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1. Introduction

Throughout this paper, all groups considered are finite and G denotes a
group. We denote by π(x) the set of prime divisors of a positive integer x and
by π(G) the set π(|G|). πe(G) and k(G) denote the set of element orders of
G and the largest one in πe(G), respectively. G is called a simple Kn-group
if G is simple with |π(G)| = n. The prime graph Γ(G) of a group G is a
graph whose vertices are the primes in π(G) and two primes p and q in π(G)
are connected by an edge if there exists in G an element of order pq. The
connected components of Γ(G) are denoted by πi, 1 ≤ i ≤ t(G), where t(G)
is the number of connected components of Γ(G). In particular, we denote by
π1 the component containing the prime 2 for a group of even order. For the
simple groups the notation is standard and readers may refer to [3].

In 1987, the third author of this paper posed the following conjecture:
Conjecture Let G be a group and M a simple group. Then G ∼= M if and

only if |G| = |M | and πe(G) = πe(M).

It is worth to mention that this conjecture has been completely proved by
Mazurov et al in [9]. Thus some authors tried to characterize simple groups
by using less conditions. For instance, in [6], L.G. He and G.Y. Chen gave a
new characterization of linear simple groups L2(q) with q = pn < 125 by group
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order, the largest, the second largest and the third largest element orders.
Later, they also characterized in [7] the simple K3-groups by using the group
orders and the largest and the second largest element orders. On the other
hand, the third and the fourth authors of this paper characterized in [12] all
simple K3-groups and some linear groups L2(p), where p is a prime with p =
8n ± 3 > 3, by using the group order and the largest element order. In this
paper, our goal is to show that each simple linear group L2(q), where either q
is a prime or q = 2a, for a ∈ N, a ≥ 2 such that 2a +1 or 2a − 1 is a prime, can
be characterized by the group order and the largest element order. Our main
results are the following:

Theorem 1.1 (Theorem A). Let G be a group and a ≥ 2 an integer. If either
2a + 1 or 2a − 1 is a prime, then G ∼= L2(2

a) if and only if |G| = |L2(2
a)| and

k(G) = k(L2(2
a)).

Theorem 1.2 (Theorem B). Let G be a group and p ≥ 5 a prime. If |G| =
|L2(p)| and k(G) = k(L2(p)), then either G ∼= L2(p) or G is a 2-Frobenius
solvable group of order 168. In the latter case, G has a normal series 1⊴H ⊴
K⊴G with H ∈ Syl2(G) elementary abelian of order p+1 = 8, and G/K ∼= C3.
Moreover, 6 ∈ πe(G).

Remark 1.3. Let G be the group of the library of the small groups of size 168
with position 43 in GAP ([5]). Then πe(G) = {1, 2, 3, 6, 7} andG has the normal
series: 1◁H⊴M⊴G such that H ∼= C2×C2×C2 and M ∼= (C2×C2×C2)⋊C7.
Both M and G/M are Frobenius groups. This shows that the latter case of
Theorem B can occur.

Remark 1.4. Theorem A relies on the Classification of Simple Groups and
Theorem B is a generalization of [12, Theorem 1.2].

2. Preliminaries

Before taking up the problem, we resume some useful known results.

Recall that G is a 2-Frobenius group if G has a normal series 1◁H⊴K⊴G
such that G/H and K are Frobenius groups with K/H and H as Frobenius
kernels respectively. We call such series 1◁H ⊴K ⊴G a 2-Frobenius series.

Lemma 2.1 ([10, Theorem]). Let G be a group such that t(G) ≥ 2. Then G
has one of the following structures:

(a) G is a Frobenius group or a 2-Frobenius group.
(b) G has a normal series 1⊴N ⊴M ⊴G such that π(N) ∪ π(G/M) ⊆ π1

and M/N is a non-abelian simple group.

Lemma 2.2 ([2, Theorem 2]). If G is a 2-Frobenius group of even order, then
t(G) = 2 and G has a normal series 1◁H ⊴K ⊴G such that π(K/H) = π2,
π(H) ∪ π(G/K) = π1, |G/K| divides |Aut(K/H)|, G/K and K/H are cyclic.
In particular, |G/K| < |K/H| and G is solvable.
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Lemma 2.3 ([1, Theorem 1]). Let G be a non-abelian simple group and p a
prime. If p | |G| and p > |G|1/3, then p ≥ 5 and G is isomorphic either to
L2(p) or to L2(p− 1) and p is a Fermat prime.

3. Proof of Theorem A

Proof. It is obvious that the necessity holds. We prove the sufficiency. Assume
that |G| = 2a(2a − 1)(2a + 1) = |L2(2

a)| and k(G) = k(L2(2
a)), where either

2a + 1 or 2a − 1 is a prime. Then k(G) = 2a + 1 by [8, II, Satz 8.5]. We divide
the proof into two cases.

