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1. Introduction

Variational inequalities have applications in physics, mechanics, engineering
and optimization (see [3–6] and [10]) and they arise for example in obstacle
problems (see [6, 12, 14] and the references therein). We note that variational
inequalities are generalizations of integral equations.

In [8], the author developed a theory of variational inequalities for demicon-
tinuous S-contractive maps in reflexive smooth Banach spaces and studied the
existence of nonzero positive weak solutions for p-Laplacian elliptic inequali-
ties. In [9], the author introduced a new class of operators and established
some existence results for general variational inequalities.

In this paper, we consider the variational inequality, denoted by (P ):
Find u ∈ K such that

+∞∫
0

u′(t)(v′(t)− u′(t))dt+

+∞∫
0

u(t)(v(t)− u(t))dt

−
+∞∫
0

q(t)f(t, u(t))(v(t)− u(t))dt ≥ 0, ∀v ∈ K,
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where f : [0,+∞) × R −→ R is a continuous function which satisfies the
following condition:
(Hf ) For any constant R > 0, we assume sup{|f(t, 1

p(t)y)| : t ∈ [0,∞), y ∈
[−R,R]} <∞.
Here K is a closed convex set in the Sobolev space H1

0 (0,+∞) with 0 ∈ K,
and p : [0,+∞) −→ (0,+∞) is continuously differentiable and bounded, q :
[0,+∞) −→ R+ with q

p ∈ L1[0,+∞) and

M = 2max(∥p∥L2 , ∥p′∥L2) < +∞.

In Section 3, we use the abstract theory from [13] using some motivating
ideas initiated in [7]. In particular we use non-smooth critical point theory
for Szulkin-type functionals to obtain nontrivial solutions for (P ). In our
analysis we will use a new compactness result (the embedding H1

0 (0,+∞) ↪→
Cl,p[0,+∞) is compact) obtained in Section 2.

The authors in [7] studied a variational inequality posed on a very special
set K in W 1,2(0,∞) , namely

K = {u ∈W 1,2(0,∞) : u ≥ 0, u is nonincreasing on (0,∞)}.

Our variational inequality is posed on a very general set, namely on any convex
closed subset in W 1,2

0 (0,∞). The results in [7] do not extend to general convex
closed subsets of W 1,2(0,∞). Moreover the authors in [7] considered nonlinear
terms of the form f(t, u) = f(u) whereas in our paper we consider the general
form f(t, u). Also the hypotheses in our paper are quite different from those
in [7]; see for example (f3) in [7] and our hypothesis (Hf ).

2. Preliminaries

We endow the space H1
0 (0,+∞) with its natural norm

∥u∥ =

(∫ +∞

0

u2(t)dt+

∫ +∞

0

u′2(t)dt

) 1
2

,

associated with the scalar product

(u, v) =

∫ +∞

0

u(t)v(t)dt+

∫ +∞

0

u′(t)v′(t)dt.

Note that if u ∈ H1
0 (0,+∞), then u(0) = u(+∞) = 0, (see [1, Corollary 8.9]).

Let

Cl,p[0,+∞) = {u ∈ C([0,+∞),R) : lim
t→+∞

p(t)u(t) exists }

endowed with the norm

∥u∥∞,p = sup
t∈[0,+∞)

p(t)|u(t)|.
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Definition 2.1. A Banach space X is embedded continuously in a Banach
space Y (X ↪→ Y ) if
(i) X ⊆ Y ,
(ii) the canonical injection j : X −→ Y is a continuous (linear) operator.
Moreover, if the canonical injection j : X −→ Y is compact, then we say that
X is compactly embedded in Y.

Lemma 2.2. H1
0 (0,+∞) embeds continuously in Cl,p[0,+∞).

