2}-\int_{0}^{+\infty} q(t) F(t, u(t)) \mathrm{d} t \\
& =\frac{1}{2}\|u\|^{2}-\int_{0}^{+\infty} q(t) F\left(t, \frac{1}{p(t)} p(t) u(t)\right) \mathrm{d} t \\
& \geq \frac{1}{2}\|u\|^{2}-\int_{0}^{+\infty}(\gamma(t)-\varepsilon)|p(t) u(t)|^{2} \mathrm{~d} t \\
& \geq \frac{1}{2}\|u\|^{2}-\sup _{t \in[0,+\infty)}\left(|p(t)|^{2}(\gamma(t)-\varepsilon)\right) \int_{0}^{+\infty}|u(t)|^{2} \mathrm{~d} t \\
& \geq \frac{1}{2}\|u\|^{2}-\left(\gamma^{*}-\varepsilon \sup _{t \in[0,+\infty)}|p(t)|^{2}\right)\|u\|_{L^{2}}^{2} \\
& \geq \frac{1}{2}\|u\|^{2}-\left(\gamma^{*}-\varepsilon \sup _{t \in[0,+\infty)}|p(t)|^{2}\right)\|u\|^{2} \\
& =\left(\frac{1}{2}-\left(\gamma^{*}-\varepsilon \sup _{t \in[0,+\infty)}|p(t)|^{2}\right)\right)\|u\|^{2} .
\end{aligned}
$$

Then assertion (i) holds.
(ii) Fix $u_{0} \in K \backslash\{0\}$, and let $u=s u_{0}(s>0)$. From condition $\left(h_{1}\right)(1)$, we have

$$
\begin{aligned}
I\left(s u_{0}\right) & =\frac{1}{2} s^{2}\left\|u_{0}\right\|^{2}-\int_{0}^{+\infty} q(t) F\left(t, s u_{0}(t)\right) \mathrm{d} t \\
& \leq \frac{1}{2} s^{2}\left\|u_{0}\right\|^{2}-s^{\nu} \int_{0}^{+\infty} q(t) r_{1}(t)\left|u_{0}\right|^{\nu}-\int_{0}^{+\infty} q(t) r_{2}(t) \mathrm{d} t
\end{aligned}
$$

Since $\nu>2$, we obtain that $I\left(s u_{0}\right) \rightarrow-\infty$ as $s \rightarrow+\infty$. Thus, it is possible to take s so large such that for $e=s u_{0}$, we have $\|e\|>\rho$ and $I(e) \leq 0$. The proof is complete.

From Proposition 6.1, the functional I satisfies the $(P S Z)_{c}$-condition $c \in \mathbb{R}$, and $I(0)=0$. From Proposition 6.2, it follows that there exist constants $\alpha, \rho>0$ and $e \in H_{0}^{1}(0,+\infty)$ such that I satisfies the conditions of Theorem 3.6 and therefore,

$$
c_{2}=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I(\gamma(t)),
$$

is a critical value of I with $c_{2} \geq \alpha>0$, where

$$
\Gamma=\{\gamma \in C([0,1], X): \gamma(0)=0, \gamma(1)=e\}
$$

We remark that the critical point $u_{2} \in H_{0}^{1}(0,+\infty)$ associated to the critical value c_{2} cannot be trivial because $I\left(u_{2}\right)=c_{2}>0=I(0)$. From Proposition 4.3, we obtain that u_{2} is an element of K and then a solution of (P).

Example 6.3. Consider the function f defined by

$$
f(t, x)=e^{-3 t} x|x|
$$

and $q(t)=e^{-2 t}, p(t)=e^{-t}$ (note $\frac{q}{p} \in L^{1}$). Let $r_{1}(t)=\frac{1}{3} e^{-t}$ and $\nu=3$ (note $r_{1} q \in L^{1}$). From Theorem 4.2, problem (P) has at least one nontrivial solution $u \in K$.

Remark 6.4. It is possible to replace $\left(H_{f}\right)$ with: For any constant $R>0$ there exists a nonnegative function ψ_{R} with $\frac{q}{p} \psi_{R} \in L^{1}[0, \infty)$ and $\sup \left\{\left|f\left(t, \frac{1}{p(t)} y\right)\right|\right.$: $y \in[-R, R]\} \leq \psi_{R}(t)$ for a.e. $t \geq 0$, so with obvious adjustments we see that the results in this paper can be extended.

References

[1] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2010.
[2] C. Corduneanu, Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973.
[3] A. Friedman, Variational Principles and Free Boundary Value Problems, WileyInterscience, New York, 1983.
[4] J. Heinonen, T. Kilpelinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Univ. Press, Oxford, 1993.
[5] S. Karamardian, Generalized complementarity problem, J. Optim. Theory Appl. 8 (1971) 161-168.
[6] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Academic Press, New York, 1980.
[7] A. Kristály, I. Lazǎr and N. S. Papageorgiou, A variational inequality on the half line, Nonlinear Anal. 71 (2009) 5003-5009.
[8] K. Lan, A variational inequality theory in reflexive smooth Banach spaces and applications to p-Laplacian elliptic inequalities, Nonlinear Anal. 113 (2015) 71-86.
[9] S. László, Some existence results of solutions for general variational inequalities, J. Optim. Theory Appl. 150 (2011) 425-443.
[10] O. Mancino and G. Stampacchia, Convex programming and variational inequalities, J. Optim. Theory Appl. 9 (1972) 3-23.
[11] N. S. Papageorgiou and S. K. Yiallourou, Handbook of Applied Analysis, Springer, New York, 2009.
[12] J. F. Rodrigues, Obstacle Problems in Mathematical Physics, Mathematics Studies 134, Elsevier, 1987.
[13] A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986), no. 2, 77-109.
[14] G. M. Troianiello, Elliptic Differential Equations and Obstacle Problems, The University Series in Mathematics, Springer, 1987.
(Ouided Frites) Laboratory of Fixed Point Theory and Applications, École Normale Supérieure, Kouba, Algiers, Algeria.

E-mail address: ofrites@yahoo.fr
(Toufik Moussaoui) Laboratory of Fixed Point Theory and Applications, École Normale Supérieure, Kouba, Algiers, Algeria.

E-mail address: moussaoui@ens-kouba.dz
(Donal O'Regan) School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland, NAAM Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.

E-mail address: donal.oregan@nuigalway.ie

[^0]: Article electronically published on February 22, 2017.
 Received: 27 February 2015, Accepted: 6 November 2015.

 * Corresponding author.

