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ON THE STRUCTURE OF SOME DEFICIENCY
ZERO GROUPS

A. JAMALI*

Abstract. Using the notion of the generalized external semi-

direct product of two groups we investigate the structure of

some known deficiency zero groups and also construct some

new deficiency zero groups having specified properties. In par-

ticular, for any integers i, j with 1 ≤ i ≤ j, we construct a

2-generator 2-relation group of order 33i+j+1 and nilpotency

class 2i + 1.

1. Introduction

Let Fn be the free group on n free generators a1, . . . , an, and let

θ denote the automorphism defined by setting aθ
i = ai+1, where the

subscripts are reduced modulo n. For any cyclically reduced word

MSC(2000): Primary 20F05, 20E22; Secondary 20F18

Keywords: Generalized semi-direct product, Deficiency zero group, Factor pair, Cycli-

cally presented group

Received: 4 April 2005 , Revised: 14 June 2005

*Research supported in part by MIM Grant P83-112.

c© 2005 Iranian Mathematical Society.
1



2 Jamali

w = w(a1, . . . , an) in Fn, the cyclically presented group Kn(w) is

defined by

〈a1, . . . , an|wθk−1

= 1, k = 1, . . . , n〉.

Examples of such groups are discussed in [7]. It is clear that

θ induces an automorphism of Kn(w) and hence one may take a

semi-direct product of Kn(w) with a cyclic group of order n with

the action induced by θ. It is often easier and more instructive to

consider the resulting group rather than Kn(w). For instance, see

[1], [5] and [13].

In this paper, for a given integer l, we consider a factor group

Kn,l(w) of Kn(w) defined by

〈a1, . . . , an|al
1 = · · · = al

n, w
θk−1

= 1, k = 1, . . . , n〉,

and form the generalized external semi-direct product of Kn,l(w)

with a cyclic group of order n. This allows us to determine the

structure of some known deficiency zero groups as well as to con-

struct some new deficiency zero groups having specified properties.

In particular, for any integers i, j with 1 ≤ i ≤ j, we construct the

group

Gi,j = 〈x, y|x3i

= y3, [x, xy] = x3j〉,

and show that Gi,j having order 33i+j+1 is of class 2i+1. This group

is a generalization of the group G = Gi,i introduced by Wiegold in

[15], wherein the claim about the class is incorrect and the exact

order of G is unspecified.
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2. Preliminary results

In this section we first introduce the notion of generalized semi-

direct product.

Let H and K be groups. A factor pair of H by K is a pair (f, ϕ)

of maps f : H × H −→ K and ϕ : H −→ Aut(K), denoted by

h 7→ ϕh, such that

(i) f(x, 1) = f(1, x) = 1 for every x ∈ H and ϕ1 is the identity

in Aut(K).

(ii) ϕxϕy = ϕxyψf(x,y) for x, y ∈ H, where ψk is the inner auto-

morphism of K induced by k ∈ K.

(iii) f(x, yz)f(y, z) = f(xy, z)f(x, y)ϕz for x, y, z ∈ H.

Let (f, ϕ) be a factor pair of H by K, and define

(h1, k1)(h2, k2) = (h1h2, f(h1, h2)k
ϕh2
1 k2),

for (h1, k1), (h2, k2) ∈ H×K. This gives a group structure onH×K,

called the generalized semi-direct product of H by K corresponding

to (f, ϕ). We denote this group by H ×(f,ϕ) K or simply by HṅK.

We now return to our group Kn,l(w) and let K = Kn,l(w), H =

〈b|bn = 1〉. We define f : H × H −→ K by setting f(x, 1) =

f(1, x) = 1, for x ∈ H and

f(bi, bj) =


a−l

1 (i = j = n− 1)

al
1 (i+ j = n) or (i+ j > n and i, j 6= n− 1)

1 (otherwise),

where 1 ≤ i, j ≤ n − 1. Next on taking ϕb = θ, we observe that

(f, ϕ) is a factor pair of H by K. So we may consider the group

En,l(w) = H ×(f,ϕ) K.
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Using [7, Theorem 1, §20] we are able to write down a presenta-

tion for En,l(w) as follows:

〈a1, . . . , an, b|al
1 = · · · = al

n, w
θk−1

= 1 (k = 1, . . . , n),

al
1 = bn, ab

i = ai+1 (1 ≤ i ≤ n)〉.