Proof. For u ∈ H1
0 (0,+∞), we have

|p(t)u(t)| = |p(t)u(t)− p(0)u(0)|

=

∣∣∣∣∫ t

0

(pu)′(s)ds

∣∣∣∣
≤

∣∣∣∣∫ t

0

p′(s)u(s)ds

∣∣∣∣+ ∣∣∣∣∫ t

0

p(s)u′(s)ds

∣∣∣∣
≤

 +∞∫
0

p′2(s)ds


1
2
 +∞∫

0

u2(s)ds


1
2

+

 +∞∫
0

p2(s)ds


1
2
 +∞∫

0

u′2(s)ds


1
2

≤ 2max(∥p′∥L2 , ∥p∥L2)∥u∥.

Hence

∥u∥∞,p ≤M∥u∥.

□

Let

Cl[0,+∞) = {u ∈ C([0,+∞),R) : lim
t→+∞

u(t) exists },

endowed with the norm ∥u∥∞ = supt∈[0,+∞) |u(t)|. Note if p(t) = 1, ∀t ∈
[0,+∞) then Cl,p[0,+∞) = Cl[0,+∞).

To prove that H1
0 (0,+∞) embeds compactly in Cl,p[0,+∞), we need the

following Corduneanu compactness criterion.

Lemma 2.3. ([2]) Let D ⊂ Cl([0,+∞),R) be a bounded set. Then D is
relatively compact if the following conditions hold:
(a) D is equicontinuous on any compact sub-interval of R+, i.e.

∀J ⊂ [0,+∞) compact, ∀ ε > 0, ∃ δ > 0, ∀ t1, t2 ∈ J :
|t1 − t2| < δ =⇒ |u(t1)− u(t2)| ≤ ε,∀u ∈ D,
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(b) D is equiconvergent at +∞ i.e.,

∀ ε > 0, ∃T = T (ε) > 0 such that
∀ t : t ≥ T (ε) =⇒ |u(t)− u(+∞)| ≤ ε, ∀u ∈ D.

Lemma 2.4. Let D ⊂ Cl,p([0,+∞),R) be a bounded set. Then D is relatively
compact if the following conditions hold:
(a) D is equicontinuous on any compact sub-interval of R+, i.e.

∀J ⊂ [0,+∞) compact, ∀ ε > 0, ∃ δ > 0, ∀ t1, t2 ∈ J :
|t1 − t2| < δ =⇒ |p(t1)u(t1)− p(t2)u(t2)| ≤ ε,∀u ∈ D,

(b) D is equiconvergent at +∞ i.e.,

∀ ε > 0, ∃T = T (ε) > 0 such that
∀ t : t ≥ T (ε) =⇒ |p(t)u(t)− (pu)(+∞)| ≤ ε, ∀u ∈ D.

Proof. It is easy to see that D′ = {v : v(t) = p(t)u(t), u ∈ D} ⊆ Cl

satisfies the conditions of Lemma 2.3. Thus there exists a sequence (vn) ⊂ D′

and v0 ∈ Cl such that lim
n→+∞

∥vn − v0∥Cl
= 0. Let un(t) = 1

p(t)vn(t) for

n = 1, 2, . . . , and u0(t) = 1
p(t)v0(t). Obviously, (un) ⊂ D, u0 ∈ Cl,p and

lim
n→+∞

∥un − u0∥Cl,p
= lim

n→+∞
∥vn − v0∥Cl

= 0. □

Lemma 2.5. The embedding

H1
0 (0,+∞) ↪→ Cl,p[0,+∞)

is compact.

Proof. LetD ⊂ H1
0 (0,+∞) be a bounded set. Then it is bounded in Cl,p[0,+∞)

by Lemma 2.2. Let R > 0 be such that for all u ∈ D, ∥u∥ ≤ R. We will apply
Lemma 2.4

(a) D is equicontinuous on every compact interval of [0,+∞). Let u ∈ D
and t1, t2 ∈ J ⊂ [0,+∞) where J is a compact sub-interval. By using the
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Cauchy-Schwarz inequality, we have

|p(t1)u(t1)− p(t2)u(t2)| =

∣∣∣∣∫ t1

t2

(pu)′(s)ds

∣∣∣∣
=

∣∣∣∣∫ t1

t2

p′(s)u(s) + u′(s)p(s)ds

∣∣∣∣
≤

 t1∫
t2

p′2(s)ds


1
2
 t1∫

t2

u2(s)ds


1
2

+

 t1∫
t2

p2(s)ds


1
2
 t1∫

t2

u′2(s)ds


1
2

≤ 2max


 t1∫

t2

p′2(s)ds


1
2

,

 t1∫
t2

p2(s)ds


1
2

 ∥u∥

≤ 2Rmax


 t1∫

t2

p′2(s)ds


1
2

,

 t1∫
t2

p2(s)ds


1
2

−→ 0,

as |t1 − t2| → 0.

