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Abstract. The purpose of this paper is to introduce a new mapping for
a finite family of accretive operators and introduce an iterative algorithm

for finding a common zero of a finite family of accretive operators in a
real reflexive strictly convex Banach space which has a uniformly Gâteaux
differentiable norm and admits the duality mapping jφ, where φ is a
gauge function invariant on [0,∞). Furthermore, we prove the strong

convergence under some certain conditions. The results obtained in this
paper improve and extend the corresponding ones announced by many
others.
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1. Introduction

LetX be a real Banach space, andX∗ be its dual space. The duality mapping
J : X → 2X

∗
is defined by

J(x) = {f∗ ∈ X∗ : ⟨x, f∗⟩ = ∥x∥2, ∥f∗∥ = ∥x∥},
where ⟨·, ·⟩ denotes the duality pairing between X and X∗. It is well known
that, (i) if X is a Hilbert space then J = I where I is the identity mapping;
(ii) if X is smooth then J is single-valued which is denoted by j (see [35]).

Let C be a nonempty closed convex subset of X. Recall that a self-mapping
f : C → C is said to be a contraction if there exists a constant α ∈ (0, 1) such
that ∥f(x)− f(y)∥ ≤ α∥x− y∥, ∀x, y ∈ C.

A mapping T : C → C is said to be nonexpansive if ∥Tx − Ty∥ ≤ ∥x − y∥
for all x, y ∈ C. We denote Fix(T ) by the set of fixed points of T , that is,
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Fix(T ) = {x ∈ C : Tx = x}. Let A : D(A) ⊂ X → 2X be a multi-valued
mapping. We denote D(A) by the domain of A, R(A) by the range of A and
N(A) by the set of zeros of A (i.e., N(A) = {x ∈ D(A) : 0 ∈ Ax} = A−10).
An operator A is called accretive if for all x, y ∈ D(A), there exists j(x+ y) ∈
J(x+ y) such that

⟨u− v, j(x− y)⟩ ≥ 0 for all u ∈ Ax and v ∈ Ay.

Note that the accretive mapping in a Hilbert space is called monotone. If
A is accretive, then we can define a nonexpansive single-valued mapping Jr :
R(I + rA) → D(A) for each r > 0 by Jr := (I + rA)−1, which is called the
resolvent of A. An operator A is said to be m-accretive if it is accretive and
R(I + rA) is X for all r > 0 and A is said to satisfy the range condition if

D(A) ⊂ R(I+rA) for all r > 0, where D(A) denotes the closure of the domain
of A.

Accretive operator theory has been studied widely in nonlinear analysis.
Note that most of the accretive operator theory is connected with the theory
of differential equations. It is well known that many physically significant
problems can be modeled by the initial value problems of the form

(1.1)

{
x′(t) +Ax(t) = 0,

x(0) = x0,

where A is an accretive operator in an appropriate Banach space (see [40]).
Typical examples where such evolution equations occur can be found in the
heat, wave, or Schrödinger equations. Especially, one of the fundamental re-
sults in the theory of accretive operators, which is due to Browder [7], states
that if A is locally Lipschitzian and accretive, then A is m-accretive. This
result was subsequently generalized by Martin [25] to the continuous accretive
operators. If x(t) is independent of t, then (1.1) reduces to Au = 0 whose
solutions correspond to the equilibrium points of system (1.1). Consequently,
considerable research effects have been devoted, especially within the past 20
years or so, to iterative methods for approximating these equilibrium points.

In recent years, some iterative methods have been developed for finding zeros
of accretive operators and related fixed points problems, see [9–11, 16–19, 26,
31–33,37,39] and the references therein.

In 1974, Bruck [8] introduced an iteration process and proved the conver-
gence of the process to a zero of a maximal monotone operator in the setting of
Hilbert spaces. In 1979, Reich [28] extended this result to uniformly smooth Ba-
nach spaces provided that the operator ism-accretive. Inspired by the proximal
point algorithm of Rockafellar [30] and the iterative methods of Halpern [15],
in 2003, Benavides et al. [13] studied the following Halpern type iteration pro-
cess to find a zero of an m-accretive operator A in a uniformly smooth Banach
space with a weakly continuous duality mapping Jφ with gauge function φ in
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virtue of the resolvent Jr of A:

(1.2) xn+1 = αnu+ (1− αn)Jrnxn, ∀n ≥ 1.

Xu [38] and Marino and Xu [24] established the convergence theorems of the
iteration process (1.2) in a uniformly smooth Banach space. Song et al. [33]
extended the results of Xu [38] and Marino and Xu [24] to a reflexive Banach
space with a weakly continuous duality mapping Jφ.

In 2007, Aoyama et al. [3] studied the following iterative process in a uni-
formly convex Banach space having a uniformly Gâteaux differentiable norm for
the resolvents Jrn of A such that A−10 ̸= ∅ and D(A) ⊂ C ⊂

∩
r>0R(I + rA):

(1.3) xn+1 = αnu+ (1− αn)Jrnxn, ∀n ≥ 1,

where {αn} ⊂ (0, 1) and {rn} ⊂ (0,∞). They proved that {xn} generated by
(1.3) converges strongly to a zero of A under certain appropriate conditions on
the parameters {αn} and {rn}.

Recently, Hu and Liu [17] studied strong convergence theorem for a common
zero of a family of accretive operators in a real strictly convex Banach space.
To be more precise, they proved the following result.
Theorem HL. Let C be a nonempty closed convex subset of a real strictly
convex Banach space X which has a uniformly Gâteaux differentiable norm.
Let Ai : C → X (i = 1, 2, . . . , N) be a finite family of accretive operators with∩N

i=1N(Ai) ̸= ∅, satisfying the range condition:

D(Ai) ⊆ C ⊂
∩
r>0

R(I + rAi) for i = 1, 2, . . . , N.

Let {αn}, {βn} and {γn} be sequences in (0, 1) and {rn} be a sequence in R+,
satisfying the following conditions:

(C1) αn + βn + γn = 1;
(C2) limn→∞ αn = 0,

∑∞
n=1 αn = ∞;

(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(C4) limn→∞ rn = r ∈ R+.