Eliminating the redundant generators a2, . . . , an gives

En,l(w) ∼= 〈a, b|al = bn, w(a, ab, . . . , abn−1

) = 1〉.

3. Applications and examples

In this section we shall apply our construction to study some

known deficiency zero groups as well as to exhibit some infinite

classes of deficiency zero finite groups. The method may be used

for several known examples.

(a) The group G7

Our first example is the group G7 which appeared in [4]. This

group was constructed in response to a problem posed by Johnson

and Robertson [8], for finite soluble groups of deficiency zero with

increasing derived length. The group G7, which is defined by

〈x, y|x4 = y3, x−2y−1x−1y−1(xy)2xy−1xy = 1〉,

is of order 210 · 39 and has derived length seven.

Here we let n = 3, l = 4 and w = a3a2a1a2a
−2
1 a−1

2 , namely we

consider the group K3,4(w) defined by

〈a1, a2, a3|a4
1 = a4

2 = a4
3, a3a2a1 = a2a

2
1a

−1
2 , a1a3a2 = a3a

2
2a

−1
3 ,

a2a1a3 = a1a
2
3a

−1
1 〉.

Then G7
∼= Z3ṅK3,4(w). Using GAP [12], we observe that K3,4(w)
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is of order 210 · 38 and has derived length 6. As K3,4(w) ≤ G′
7, it is

readily seen that G7 is of derived length 7.

b) The group G(n)

We next consider the class G(n) of groups

〈x, z|znxznx−1 = zn+2x2z2x2 = 1〉 (n = 2, 3, . . . ),

introduced by Niemenmaa and Rosenberger in [10]. The group

G(n) has been investigated by Thomas in [14], and he proved that

G(n) is torsion-free whenever n ≥ 3, by introducing a torsion-free

subgroup K of index 4 in G(n). The subgroup K has the following

presentation:

〈x, y, z, u|xn = yn = zn = un, x2n+2y2z2u2 = 1〉.

We take w = w(a1, a2, a3, a4) = a2n+2
1 a2

2a
2
3a

2
4 in F4. Clearly K =

K4,n(w) and E = E4,n(w) is given by

〈a, b|an = b4, b12(a2b−1)4 = 1〉.

If we take u = b2, v = bab−1, and L = 〈a, u, v〉, then we find that

K ≤ L and L is of index 2 in E with presentation

〈a, u, v|an = u2 = vn, (v2a2u)2 = u−2〉.

Incidentally, G(n) also has L = L(n) as a subgroup of index 2 with

K ≤ L. Thomas in [14] shows that G(n) is torsion-free by proving

that L is a torsion-free group. By the same argument given in [14],

we deduce that E4,n(w) is a torsion-free group. It is worth noting

that E4,2(w) has a subgroup of index 24 isomorphic to F2. The

proof goes exactly like that of [14] by showing that L(2) is a split

extension of F2 by a cyclic group of order 12.
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c) Fibonacci groups

Here we construct an infinite class of finite metabelian groups

using the Fibonacci group F (r, n) defined by

F (r, n) = Kn(a1 . . . ara
−1
r+1),

where r ≥ 2 and subscripts are reduced modulo n. It was shown

in [3] that if r ≡ 1 (mod n), then F (r, n) is a metacyclic group of

order rn − 1. It is easy to check that each ai has order n(r − 1) in

F (r, n) and that an
1 = · · · = an

n. So that En,n(a1 . . . ara
−1
r+1) has a

2-generator, 2-relation presentation of the form

〈a, b|anbn = 1, (ab)r = bra〉,

which is metabelian of order n(rn − 1), where r ≡ 1 (mod n).

d) A finite insoluble group

We let n = 10, l = 2 and w = w(a1, . . . , a10) = (a1a2)
5a10a2a3a2.

Then E10,2(w) has a presentation of the form

〈a, b|a2 = b10, ab−1ab(abab−1)5ab2ab−2〉.