(b) D is equiconvergent at +∞. For t ∈ [0,+∞) and u ∈ D, using the
fact that (pu)(+∞) = 0 (note u(∞) = 0 and p is bounded) and using the
Cauchy-Schwarz inequality, we have

|(pu)(t)− (pu)(+∞)| =
∣∣∣∣∫ +∞

t

(pu)′(s)ds

∣∣∣∣
=

∣∣∣∣∫ +∞

t

p′(s)u(s) + u′(s)p(s)ds

∣∣∣∣
≤ 2max


 +∞∫

t

p′2(s)ds


1
2

,

 +∞∫
t

p2(s)ds


1
2

 ∥u∥

≤ 2Rmax


 +∞∫

t

p′2(s)ds


1
2

,

 +∞∫
t

p2(s)ds


1
2

−→ 0,

as t→ +∞. □
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3. Szulkin-type functionals

Let X be a real Banach space, X∗ its dual and let E ∈ C1(X,R) (the
space of continuously differentiable functions from X to R). Also let ψ : X −→
R∪{+∞} be a proper (i.e., ψ ̸= +∞), convex, lower semicontinuous functional.
We say then that, I = E + ψ is a Szulkin-type functional, (see [13]).

Definition 3.1. A functional ψ : X −→ R ∪ {+∞} is called lower semi-
continuous at a point u0 if for every sequence {un} ⊂ X with un → u0, we
have ψ(u0) ≤ lim inf

n→+∞
ψ(un).

Definition 3.2. An element u ∈ X is called a critical point of I = E + ψ if

E′(u)(v − u) + ψ(v)− ψ(u) ≥ 0 for all v ∈ X,(3.1)

which is equivalent to

0 ∈ E′(u) + ∂ψ(u) in X∗;

here ∂ψ(u) is the subdifferential of the convex functional ψ at u ∈ X (see [11]).

Definition 3.3. A functional I : X −→ R ∪ {+∞} is called coercive if
lim

∥u∥X→+∞
I(u) = +∞.

Definition 3.4. The functional I = E+ψ satisfies the Palais-Smale condition
at level c ∈ R, denoted by (PSZ)c if every sequence {un} ⊂ X such that
lim

n→∞
I(un) = c and

⟨E′(un), v − un⟩X + ψ(v)− ψ(un) ≥ −εn∥v − un∥ for all v ∈ X,

where εn → 0, possesses a convergent subsequence.

Theorem 3.5. ([13]) Let X be a Banach space, I = E+ψ : X −→ R∪{+∞} is
a Szulkin-type functional and is bounded from below. If I satisfies the (PSZ)c-
condition for

c = inf
u∈X

I(u),

then c is a critical value.

Szulkin proved the following version of the Mountain Pass theorem.

Theorem 3.6. ([13]) Let X be a Banach space, I = E+ψ : X −→ R∪{+∞}
a Szulkin-type functional and we assume that
(i) I(u) ≥ α for all ∥u∥ = ρ with α, ρ > 0, and I(0) = 0;
(ii) there is e ∈ X with ∥e∥ > ρ and I(e) ≤ 0.
If I satisfies the (PSZ)c-condition for

c = inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)),

with
Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e} ,
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then c is a critical value of I and c ≥ α.

4. Main results

We give now the main results of this paper. We denote by F the primitive
of f with respect to its second variable, i.e., F (t, x) =

∫ x

0
f(t, s)ds.