For any u, x0 ∈ C, the sequence {xn} is given by

(1.4) xn+1 = αnu+ βnxn + γnSrnxn, ∀n ≥ 0,

where Srn := a0I + a1J
1
rn + a2J

2
rn + . . .+ aNJ

N
rn , with Jrn := (I + rnAi)

−1 for

0 < ai < 1 for i = 0, 1, . . . , N and
∑N

i=1 ai = 1. Then {xn} converges strongly
to a common solution of the equations Aix = 0 for i = 0, 1, . . . , N .

On the other hand, let {Ti}Ni=1 be a finite family of nonexpansive mappings

such that
∩N

i=1 Fix(Ti) ̸= ∅. In 1999, Atsushiba and Takahashi [4] (see also
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[21]) defined the mapping Wn : C → C as follows:

Un,1 = λn,1T1 + (1− λn,1)I,
Un,2 = λn,2T2Un,1 + (1− λn,2)I,
...
Un,N−1 = λn,N−1TN−1Un,N−2 + (1− λn,N−1)I,
Wn = Un,N = λn,NTNUn,N−1 + (1− λn,N )I,

where {λn,i}Ni=1 ⊂ [0, 1]. In 2000, Takahashi and Shimoji [36] proved that

if X is a strictly convex Banach space, then Fix(W ) =
∩N

i=1 Fix(Ti), where
{λn,i}Ni=1 ⊂ (0, 1).

Very recently, Kangtunyakarn and Suantai [20] introduced a mapping for
finding a common fixed point of a finite family of nonexpansive mappings. For a
finite family of nonexpansive mappings {Ti}Ni=1 and sequence {λn,i}Ni=1 ⊆ [0, 1],
the mapping Kn : C → C is defined as follows:

Un,1 = λn,1T1 + (1− λn,1)I,
Un,2 = λn,2T2Un,1 + (1− λn,2)U1,
...
Un,N−1 = λn,N−1TN−1Un,N−2 + (1− λn,N−1)Un,N−2,
Kn = Un,N = λn,NTNUn,N−1 + (1− λn,N )Un,N−1.

This mapping is called the K-mapping generated by T1, T2, . . . , TN and λn,1,
λn,2, . . . , λn,N .

The present work is motivated and inspired by the idea of Kangtunyakarn
and Suantai [20] and Hu and Liu [17]. First, we introduce a new mapping as
follows: Let C be a nonempty closed convex subset of a real Banach space.
Let Ai : C − − > X(i = 1, 2, ..., N) be a finite family of accretive operators
and let {λn,i}Ni=1 in [0, 1] and {rn,i}Ni=1 be a sequence in (0,∞). We define the
mapping Wn : C → C as follows:

(1.5)

Un,1 = λn,1J
1
rn + (1− λn,1)I,

Un,2 = λn,2J
2
rnUn,1 + (1− λn,2)Un,1,

...
Un,N−1 = λn,N−1J

N−1
rn Un,N−2 + (1− λn,N−1)Un,N−2,

Wn = Un,N = λn,NJ
N
rnUn,N−1 + (1− λn,N )Un,N−1,

where J i
rn := (I + rnAi)

−1 for all i = 1, 2, . . . , N .
Second, we introduce an iterative algorithm for finding a common zero of a

finite family of accretive operators Ai : C → X (i = 1, 2, . . . , N) as follows:

(1.6) xn+1 = αnf(xn) + βnxn + γnWnxn, ∀n ≥ 1,

where Wn is defined by (1.5). Furthermore, we obtain the strong convergence
theorem under some certain conditions of the purposed iterative algorithm in
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a real reflexive strictly convex Banach space which has a uniformly Gâteaux
differentiable norm and admits the duality mapping jφ, where φ is a gauge
function invariant on [0,∞).

2. Preliminaries

Let U := {x ∈ X : ∥x∥ = 1} denote the unit sphere of a Banach space X.
The space X is said to be Gâteaux differentiable if the limit

(2.1) limt→0

∥x+ ty∥ − ∥x∥
t

exists for each x, y ∈ U . The space X is said to be uniformly Gâteaux dif-
ferentiable if for each y ∈ U , the limit is attained uniformly for x ∈ U . It is
well known that if the norm of X is a uniformly Gâteaux differentiable, then
the duality mapping is single valued and norm-weak∗ uniformly continuous on
each bounded subset of X (see p. 111 of [35]). The space X is said to be

strictly convex if for ai ∈ (0, 1) (i = 1, 2, . . . , N) such that
∑N

i=1 ai = 1, then
∥a1x1 + a2x2 + · · · + aNxN∥ < 1 for xi ∈ U (i = 1, 2, . . . , N) and xi ̸= xj for
some i ̸= j. In a strictly convex Banach space X, if

∥x1∥ = ∥x2∥ = · · · = ∥xN∥ = ∥a1x1 + a2x2 + · · ·+ aNxN∥

for all xi ∈ X, ai ∈ (0, 1) (i = 1, 2, . . . , N) and
∑N

i=1 ai = 1, then x1 = x2 =
· · · = xN (see [35]). The space X is said to be uniformly convex if, for each
ϵ ∈ (0, 2], there exists a δ = δ(ϵ) > 0 such that for each x, y ∈ U , ∥x − y∥ ≥ ϵ

implies
∥x+ y∥

2
≤ 1− δ. It is known that a uniformly convex Banach space is

a reflexive and strictly convex Banach spaces (see [35]). Let C be a nonempty
closed convex subset of X. We call that C has the fixed point property for
nonexpansive mappings if every nonexpansive mapping of a bounded closed
convex subset D of C has a fixed point in D.