The group E10,2(w) has been introduced in [2] by Campbell et.al.,

and they have shown E10,2(w) is a finite insoluble group involving

PSU(3, 4). This group was then shown to have order 229,934,420

,352,000 by Newman and O’Brien [9].

4. The group Gi,j

In what follows we aim to construct an infinite family of fi-

nite non-metacyclic 3-groups of deficiency zero having high nilpo-

tency classes. Examples of such p−groups, for p = 2, 3, have been
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constructed in [6,11,15]. Here we consider the Mennicke group

K3([a1, a2]a
−n
1 ), where n is a given positive integer; for a

brief description of the Mennicke group, see [8]. On setting K =

K3,m([a1, a2]a
−n
1 ), m = 3i and n = 3j with 1 ≤ i ≤ j, we ob-

serve that the group Gi,j = E3,m([a1, a2]a
−n
1 ) has a deficiency zero

presentation of the form

〈x, y|x3i

= y3, [x, xy] = x3j〉.

We now proceed to determine the order and the nilpotency class

of Gi,j.

Lemma 4.1. For any positive integers m,n with m dividing n, let

K = 〈a, b, c|am = bm = cm, ab = an+1, bc = bn+1, ca = cn+1〉.

Then K is of order m3n.

Proof. Let k = n/m. Adding the new generator z = cm to those

of K yields

K = 〈a, b, c, z|z = cm, z = am = bm, ab = azk, bc = bzk, ca = czk〉.

Let H = 〈a, b, z〉. A straightforward application of the modified

Todd-Coxeter algorithm can be used to find a presentation for H

on the generators of H. We suppress the details and merely observe

that |K : H| = m and

H = 〈a, b, z|zmk = 1, z = am = bm, ab = azk〉.

Eliminating z gives

H = 〈a, b|am2k = 1, am = bm, ab = amk+1〉.
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Now the subgroup L = 〈b, am〉 of H is of index m in H and a

presentation for L is obtained as follows:

L = 〈u, v|v = um, vmk = 1〉,

where u = b, and v = am. Obviously L is a cyclic group of order

m2k. Consequently |K| = m4k = m3n, as required. �

Lemma 4.2. Let G be the group

〈x, y|xm = y3, [x, xy] = xn〉,

where m,n are positive integers with m dividing n. Assume that

a = x, b = xy, and c = xy−1
. Then a, b, and c satisfy the relations

of K, the group given in Lemma 4.1. Furthermore

(i) ay = b, by = c, and cy = a;

(ii) arbs = bsarzrs, brcs = csbrzrs, and cras = ascrzrs, for all

positive integers r, s, where z = an.

Proof. Indeed, the elements a, b, and c of G generate the subgroup

K of G introduced in Lemma 4.1. Now as y3 is a central element

of G, by = y−2xy2 = yxy−1 = c, which proves (i). The second

assertion (ii) follows at once by the fact that an lies in the center

of G. �

Lemma 4.3. With the notation of Lemma 4.2, let

[x, y, . . . , y︸ ︷︷ ︸
k

] = zqkarkbskctk .
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Then qk = rktk, and

rk+2 + 3(rk+1 + rk) = 0 (r1 = −1, r2 = 1),

sk+2 + 3(sk+1 + sk) = 0 (s1 = 1, s2 = −2),

tk+2 + 3(tk+1 + tk) = 0 (t1 = 0, t2 = 1).

Proof. We have

[x, y, . . . , y︸ ︷︷ ︸
k+1

] = [arkbskctk , y]

= c−tkb−ska−rk(arkbskctk)y

= c−tkb−ska−rkbrkcskatk

= z(tk−rk)(sk−tk)atk−rkbrk−skcsk−tk ,

by Lemma 4.2. Hence rk+1 = tk − rk, sk+1 = rk − sk and tk+1 =

sk−tk, from which the result follows, as [x, y] = a−1b and [x, y, y] =

zab−2c. �

Theorem 4.4. Let

Gi,j = 〈x, y|x3i

= y3, [x, xy] = x3j〉 (1 ≤ i ≤ j).

Then Gi,j having order 33i+j+1 is of nilpotency class 2i+ 1.