Theorem 4.1. Let f satisfy (Hf ) and the following condition:

(f1) there exists positive functions β1, β2 ∈ L∞(0,+∞) with β∗
1 = sup

t∈[0,+∞)

β1(t)

< 1 and β∗
2 = sup

t∈[0,+∞)

β2(t) < +∞ such that

|f(t, x)| ≤ β1(t)

q(t)
|x|+ β2(t), for all t ∈ [0,+∞) and all x ∈ R.

Then, problem (P ) has at least one solution u ∈ K.

Theorem 4.2. Let f satisfy (Hf ) and the following conditions:

(h1) there exist positive functions r1, r2, with r1q, r2q ∈ L1(R+,R+), and
ν > 2 such that

(1) F (t, x) ≥ r1(t)|x|ν − r2(t) for all t ∈ [0,+∞), ∀x ∈ R \ {0}.
(2) νF (t, x) ≤ xf(t, x), for all t ∈ [0,+∞), ∀x ∈ R.
(h2) There exists a function γ ∈ L∞(0,+∞) with γ∗ = sup

t∈[0,+∞)

|(p2γ)(t)| <

1
2 such that

lim sup
|x|→0

F (t, 1
p(t)x)

1
q(t) |x|2

≤ γ(t), uniformly with respect to t ∈ [0,+∞).

Then, problem (P ) has at least one nontrivial solution u ∈ K.

We define the functional E : H1
0 (0,+∞) −→ R by

E(u) =
1

2
∥u∥2 −

∫ +∞

0

q(t)F (t, u(t))dt.

Since f : [0,+∞) × R −→ R is continuous, using the Lebesgue dominated
convergence theorem and the compact embedding ofH1

0 (0,+∞) in Cl,p[0,+∞),
(Lemma 2.5) and (Hf ) we have that E ∈ C1(H1

0 (0,+∞),R).
Define the indicator functional of the set K by

ψK(u) =

{
0, if u ∈ K,
+∞, if u /∈ K.

We remark that the functional ψK is convex, proper, and lower semicontinuous.
Then, I = E + ψK is a Szulkin-type functional.
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Proposition 4.3. Every critical point u ∈ H1
0 (0,+∞) of I = E + ψK is a

solution of (P).

Proof. Since u ∈ H1
0 (0,+∞) is a critical point of I = E + ψK , then

E′(u)(v − u) + ψK(v)− ψK(u) ≥ 0, ∀v ∈ H1
0 (0,+∞).

We claim u belongs toK. If not, then ψK(u) = +∞ and taking then, v = 0 ∈ K
in the above inequality, we obtain a contradiction. Thus u ∈ K. Fix v ∈ K.
Since

E′(u)(v − u) =

+∞∫
0

u′(t)(v′(t)− u′(t))dt+

+∞∫
0

u(t)(v(t)− u(t))dt

−
∫ +∞

0

q(t)f(t, u(t))(v(t)− u(t))dt,

then u is a solution of (P ). □

5. Proof of Theorem 4.1

Assume the conditions of Theorem 4.1 are satisfied. We prove the existence
of a solution for problem (P ) using Theorem 3.5.

Proposition 5.1. If the function f satisfies the hypothesis (f1), then I =
E + ψK is coercive and bounded from below in H1

0 (0,+∞).

Proof. We have

I(u) = E(u) =
1

2
∥u∥2 −

∫ +∞

0

q(t)F (t, u(t))dt

for every u ∈ K. From hypothesis (f1), we have

|F (t, x)| ≤ 1

2

β1(t)

q(t)
|x|2 + β2(t)|x|.

Using the continuous embedding of H1
0 (0,+∞) in L2[0,+∞) with constant of

embedding N = 1 (see [1]) and Lemma 2.2, we have

I(u) ≥ 1

2
∥u∥2 −

∫ +∞

0

[
1

2
β1(t)u

2(t) + q(t)β2(t)|u(t)|
]
dt

≥ 1

2
∥u∥2 − 1

2
sup

t∈[0,+∞)

β1(t)

∫ +∞

0

|u(t)|2dt

− sup
t∈[0,+∞)

β2(t)

∫ +∞

0

q(t)

p(t)
p(t)|u(t)|dt
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≥ 1

2
∥u∥2 − β∗

1

2
∥u∥2L2 − β∗

2∥u∥∞,p∥
q

p
∥L1

≥ 1

2
∥u∥2 − β∗

1

2
∥u∥2 − β∗

2M∥u∥∥q
p
∥L1

=
1

2
(1− β∗

1)∥u∥2 − β∗
2M∥q

p
∥L1∥u∥.