Let φ : [0,∞) → [0,∞) be a strictly increasing continuous function such
that φ(0) = 0 and φ(t) → ∞ as t → ∞. This function φ is called a gauge
function. The duality mapping Jφ : X → 2X

∗
associated with a gauge function

φ is defined by

Jφ(x) = {f∗ ∈ X∗ : ⟨x, f∗⟩ = ∥x∥φ(∥x∥), ∥f∗∥ = φ(∥x∥), ∀x ∈ X},

where ⟨·, ·⟩ denotes the generalized duality paring. In particular, the duality
mapping with the gauge function φ(t) = t, denoted by J that referred to as
the normalized duality mapping. In this case φ(t) = tq−1, q > 1, the duality
mapping Jφ = Jq is called generalized duality mapping. It follows from the

definition that Jφ(x) =
φ(∥x∥)
∥x∥

J(x) for each x ̸= 0, and Jq(x) = ∥x∥q−2J(x),

q > 1 (see [6]).
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Remark 2.1. For the gauge function φ, the function Φ : [0,∞) → [0,∞) defined

by Φ(t) =
∫ t

0
φ(τ)dτ is convex and strictly increasing continuous function on

[0,∞). Then Φ has a continuous inverse function Φ−1.

Remark 2.2. If a Banach space X has a uniformly Gâteaux differentiable norm,
then Jφ is single-valued which is denoted by jφ.

Lemma 2.3. ([22]) For all x, y ∈ X, the following inequality holds:

Φ(∥x+ y∥) ≤ Φ(∥x∥) + ⟨y, jφ(x+ y)⟩, jφ(x+ y) ∈ Jφ(x+ y).

Let D be a nonempty subset of C. A mapping Q : C → D is said to be
sunny [27] if

Q(Qx+ t(x−Qx)) = Qx,

where Qx+t(x−Qx) ∈ C for x ∈ C and t ≥ 0. A mapping Q : C → D is said to
be retraction if Qx = x for all x ∈ D. Furthermore, Q is a sunny nonexpansive
retraction from C onto D if Q is a retraction from C onto D which is also sunny
and nonexpansive. A subset D of C is called a sunny nonexpansive retraction
of C if there exists a sunny nonexpansive retraction from C onto D. It is well
known that if X is a Hilbert space, then a sunny nonexpansive retraction QC

is coincident with the metric projection from X onto C.

Lemma 2.4. (see [14,23,27]) Let C be a closed and convex subset of a smooth
Banach space X and D be a nonempty subset of C. Let Q : C → D be a
retraction and J be the normalized duality mapping on X. Then the following
are equivalent:

(a) Q is sunny and nonexpansive.
(b) ∥Qx−Qy∥2 ≤ ⟨x− y, J(Qx−Qy)⟩ for all x, y ∈ C.
(c) ⟨x−Qx, J(y −Qx)⟩ ≤ 0 for all x ∈ C and y ∈ D.

Lemma 2.5. Let C be a closed and convex subset of a smooth Banach space
X and D be a nonempty subset of C. Let Q : C → D be a retraction. Let
J be the normalized duality mapping and Jφ be duality mapping with a gauge
function φ. Then the following are equivalent:

(a) ⟨x−Qx, J(y −Qx)⟩ ≤ 0 for all x ∈ C and y ∈ D.
(b) ⟨x−Qx, Jφ(y −Qx)⟩ ≤ 0 for all x ∈ C and y ∈ D.

Proof. Assume that y ̸= Qx, from Lemma 2.4, we see that

⟨x−Qx, J(y −Qx)⟩ ≤ 0 ⇔ ∥y −Qx∥
φ(∥y −Qx∥)

⟨x−Qx, Jφ(y −Qx)⟩ ≤ 0

⇔ ⟨x−Qx, Jφ(y −Qx)⟩ ≤ 0.

This completes the proof. □
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Lemma 2.6. (The Resolvent Identity [5]) Suppose that λ > 0, µ > 0 and
x ∈ X. Then

Jλx = Jµ

(
µ

λ
x+

(
1− µ

λ

)
Jλx

)
.

Lemma 2.7. ([34]) Let {xn} and {ln} be bounded sequences in a Banach space
X and {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn <
1. Suppose that xn+1 = (1−βn)ln+βnxn for all n ≥ 0 and lim supn→∞(∥ln+1−
ln∥ − ∥xn+1 − xn∥) ≤ 0. Then

lim
n→∞

∥ln − xn∥ = 0.

Lemma 2.8. ([38]) Assume that {an} is a sequence of nonnegative real num-
bers such that

an+1 ≤ (1− σn)an + δn, ∀n ≥ 0,

where {σn} is a sequence in (0, 1) and {δn} is a real sequence such that

(i)
∑∞

n=0 σn = ∞;

(ii) lim supn→∞
δn
σn

≤ 0 or
∑∞

n=0 |δn| <∞.

Then, limn→∞ an = 0.

Lemma 2.9. ([12]) Let C be a nonempty closed convex subset of a real reflexive
strictly convex Banach space X which has a uniformly Gâteaux differentiable
norm and admits the duality mapping jφ. Let W : C → C be a nonexpansive
mapping such that Fix(W ) ̸= ∅ and f : C → C be an α-contraction mapping
with a constant α ∈ (0, 1). Suppose that {αn} is a sequence in (0, 1) such that
limn→∞ αn = 0. Then, the sequence {xn} defined by

xn = αnf(xn) + (1− αn)Wxn, ∀n ≥ 1,

converges strongly to a point x∗ ∈ Fix(W ).

Definition 2.10. Let C be a nonempty and convex subset of a real Banach
space X. Let Ai : C → X (i = 1, 2, . . . , N) be a finite family of accretive
operators and let λ1, λ2, . . . , λN be real numbers such that 0 ≤ λi ≤ 1 for all
i = 1, 2, . . . , N . We define a mapping W : C → C as follows:

(2.2)

U1 = λ1J
1
r + (1− λ)I,

U2 = λ2J
2
rU1 + (1− λ2)U1,

...
UN−1 = λN−1J

N−1
r UN−2 + (1− λN−1)UN−2,

W = UN = λNJ
N
r UN−1 + (1− λN )UN−1,

where J i
r := (I + rAi)

−1 for all i = 1, 2, . . . , N .
Tha above mappingW is called theW -mapping generated by J1

r , J
2
r , . . . , J

N
r

and λ1, λ2, . . . , λN .
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3. Main results

Lemma 3.1. Let C be a nonempty closed convex subset of a real strictly convex
Banach space X. Let Ai : C → X (i = 1, 2, . . . , N) be a finite family of

accretive operators such that
∩N

i=1N(Ai) ̸= ∅, satisfying the range condition:

D(Ai) ⊆ C ⊂
∩
r>0

R(I + rAi) for i = 1, 2, . . . , N.