Proof. On putting m = 3i and n = 3j, we have |Gi,j| = 3|K| =

3m3n by Lemma 4.1. To determine the class of Gi,j we observe that

Gi,j/〈y3〉 ∼= 〈x, y|x3i

= y3 = [x, xy] = 1〉,

which is Z3i o Z3, the standard wreath product of Z3i and Z3. As

this group is of class 2i+1, the class of Gi,j is either 2i+1 or 2i+2.

We shall see that the latter case cannot occur by showing that the
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term Γ2i+2(Gi,j) of the lower central series of Gi,j is in fact trivial.

To see this we first note that if k ≥ 2 then Γk(Gi,j) ≤ G′
i,j ≤ K,

whence [Γk(Gi,j), x] is contained in the center of Gi,j, by Lemma

4.2(ii). Therefore Γk(Gi,j) is generated by the conjugates in Gi,j of

the higher commutator [x, y, · · · , y] of weight k. Working with the

difference equations stated in Lemma 4.3 leads to

[x, y, · · · , y︸ ︷︷ ︸
2k+1

] =


a3kεkb−3kεk (k ≡ 0 (mod 3))

b−3kεkc3
kεk (k ≡ 1 (mod 3))

c3
kεka−3kεk (k ≡ 2 (mod 3)),

where εk = (−1)3k+1. Now it is clear that Γ2i+2(Gi,j) = 1, as

required. �

Acknowledgment

I would like to thank H. Doostie for helpful discussions.

References

[1] A. M. Brunner, On groups of Fibonacci type, Proceedings of the Edinburgh

Math. Soc. 20 (1976-77), 211-213.

[2] C. M. Campbell, P. M. Heggie, E. F. Robertson and R. M. Thomas, Finite

one-relator products of two cyclic groups with the relator of arbitrary

length, J. Austral. Math. Soc. (Series A) 53 (1992), 352-368.

[3] C. M. Campbell and E. F. Robertson, The orders of certain metacyclic

groups, Bull. London Math. Soc. 6 (1974), 312-314.

[4] G. Havas, D. F. Holt, P. E. Kenne and S. Rees, Some challenging group

presentations, J. Austral. Math. Soc. (Series A) 67 (1999), 206-213.

[5] G. Havas, D. F. Holt and M. F. Newman, Certain cyclically presented

groups are infinite, Comm. Algebra 29 (2001), no. 11, 5175-5178.

[6] A. Jamali, On some finite 2-groups of deficiency zero, Bull. of the Greek

Math. Soc. 39 (1997), 139-143.



On the structure of some deficiency zero groups 11

[7] D. L. Johnson, Topics in the theory of group presentations, London Math.

Soc. Lecture Note Ser. 42, Cambridge Univ. Press, Cambridge, 1980.

[8] D. L. Johnson and E. F. Robertson, Finite groups of deficiency zero, in

Homological group theory, London Math. Soc. Lecture Note Ser. 36, Cam-

bridge Univ. Press, Cambridge, 1979.

[9] M. F. Newman and E. A. O’Brien, A computer aided analysis of some

finitely presented groups, J. Austral. Math. Soc. Ser. A 53 (1992), 369-

376.

[10] M. Niemenmaa and G. Rosenberger, On the infinity of the Lonergan-

Hosack presentation, Ann. Acad. Sci. Fenn. Series A. I. Math. 14 (1989),

129-131.

[11] E. F. Robertson, A comment on finite nilpotent groups of deficiency zero,

Canad. Math. Bull. 23 (1980), 313-316.

[12] M. Schönert et al., GAP-Groups, algorithms and programming, Lehrstuhl

D für Mathematik, 5th Edition, Aachen, Germany, 1995.

[13] R. M. Thomas, The Fibonacci groups F (2, 2m), Bull. London Math. Soc.

21 (1989), 463-465.

[14] R. M. Thomas, On the torsion of certain finitely presented groups, Comm.

Algebra 20 (1992), 469-476.

[15] J. Wiegold, On some groups with trivial multiplicator, Bull. Austral. Math.

Soc. 40 (2) (1989), 331-332.

A. Jamali

Mosaheb Institute of Mathematics

University for Teacher Education

599 Taleghani Avenue

Tehran 15618, Iran

e-mail:Jamali@saba.tmu.ac.ir