Since β∗
1 < 1, this implies that the functional I = E + ψK is coercive. We

claim it is bounded from below on H1
0 (0,+∞). If this is not true, there exists a

sequence {un} in H1
0 (0,+∞) such that ∥un∥ → +∞ and I(un) → −∞, which

is a contradiction with the coerciveness of I. □

Proposition 5.2. If the function f satisfies (Hf ), then I = E + ψK satisfies
(PSZ)c for every c ∈ R.

Proof. Let c ∈ R be fixed. Let {un} be a sequence in H1
0 (0,+∞) such that

(5.1) I(un) = E(un) + ψK(un) → c

and

(5.2) E′(un)(v − un) + ψK(v)− ψK(un) ≥ −εn∥v − un∥,

where {εn} a sequence in [0,∞) with εn → 0. By (5.1), we obtain that the se-
quence {un} is in K. From Proposition 5.1, since I is coercive on H1

0 (0,+∞),
the sequence {un} is bounded in K. Since the sequence {un} is bounded in
H1

0 (0,+∞), there exists a subsequence still denoted by {un} which converges
weakly in H1

0 (0,+∞). Then there exists u ∈ H1
0 (0,+∞) such that

un ⇀ u in H1
0 (0,+∞),(5.3)

un → u in Cl,p(0,+∞).(5.4)

Since K is weakly closed, u ∈ K. Setting v = u in (5.2), we obtain∫ +∞

0

u′n(t)(u
′(t)− u′n(t))dt+

∫ +∞

0

un(t)(u(t)− un(t))dt

+

+∞∫
0

q(t)f(t, un(t))(un(t)− u(t))dt

≥ −εn∥u− un∥.

Therefore, for large n ∈ N, we have
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∥u− un∥2 ≤
+∞∫
0

u′(t)(u′(t)− u′n(t))dt+

+∞∫
0

u(t)(u(t)− un(t))dt

+

+∞∫
0

q(t)f(t, un(t))(un(t)− u(t))dt+ εn∥u− un∥

≤ (u, u− un)H1
0
+ ∥u− un∥∞,p

+∞∫
0

q(t)

p(t)
f(t,

1

p(t)
p(t)un(t))dt

+εn∥u− un∥.

Since {un} is bounded in H1
0 (0,+∞), then it is bounded in Cl,p[0,+∞). From

(Hf ) we obtain that

∥u−un∥2 ≤ (u, u−un)H1
0,p

+∥u−un∥∞,p∥
q

p
∥L1 sup

t∈[0,∞), y∈[−R0,R0]

|f(t, 1

p(t)
y)|+εn∥u−un∥,

where R0 = ∥u∥∞,p + 1. From (5.3) we have

lim
n
(u, u− un)H1

0
= 0.

From (5.4), the second term in the last inequality also converges to 0. Since
εn → 0+, {un} converges strongly to u in H1

0 (0,+∞). This completes the
proof. □

From Proposition 5.2, the functional I satisfies the (PSZ)c condition, and by
Proposition 5.1, the functional I is bounded from below. Therefore (Theorem
3.5), the number

c1 = inf
u∈H1

0 (0,+∞)
I(u)

is a critical value of I. Proposition 4.3 concludes that the critical point u1 ∈
H1

0 (0,+∞) which corresponds to c1, is actually an element of K and a solution
of problem (P ).

Example 5.3. Consider the function f defined by

f(t, x) =
1

2
e−tx+ sin t,

and q(t) = e−2t, p(t) = e−t (note q
p ∈ L1). Let β1(t) =

1
2e

−3t, β2(t) = | sin t|
(note β∗

1 < 1, β∗
2 = 1 < +∞). From Theorem 4.1, problem (P ) has at least one

solution u ∈ K.
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6. Proof of Theorem 4.2

Assume the conditions of Theorem 4.2 are satisfied. Now we prove the
existence of a nontrivial solution for problem (P ) using the Mountain Pass
theorem of Szulkin type (see Theorem 3.6).