Let λ1, λ2, . . . , λN be real numbers such that 0 ≤ λi ≤ 1 for all i = 1, 2, . . . , N .
LetW be theW -mapping generated by J1

r , J
2
r , . . . , J

N
r and λ1, λ2, . . . , λN . Then

U1, U2, . . . , UN−1 and W are nonexpansive. Moreover, Fix(W ) =
∩N

i=1N(Ai).

Proof. For each i = 1, 2, . . . , N , Ai satisfies the range condition, we have J i
r is

well defined nonexpansive mapping from R(I + rA) → C with
∩N

i=1 Fix(J
i
r) =∩N

i=1N(Ai). Then U1, U2, . . . , UN and W are nonexpansive mappings.

To show that Fix(W ) =
∩N

i=1N(Ai), we first show that
∩N

i=1N(Ai) ⊆
Fix(W ). Let z ∈

∩N
i=1N(Ai), then

U1z = λ1J
1
r z + (1− λ1)z = z,

U2z = λ2J
2
rU1z + (1− λ2)U1z = z,

...
UN−1z = λN−1J

N−1
r UN−2z + λN−1J

N−1
r UN−2z = z,

Wz = UNz = λNJ
N
r UN−1z + (1− λN )UN−1z = z.

Hence, Wz = z, i.e., z ∈ Fix(W ).

Next, we will show that Fix(W ) ⊆
∩N

i=1N(Ai). Let w ∈ Fix(W ) and

v ∈
∩N

i=1N(Ai). By the definition of W , we have

∥w − v∥ = ∥Ww − v∥
= ∥λN (JN

r UN−1w − v) + (1− λN )(UN−1w − v)∥
≤ λN∥JN

r UN−1w − v∥+ (1− λN )∥UN−1w − v∥
≤ ∥UNw − v∥
= ∥λN−1(J

N−1
r UN−2w − v) + (1− λN−1)(UN−2w − v)∥

≤ λN−1∥JN−1
r UN−2w − v∥+ (1− λN−1)∥UN−2w − v∥

≤ ∥UN−2w − v∥
...

≤ ∥U1w − v∥
= ∥λ1(J1

rw − v) + (1− λ1)(w − v)∥
≤ λ1∥J1

rw − v∥+ (1− λ1)∥w − v∥
≤ ∥w − v∥.(3.1)
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This implies that

∥w − v∥ = ∥λ1(J1
rw − v) + (1− λ1)(w − v)∥

and

∥w − v∥ = λ1∥J1
rw − v∥+ (1− λ1)∥w − v∥.

So ∥w−v∥ = ∥J1
rw−v∥. By the strict convexity of X, we obtain that J1

rw = w,
i.e., w ∈ Fix(J1

r ). This implies that U1w = w. From (3.1) together with
U1w = w, we have

∥w − v∥ = ∥λ2(J2
rU1w − v) + (1− λ2)(U2w − v)∥

= ∥λ2(J2
rw − v) + (1− λ2)(w − v)∥

and
∥w − v∥ = λ2∥J2

rU1w − v∥+ (1− λ2)∥U1w − v∥
= λ2∥J2

rw − v∥+ (1− λ2)∥w − v∥.

So ∥w−v∥ = ∥J2
rw−v∥. By the strict convexity of X, we obtain that J2

rw = w,
i.e., w ∈ Fix(J2

r ). This implies that U2w = w. Applying the same proof as
above, we get w = J1

rw = J2
rw = · · · = JN−1

r w and w = U1w = U2w = · · · =
UN−1w. Since w ∈ Fix(W ) = Fix(UN ) and UN−1w = w, then w = λNJ

N
r w+

(1 − λN )w. This implies that w = JN
r w. Therefore, w ∈

∩N
i=1 Fix(J

i
r) =∩N

i=1N(Ai). This completes the proof. □

Lemma 3.2. For each r, s > 0,

∥Jrx− Jsx∥ ≤
∣∣1− s

r

∣∣∥Jrx− x∥ for all x ∈ X.

Proof. Follows from the resolvent identity, we can conclude the desired result
easily. □

Lemma 3.3. Let C be a nonempty closed convex subset of a real Banach space
X. Let Ai : C → X (i = 1, 2, . . . , N) be a finite family of accretive operators

such that
∩N

i=1N(Ai) ̸= ∅, satisfying the range condition:

D(Ai) ⊆ C ⊂
∩
r>0

R(I + rAi) for i = 1, 2, . . . , N.

Let {λn,i} (i = 1, 2, , . . . , N) be a sequence in [0, 1] such that λn,i → λi as
n→ ∞ and {rn} be a sequence in (0,∞) such that rn → r as n→ ∞. Suppose
that W is the mapping generated by J1

r , J
2
r , . . . , J

N
r and λ1, λ2, . . . , λN and for

each n ∈ N, Wn-mapping is the mapping generated by J1
rn , J

2
rn , . . . , J

N
rn and

λn,1, λn,2, . . . , λn,N . Then, for each x ∈ C, we have

limn→∞ ∥Wnx−Wx∥ = 0.

t
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Proof. Let x ∈ C. Suppose that Uk is the mapping generated by J1
r , J

2
r , . . . , J

N
r

and λ1, λ2, . . . , λN and for each n ∈ N, Uk,n is the mapping generated by
J1
rn , J

2
rn , . . . , J

N
rn and λn,1, λn,2, . . . , λn,N . From Lemma 3.2, we have

∥Un,1x− U1∥ = ∥λn,1J1
rnx+ (1− λ1)x− λ1J

1
r x− (1− λ1)x∥

= ∥λn,1(J1
rnx− J1

r x) + (λn,1 − λ1)(J
1
r x− x)∥

≤ λn,1∥J1
rnx− J1

r x∥+ |λn,1 − λ1|∥J1
r x− x∥

≤
∣∣1− rn

r

∣∣∥J1
r x− x∥+ |λn,1 − λ1|∥J1

r x− x∥

≤
(∣∣1− rn

r

∣∣+ |λn,1 − λ1|
)
∥J1

r x− x∥.