Proposition 6.1. If the function f satisfies (Hf ) and (h1), then the functional
I = E + ψK satisfies (PSZ)c for every c ∈ R.

Proof. Let c ∈ R be a fixed number. Let {un} be a sequence in H1
0 (0,+∞)

such that

(6.1) I(un) = E(un) + ψK(un) → c

and

(6.2) E′(un)(v − un) + ψK(v)− ψK(un) ≥ −εn∥v − un∥,
where {εn} is a sequence in [0,∞) with εn → 0. From (6.1), we obtain that the
sequence {un} belongs to K. We put v = 2un in (6.2), and we obtain

E′(un)(un) ≥ −εn∥un∥.
Thus

(6.3) ∥un∥2 −
∫ +∞

0

q(t)f(t, un(t))un(t)dt ≥ −εn∥un∥.

From (6.1) for large n ∈ N, we obtain

(6.4) c+ 1 ≥ 1

2
∥un∥2 −

∫ +∞

0

q(t)F (t, un(t))dt.

Multiplying (6.3) by ν−1 and adding this to (6.4) (note εn → 0) and using
(h1)(2), for large n ∈ N, we obtain that

c+ 1 +
1

ν
∥un∥ ≥

(
1

2
− 1

ν

)
∥un∥2−

∫ +∞

0

q(t)

(
F (t, un(t))−

1

ν
f(t, un(t))un(t)

)
dt

=

(
1

2
− 1

ν

)
∥un∥2 −

1

ν

∫ +∞

0

q(t)(νF (t, un(t))−f(t, un(t))un(t))dt

≥
(
1

2
− 1

ν

)
∥un∥2.

Since ν > 2, we deduce that the sequence {un} is bounded in K. Then
there exits a subsequence which converges weakly in H1

0 (0,+∞). There ex-
ists u ∈ H1

0 (0,+∞) such that

un ⇀ u in H1
0 (0,+∞),(6.5)

un → u in Cl,p[0,+∞).(6.6)
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Since K is weakly closed, u ∈ K. Put v = u in (6.2), and we obtain

+∞∫
0

p(t)u′n(t)(u
′(x)− u′n(t))dt +

+∞∫
0

u(x)(u(t)− un(t))dt

+

+∞∫
0

q(t)f(t, un(t))(un(t)− u(t))dt

≥ −εn∥u− un∥.

Then, for large n ∈ N, we have

∥u− un∥2 ≤
∫ +∞

0

u′(x)(u′(t)− u′
n(t))dt+

∫ +∞

0

u(x)(u(t)− un(t))dt

+

∫ +∞

0

q(t)f(t, un(t))(un(t)− u(t))dt+ εn∥u− un∥

≤(u, u− un)H1
0
+ ∥u− un∥∞,p

∫ +∞

0

q(t)

p(t)
f(t,

1

p(t)
p(t)u(t))dt+ εn∥u− un∥.

Since {un} is bounded in H1
0 (0,+∞), then it is bounded in Cl,p[0,+∞). From

(Hf ) we obtain that

∥u−un∥2 ≤ (u, u−un)H1
0
+∥u−un∥∞,p∥

q

p
∥L1 sup

t∈[0,∞), y∈[−R,R]

|f(t, 1

p(t)
y)|+εn∥u−un∥

where R = ∥u∥∞,p + 1. From (6.5), we have

lim
n
(u, u− un)H1

0,p
= 0.

From (6.6), the second term in the last inequality also tends to 0. Since εn →
0+, {un} converges strongly to u in H1

0 (0,+∞). This completes the proof. □

Proposition 6.2. If the function f satisfies (h1) and (h2), then the following
assertions are true:
(i) there exist constants α > 0 and ρ > 0 such that I(u) ≥ α for all ∥u∥ = ρ;
(ii) there exists an e ∈ H1

0 (0,+∞) with ∥e∥ > ρ and I(e) ≤ 0.