Using the same argument as above, for each i = 2, 3, . . . , N , we obtain that

∥Un,kx− Ukx∥
= ∥λn,kJk

rnUn,k−1x+ (1− λn,k)x− λkJ
k
r Uk−1x− (1− λk)x∥

= ∥λn,k(Jk
rnUn,k−1x− Jk

rnUk−1x) + λn,k(J
k
rnUk−1x− Jk

r Uk−1x)
+(λn,k − λk)(J

k
r Uk−1x− x)∥

≤ λn,k∥Jk
rnUn,k−1x− Jk

rnUk−1x∥+ λn,k∥Jk
rnUk−1x− Jk

r Uk−1x∥
+|λn,k − λk|∥Jk

r Uk−1x− x∥
≤ ∥Un,k−1x− Uk−1x∥+

∣∣1− rn
r

∣∣∥Jk
r Uk−1x− Uk−1x∥

+|λn,k − λk|∥Jk
r Uk−1x− x∥.

It follows that

∥Wnx−Wx∥ = ∥Un,Nx− UNx∥
≤ ∥Un,1x− U1x∥+

∑N
i=1 |λn,i − λi|∥J i

rUi−1x− Ui−1x∥

≤
(∣∣1− rn

r

∣∣+ |λn,1 − λ1|
)
∥J1

r x− x∥

+
∑N

i=1 |λn,i − λi|∥J i
rUi−1x− Ui−1x∥.

Since rn → r and λn,i → λi as n → ∞, then limn→∞ ∥Wnx−Wx∥ = 0. This
completes the proof. □

Next, we will show that the sequences {xn} which is defined by the iterative
algorithm (1.5) is a convergent sequence.

Theorem 3.4. Let C be a nonempty closed convex subset of a real reflexive
strictly convex Banach space X which has a uniformly Gâteaux differentiable
norm and admits the duality mapping jφ. Let Ai : C → X (i = 1, 2, . . . , N) be

a finite family of accretive operators such that
∩N

i=1N(Ai) ̸= ∅, satisfying the
range condition:

D(Ai) ⊆ C ⊂
∩
r>0

R(I + rAi) for i = 1, 2, . . . , N.

Let f : C → C be an α-contraction mapping with a constant α ∈ (0, 1). Let
{λn,i} (i = 1, 2, . . . , N) be a sequence in [a, b] with 0 < a ≤ b < 1 and {rn} be
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a sequence in (0,∞). Let {αn}, {βn} and {γn} be sequences in (0, 1). Assume
that the following conditions hold:

(C1) αn + βn + γn = 1;
(C2) limn→∞ αn = 0,

∑∞
n=1 αn = ∞;

(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(C4) lim infn→∞ rn > 0, limn→∞
rn+1

rn
= 1;

(C5) limn→∞ |λn+1,i − λn,i| = 0 for all i = 1, 2, . . . , N .

For all n ∈ N, let Wn be a W -mapping generated by J1
r , J

2
r , . . . , J

N
r and

λn,1, λn,2,
. . . , λn,N . For given x1 ∈ C, if {xn} is the sequence defined by

(3.2) xn+1 = αnf(xn) + βnxn + γnWnxn, ∀n ≥ 1.

Then {xn} strongly converges to a common solution of the equations Aix = 0
for all i = 1, 2, . . . , N .

Proof. First, we will show that {xn} is bounded. Taking p ∈
∩N

i=1N(Ai), we
have

∥xn+1 − p∥
= ∥αn(f(xn)− p) + βn(xn − p) + γn(Wnxn − p)∥
≤ αn∥f(xn)− f(p)∥+ αn∥f(p)− p∥+ βn∥xn − p∥+ γn∥Wnxn − p∥
≤ αnα∥xn − p∥+ αn∥f(p)− p∥+ βn∥xn − p∥+ γn∥xn − p∥
= (1− αn(1− α))∥xn − p∥+ αn∥f(p)− p∥

≤ max
{
∥xn − p∥, ∥f(p)− p∥

1− α

}
.

By mathematical induction, we obtain that

∥xn − p∥ ≤ max
{
∥x1 − p∥, ∥f(p)− p∥

1− α

}
, ∀n ≥ 1.

Hence, {xn} is bounded and {f(xn)} and {Wnxn} are also.
Next, we show that limn→∞ ∥Wn+1ωn − Wnωn∥ = 0, where {ωn} is a

bounded sequence in C. Let i = 2, 3, . . . , N − 2. From Lemma 3.2, we ob-
serve that

∥Un+1,N−iωn − Un,N−iωn∥
= ∥λn+1,N−iJ

N−i
rn+1

Un+1,N−i−1ωn + (1− λn+1,N−i)ωn

−λn,N−iJ
N−i
rn Un,N−i−1ωn − (1− λn,N−i)ωn∥

≤λn+1,N−i∥JN−i
rn+1

Un+1,N−i−1ωn − JN−i
rn+1

Un,N−i−1ωn∥
+λn+1,N−i∥JN−i

rn+1
Un,N−i−1ωn − JN−i

rn Un,N−i−1ωn∥
+|λn+1,N−i − λn,N−i|∥JN−i

rn Un,N−i−1ωn − ωn∥
≤∥Un+1,N−i−1ωn − Un,N−i−1ωn∥+

∣∣1− rn+1

rn

∣∣∥JN−i
rn Un,N−i−1ωn − Un,N−i−1ωn∥

+|λn+1,N−i − λn,N−i|∥JN−i−1
rn Un,N−i−1ωn − ωn∥

≤ ∥Un+1,N−i−1ωn − Un,N−i−1ωn∥+
(∣∣1− rn+1

rn

∣∣+ |λn+1,N−i − λn,N−i|
)
M2,
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where M2 > 0 is a constant such that M2 = supn≥1

{
∥J1

rnωn − ωn∥ +∑N
i=1 ∥J i

rnUn,i−1ωn − Un,i−1ωn∥
}
.

It follows that

∥Wn+1ωn −Wnωn∥
= ∥Un+1,Nωn − Un,Nωn∥

≤ ∥Un+1,1ωn − Un,1ωn∥+
N∑
i=2

(∣∣1− rn+1

rn

∣∣+ |λn+1,i − λn,i|
)
M2

≤
(∣∣1− rn+1

rn

∣∣+ |λn+1,1 − λn,1|
)
∥J1

rωn − ωn∥+
N∑
i=2

(∣∣1− rn+1

rn

∣∣+|λn+1,i − λn,i|
)
M2

≤
N∑
i=1

(∣∣1− rn+1

rn

∣∣+ |λn+1,i − λn,i|
)
M2.

From the conditions (C4) and (C5), we obtain that

lim
n→∞

∥Wn+1ωn −Wnωn∥ = 0.(3.3)

Next, we will show that limn→∞ ∥xn+1 − xn∥ = 0.
Let xn+1 = βnxn + (1− βn)ln for all n ≥ 1. Then, we have

ln+1 − ln =
xn+2 − βn+1xn+1

1− βn+1
− xn+1 − βnxn

1− βn

=
αn+1f(xn+1) + γn+1Wn+1xn+1

1− βn+1
− αnf(xn)− γnWnxn

1− βn

=
αn+1f(xn+1) + (1− αn+1 − βn+1)Wn+1xn+1

1− βn+1

−αnf(xn) + (1− αn − βn)Wn

1− βn

=
αn+1

1− βn+1
(f(xn+1)−Wn+1xn+1)−

αn

1− βn
(f(xn)−Wnxn)

+Wn+1xn+1 −Wn+1xn +Wn+1xn −Wnxn.

It follows that

∥ln+1 − ln∥ − ∥xn+1 − xn∥ ≤ αn+1

1− βn+1
∥f(xn+1)−Wn+1xn+1∥

+
αn

1− βn
∥f(xn)−Wnxn∥+ ∥Wn+1xn −Wnxn∥.

From the conditions (C1), (C2) and (3.3), we have

lim sup
n→∞

(∥ln+1 − ln∥ − ∥xn+1 − xn∥) ≤ 0.

Hence, by Lemma 2.7, we obtain that

limn→∞ ∥ln − xn∥ = 0.
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Consequently,

lim
n→∞

∥xn+1 − xn∥ = lim
n→∞

(1− βn)∥ln − xn∥ = 0.(3.4)

Note that

∥xn+1 −Wnxn∥ = ∥αnf(xn) + βnxn + (1− αn − βn)Wnxn −Wnxn∥
≤ αn∥f(xn)−Wnxn∥+ βn∥xn −Wnxn∥
≤ αn∥f(xn)−Wnxn∥+βn

(
∥xn − xn+1∥+∥xn+1 −Wnxn∥

)
,

which implies that

∥xn+1 −Wnxn∥ ≤ αn

1− βn
∥f(xn)−Wnxn∥+

βn
1− βn

∥xn − xn+1∥.

From the conditions (C2), (C3) and (3.4), we have

limn→∞ ∥xn+1 −Wnxn∥ = 0,

and hence

∥xn −Wnxn∥ ≤ ∥xn − xn+1∥+ ∥xn+1 −Wnxn∥
→ 0 as n→ ∞.(3.5)

Note that

∥xn −Wxn∥ ≤ ∥xn −Wnxn∥+ ∥Wnxn −Wxn∥
≤ ∥xn −Wnxn∥+ supx∈C ∥Wnx−Wx∥.

In view of Lemma 3.3 and (3.5), we obtain that

lim
n→∞

∥xn −Wxn∥ = 0.(3.6)

Let um = αmf(um) + (1− αm)Wum, where {αm} is satisfies the condition of
Lemma 2.9. It follows from Lemma 2.9, then we have x∗ = limm→∞ um. We
note that

∥um − xn∥φ(∥um − xn∥)
=αn⟨f(um)− xn, jφ(um − xn)⟩+ (1− αm)⟨Wum − xn, jφ(um − xn)⟩
=αm⟨f(um)− f(x∗)− um + x∗, jφ(um − xn)⟩
+αm⟨f(x∗)− x∗, jφ(um − xn)⟩+ αm⟨um − xn, jφ(um − xn)⟩
+(1− αm)⟨Wum −Wxn, jφ(um − xn)⟩
+(1− αm)⟨Wxn − xn, jφ(um − xn)⟩

≤ ∥um − xn∥φ(∥um − xn∥) + ∥Wxn − xn∥φ(∥um − xn∥)
+αm(1 + α)φ(∥um − xn∥)∥um − x∗∥.

This implies that

(3.7) ⟨f(x∗)− x∗, jφ(xn − um)⟩ ≤ ∥Wxn − xn∥
αm

M3 + (1 + α)∥um − x∗∥M3,

where M3 > 0 is a constant such that M3 = supn≥{φ(∥um − xn∥)}. Now,
taking the upper limit as n→ ∞ and m→ ∞, respectively, we obtain that

lim sup
m→∞

lim sup
n→∞

⟨f(x∗)− x∗, jφ(xn − um)⟩ ≤ 0.(3.8)
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Since jφ is norm-weak∗ uniformly continuous on bounded sets, as m → ∞,
then

⟨f(x∗)− x∗, jφ(xn − um)⟩ → ⟨f(x∗)− x∗, jφ(xn − x∗)⟩.
Hence, for each ϵ > 0, there exists N ≥ 1 such that if m > N , for all n ≥ 1,
then

⟨f(x∗)− x∗, jφ(xn − x∗)⟩ < ⟨f(x∗)− x∗, jφ(xn − um)⟩+ ϵ.(3.9)

Thus taking upper limit as n → ∞ and m → ∞ in both sides of (3.9), we get
from (3.8) that

lim supn→∞⟨f(x∗)− x∗, jφ(xn − x∗)⟩ ≤ ϵ.