Proof. (i) From condition (h2), there exists ε > 0 and δ > 0 such that

|x| ≤ δ =⇒ |F (t, 1

p(t)
x)| ≤ (γ(t)− ε)

1

q(t)
|x|2.

Therefore, by using the continuous embeddings of H1
0 (0,+∞) in L2[0,+∞) and

H1
0 (0,+∞) in Cl,p[0,+∞) with ∥u∥L2 ≤ ∥u∥, and ∥u∥∞,p ≤ M∥u∥, we have

for ∥u∥ = ρ small enough and α = ( 12 − (γ∗ − ε sup
t∈[0,+∞)

|p(t)|2))ρ2 > 0, that
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∥u∥∞,p ≤Mρ ≤ δ and so we obtain

I(u) =
1

2
∥u∥2 −

∫ +∞

0

q(t)F (t, u(t))dt

=
1

2
∥u∥2 −

∫ +∞

0

q(t)F (t,
1

p(t)
p(t)u(t))dt

≥ 1

2
∥u∥2 −

∫ +∞

0

(γ(t)− ε)|p(t)u(t)|2dt

≥ 1

2
∥u∥2 − sup

t∈[0,+∞)

(
|p(t)|2(γ(t)− ε)

) ∫ +∞

0

|u(t)|2dt

≥ 1

2
∥u∥2 − (γ∗ − ε sup

t∈[0,+∞)

|p(t)|2)∥u∥2L2

≥ 1

2
∥u∥2 − (γ∗ − ε sup

t∈[0,+∞)

|p(t)|2)∥u∥2

= (
1

2
− (γ∗ − ε sup

t∈[0,+∞)

|p(t)|2))∥u∥2.

Then assertion (i) holds.

(ii) Fix u0 ∈ K\{0}, and let u = su0 (s > 0). From condition (h1)(1), we
have

I(su0) =
1

2
s2∥u0∥2 −

∫ +∞

0

q(t)F (t, su0(t))dt

≤ 1

2
s2∥u0∥2 − sν

∫ +∞

0

q(t)r1(t)|u0|ν −
∫ +∞

0

q(t)r2(t)dt.

Since ν > 2, we obtain that I(su0) → −∞ as s → +∞. Thus, it is possible to
take s so large such that for e = su0, we have ∥e∥ > ρ and I(e) ≤ 0. The proof
is complete. □

From Proposition 6.1, the functional I satisfies the (PSZ)c-condition c ∈ R,
and I(0) = 0. From Proposition 6.2, it follows that there exist constants α, ρ > 0
and e ∈ H1

0 (0,+∞) such that I satisfies the conditions of Theorem 3.6 and
therefore,

c2 = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

is a critical value of I with c2 ≥ α > 0, where

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e} .

We remark that the critical point u2 ∈ H1
0 (0,+∞) associated to the critical

value c2 cannot be trivial because I(u2) = c2 > 0 = I(0). From Proposition
4.3, we obtain that u2 is an element of K and then a solution of (P ).



Solutions for a variational inequality 236

Example 6.3. Consider the function f defined by

f(t, x) = e−3tx|x|,

and q(t) = e−2t, p(t) = e−t (note q
p ∈ L1). Let r1(t) =

1
3e

−t and ν = 3 (note

r1q ∈ L1). From Theorem 4.2, problem (P ) has at least one nontrivial solution
u ∈ K.

Remark 6.4. It is possible to replace (Hf ) with: For any constant R > 0 there
exists a nonnegative function ψR with q

pψR ∈ L1[0,∞) and sup{|f(t, 1
p(t)y)| :

y ∈ [−R,R]} ≤ ψR(t) for a.e. t ≥ 0, so with obvious adjustments we see that
the results in this paper can be extended.
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3 (1986), no. 2, 77–109.

[14] G. M. Troianiello, Elliptic Differential Equations and Obstacle Problems, The University

Series in Mathematics, Springer, 1987.

(Ouided Frites) Laboratory of Fixed Point Theory and Applications, École Nor-
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