Since ϵ > 0 is arbitrary, then we obtain that

lim sup
n→∞

⟨f(x∗)− x∗, jφ(xn − x∗)⟩ ≤ 0.(3.10)

Since Φ(t) =
∫ t

0
φ(τ)dτ , ∀t ≥ 0 and φ : [0,∞) → [0,∞) is the gauge function,

then for 1 ≥ k ≥ 0, φ(ky) ≤ φ(y), we get

Φ(kt) =

∫ kt

0

φ(τ)dτ = k

∫ t

0

φ(ky)dy ≤ k

∫ t

0

φ(y)dy = kΦ(t).

Finally, we will show that xn → x∗ as n→ ∞. From Lemma 2.3, we note that

Φ(∥xn+1 − x∗∥)
= Φ

(
∥αn(f(xn)− f(x∗)) + αn(f(x

∗)− x∗) + βn(xn − x∗)
+γn(Wnxn − x∗)∥

)
≤ Φ

(
∥αn(f(xn)− f(x∗)) + βn(xn − x∗) + γn(Wnxn − x∗)∥

)
+αn⟨f(x∗)− x∗, jφ(xn+1 − x∗)⟩

≤ Φ
(
(1− αn(1− α))∥xn − x∗∥

)
+ αn⟨f(x∗)− x∗, jφ(xn+1 − x∗)⟩

≤ (1− αn(1− α))Φ(∥xn − x∗∥) + αn⟨f(x∗)− x∗, jφ(xn+1 − x∗)⟩.

From the condition (C2), we see that
∑∞

n=1(1−α)αn = ∞ and by using (3.10),
we get

lim supn→∞
1

1− α
⟨f(x∗)− x∗, jφ(xn+1 − x∗)⟩ ≤ 0.

Thus, by Lemma 2.8, we have Φ(∥xn−x∗∥) → 0 as n→ ∞. From the property
of Φ, implies that xn → x∗. Therefore, we conclude that xn → x∗. This
completes the proof. □

Remark 3.5. Theorems 3.4 improves and extends [17, Theorem 3.1] in the
following ways:

(i) The fixed element u ∈ C is replaced by more general f(xn), where
f : C → C is a contraction mapping, we obtain that is called viscosity
approximation method.
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(ii) The normalized duality mapping J : X → X∗ is extended to more
general duality mapping Jφ : X → X∗ with a gauge function φ :
[0,∞) → [0,∞) which covers the case φ(t) = t.

(iii) The algorithm (3.2) likes completely the Hu and Liu’s algorithm (1.4),
but the mappings Srn and Wn are very different.

Remark 3.6. The mapping Wn defined by (1.4) is very different from the map-
ping Kn in [20] because the mapping Kn is contains a finite family of nonex-
pansive mappings while the mapping Wn is contains a finite family of accretive
operators.

If we take f(x) = u ∈ C in Theorem 3.4, then we have the following result:

Corollary 3.7. Let C be a nonempty closed convex subset of a real reflexive
strictly convex Banach space X which has a uniformly Gâteaux differentiable
norm and admits the duality mapping jφ. Let Ai : C → X (i = 1, 2, . . . , N) be

a finite family of accretive operators such that
∩N

i=1N(Ai) ̸= ∅, satisfying the
range condition:

D(Ai) ⊆ C ⊂
∩
r>0

R(I + rAi) for i = 1, 2, . . . , N.

Let {λn,i} (i = 1, 2, . . . , N) be a sequence in [a, b] with 0 < a ≤ b < 1 and
{rn} be a sequence in (0,∞). Let {αn}, {βn} and {γn} be sequences in (0, 1).
Assume that the conditions (C1)−(C5) of Theorem 3.4 hold. For given u, x1 ∈
C, if {xn} is the sequence defined by

(3.11) xn+1 = αnu+ βnxn + γnWnxn, ∀n ≥ 1.

Then {xn} strongly converges to a common solution of the equations Aix = 0
for i = 1, 2, . . . , N .

If we take N = 1 in Theorem 3.4, then we have the following result for a
single mapping:

Corollary 3.8. Let C be a nonempty closed convex subset of a real reflexive
strictly convex Banach space X which has a uniformly Gâteaux differentiable
norm and admits the duality mapping jφ. Let A : C → X be a finite family of
accretive operators such that N(A) ̸= ∅, satisfying the range condition:

D(A) ⊆ C ⊂ R(I + rA).

Let f : C → C be an α-contraction mapping with a constant α ∈ (0, 1). Let
{rn} be a sequence in (0,∞) and {αn}, {βn} and {γn} be sequences in (0, 1).
Assume that the conditions (C1)−(C4) of Theorem 3.4 hold. For given x1 ∈ C,
if {xn} is the sequence defined by

(3.12) xn+1 = αnf(xn) + βnxn + γnJrnxn, ∀n ≥ 1.

Then {xn} strongly converges to a common solution of the equation Ax = 0.
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4. Some applications

In this section, as applications, we will utilize Theorem 3.4 to deduced several
results. As a direct consequence of Theorem 3.4, we have the following results:

4.1. Application to a finite family of continuous pseudocontractive
mappings. Let C be a nonempty closed convex subset of a real Banach space
X which admits the duality mapping jφ. A mapping T : C → C is said to be
pseudocontractive if there exists jφ(x− y) ∈ Jφ(x− y) such that

⟨Tx− Ty, jφ(x− y)⟩ ≤ ∥x− y∥φ(∥x− y∥), ∀x, y ∈ C.

It is well known that the class of pseudocontractive mapping is more general
than the class of nonexpansive mapping. Moreover, the class of accretive map-
pings is the class of pseudo-contractive mappings. A mapping A : C → X is
said to be pseudocontractive if T := I −A is accretive. From Theorem 3.4, we
observe that x∗ is a zero of the accretive mapping A if and only if it is a fixed
point of the pseudocontractive mapping T := I −A.

Theorem 4.1. Let C be a nonempty closed convex subset of a real reflex-
ive strictly convex Banach space X which has a uniformly Gâteaux differ-
entiable norm and admits the duality mapping jφ. Let Ti : C → X (i =
1, 2, . . . , N) be a finite family of continuous pseudocontractive mappings such

that
∩N

i=1 Fix(Ti) ̸= ∅. For each r > 0, let J i
r := (I+r(I−Ti))−1 = (2I−Ti)−1

(i = 1, 2, . . . , N) and f : C → C be an α-contraction mapping with a con-
stant α ∈ (0, 1). Let {λn,i} (i = 1, 2, . . . , N) be a sequence in [a, b] with
0 < a ≤ b < 1, {rn} be a sequence in (0,∞), {αn}, {βn} and {γn} be sequences
(0, 1) which satisfy the conditions (C1)− (C5) in Theorem 3.4. For all n ∈ N,
let Wn be a W -mapping generated by J1

r , J
2
r , . . . , J

N
r and λn,1, λn,2, . . . , λn,N .

For given x1 ∈ C, if {xn} is the sequence defined by

(4.1) xn+1 = αnf(xn) + βnxn + γnWnxn, ∀n ≥ 1.

Then {xn} strongly converges to a common fixed point x∗ ∈
∩N

i=1 Fix(Ti).

Proof. For each i = 1, 2, . . . , N , we set Ai := I − Ti into Theorem 3.4. Then,

Fix(Ti) = N(Ai) for all i = 1, 2, .., N and hence
∩N

i=1 Fix(Ti) =
∩N

i=1N(Ai).
Furthermore, each Ai for i = 1, 2, . . . , N is m-accretive. Therefore, the proof
is complete from Theorem 3.4. □
4.2. Application to a viscosity approximation with weak contraction.
Let C be a nonempty closed convex subset of a real Banach space X. A
mapping g : C → C is said to be weakly contractive (see [1]) if

∥g(x)− g(y)∥ ≤ ∥x− y∥ − ψ(∥x− y∥), ∀x, y ∈ C,

where ψ : [0,∞) → [0,∞) is a continuous and strictly increasing function such
that ψ(0) = 0 and limt→∞ ψ(t) = ∞. As a special case, if ψ(t) = (1 − α)t for
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t ∈ [0,∞) and α ∈ (0, 1), then the weakly contractive mapping g is contraction
with a constant α.

In 2001, Rhoades [29] proved a Banach contraction principle for the weakly
contractive mapping as follows:

Lemma 4.2. ([29]) Let (X, d) be a complete metric space, and g be a weakly
contractive mapping on X. Then g has a unique fixed point in X.

Lemma 4.3. ( [2]) Assume that {an} and {bn} are sequences of nonnegative
real number and {αn} is a sequence of a positive real number satisfying the

conditions:
∑∞

n=0 αn = ∞ and limn→∞
bn
αn

= 0. Let the recursive inequality

an+1 ≤ an − αnΨ(an) + bn, ∀n ≥ 0,

hold, where Ψ(a) is a continuous and strict increasing function for all a ≥ 0
with Ψ(0) = 0. Then, limn→∞ an = 0.

Theorem 4.4. Let C be a nonempty closed convex subset of a uniformly convex
Banach space X which has a uniformly Gâteaux differentiable norm and admits
the duality mapping jφ. Let Ai : C → X (i = 1, 2, . . . , N) be a finite family

of accretive operators such that F :=
∩N

i=1N(Ai) ̸= ∅. For all r > 0, let
J i
r := (I + rAi)

−1 (i = 1, 2, . . . , N) and g : C → C be a weakly contractive
mapping with the function ψ. Let {λn,i} (i = 1, 2, . . . , N) be a sequence in
[a, b] with 0 < a ≤ b < 1, {rn} be a sequence in (0,∞), {αn} {βn} and
{γn} be sequences (0, 1) which satisfy the conditions (C1) − (C5) in Theorem
3.4. For all n ∈ N, let Wn be a W -mapping generated by J1

r , J
2
r , . . . , J

N
r and

λn,1, λn,2, . . . , λn,N . For given x1 ∈ C, if {xn} is the sequence defined by

(4.2) xn+1 = αng(xn) + βnxn + γnWnxn, ∀n ≥ 1.

Then {xn} strongly converges to a common solution of the equations Aix = 0
for all i = 1, 2, . . . , N .

Proof. Since a Banach space X is smooth, then by Lemma 2.5, there exists a
sunny nonexpansive retraction Q from C onto F . Moreover, Q ◦ g is a weakly
contractive mapping. Indeed, for all x, y ∈ C, we see that

∥
(
Q ◦ g

)
x−

(
Q ◦ g

)
y∥ = ∥Q

(
g(x)

)
−Q

(
g(y)

)
∥

≤ ∥g(x)− g(y)∥ ≤ ∥x− y∥ − ψ(∥x− y∥).

By Lemma 4.2, it guarantees that Q ◦ g has a unique fixed point x∗ ∈ C such
that Q

(
g(x∗)

)
= x∗. Now, we let y1 ∈ C and define a sequence {yn} by

yn+1 = αng(x
∗) + βnyn + γnWnyn, ∀n ≥ 1.

Then by Corollary 3.7 with u = g(x∗), we have limn→∞ yn = Q
(
g(x∗)

)
= x∗ ∈

F .
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Next, we will show that xn → x∗ as n→ ∞. Note that

∥xn+1 − yn+1∥
= ∥αn(g(xn)− g(x∗)) + βn(xn − yn) + γn(Wnxn −Wnyn)∥
≤ αn∥g(xn)− g(yn)∥+ αn∥g(yn)− g(x∗)∥+ βn∥xn − yn∥|+ γn∥Wnxn −Wnyn∥
≤ αn∥xn − yn∥ − αnψ(∥xn − yn∥) + αn∥yn − x∗∥ − αnψ(∥yn − x∗∥)

+(1− αn)∥xn − yn∥
≤ ∥xn − yn∥ − αnψ(∥xn − yn∥) + αn∥yn − x∗∥.

Since limn→∞ ∥yn − x∗∥ = 0, then by the condition (C1) and Lemma 4.3,
we have limn→∞ ∥xn − yn∥ = 0. Therefore, we conclude that xn → x∗. This
completes the proof. □
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