Case 1. 2a + 1 is a prime.

Write p := 2a + 1. Then p ≥ 5 as a ≥ 2. Observe that |G| = p(p− 1)(p− 2)
and k(G) = p. So {p} is a component of Γ(G), which implies that t(G) ≥ 2
and Lemma 2.1 applies.

Suppose first that G = F ⋊H is a Frobenius group with Frobenius kernel F
and Frobenius complement H. If p | |F |, then |F | = p as {p} is a component
of Γ(G) and F is nilpotent, which yields that |H| = (p− 1)(p− 2). Moreover,
|H| | |F | − 1 leads to (p− 1)(p− 2) | p− 1. Thus p = 3, against p ≥ 5. Hence
p | |H|. Let r ∈ π(F ) and Fr be a Sylow r-subgroup of F . It is clear that
Fr⋊H is also a Frobenius group with Frobenius kernel Fr and complement H.
Note that |F | | (p− 1)(p− 2). We obtain that |Fr| either divides p− 1 or p− 2
since (p− 1, p− 2) = 1. Thus |Fr| − 1 ≤ p− 2. On the other hand, p | |H| and
|H| | |Fr| − 1, this is a contradiction.

Assume then that G is a 2-Frobenius group. It follows by Lemma 2.2 that G
has a 2-Frobenius series 1◁H⊴K⊴G such that |K/H| = p and |G/K| | p−1,
implying p − 2 | |H|. Write K = H ⋊ A, where A is a cyclic group of order
p. Let H1 be a subgroup of H of order p − 2, which exists according to the
nilpotency of H. Then H1⋊A is also a Frobenius group with Frobenius kernel
H1 and complement A. Consequently, |A| | |H1| − 1. That is, p | p− 3, also a
contradiction.

Therefore, it follows by Lemma 2.1 that G has a normal series 1⊴N⊴M⊴G
such that π(N) ∪ π(G/M) ⊆ π1 and M/N is a non-abelian simple group.
Further, p | |M/N | and |M/N | < p3, which implies that M/N ∼= L2(p) or
L2(p − 1) according to Lemma 2.3. If M/N ∼= L2(p), then |M/N | = p(p +
1)(p − 1)/2, leading to p(p + 1)(p − 1) | 2p(p − 1)(p − 2). This shows that
p + 1 | 2(p − 2). Since 2(p − 2) = 2(p + 1) − 6, we get p + 1 | 6. By p ≥ 5,
we then get that p = 5 and thus a = 2. In this case, M/N ∼= L2(5) ∼= L2(2

2).
Consequently, |M/N | = |G|, yielding N = 1 and M = G ∼= L2(2

2). Assume
then that M/N ∼= L2(p− 1) ∼= L2(2

a). This forces G ∼= L2(2
a), as required.

Case 2. 2a − 1 is a prime.

Write p := 2a − 1. Obviously, a is a prime and p ≥ 3. We obtain that
|G| = p(p+ 1)(p+ 2) and k(G) = p+ 2 by [8, II, Satz 8.4], which implies that
{p} is a component of Γ(G). Moreover, t(G) ≥ 2.
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Suppose first that G = F ⋊H is a Frobenius group with Frobenius kernel F
and a Frobenius complement H. If p | |F |, then |F | = p as {p} is a component
of Γ(G) and F is nilpotent, indicating that |H| = (p+1)(p+ 2). Furthermore,
|H| | |F | − 1 = p − 1, a contradiction. Thus p | |H|. Let r ∈ π(F ) and Fr

be a Sylow r-subgroup of F . Then Fr ⋊ H is also a Frobenius group with
Frobenius kernel Fr and complement H. Note that |F | | (p + 1)(p + 2). We
obtain that |Fr| either divides p + 1 or p + 2 since (p + 1, p + 2) = 1, leading
that |Fr| − 1 ≤ p + 1. Moreover, p | |H| and |H| | |Fr| − 1, which yields to
|Fr| = p + 1 and thus r = 2. As a result, {2} is also a component of Γ(G).
Since t(G) = 2 by [4, Lemma 1], the argument above shows that G only has
two distinct primes, which is contrary to the fact that |G| = p(p+ 1)(p+ 2).

Suppose then that G is a 2-Frobenius group. It follows, by [4, Lemma 2],
that t(G) = 2 and that G has a 2-Frobenius series 1 ◁H ⊴K ⊴ G such that
|K/H| = p and |G/K| | p−1. Let K = H⋊A with A a cyclic subgroup of order
p. Let H1 be a Hall π(p+ 2)-subgroup of H. Then H1 ⋊A is also a Frobenius
group with Frobenius kernel H1 and Frobenius complement A, yielding that
|A| | |H1| − 1. Notice that |H1| = (p+2)/t for some integer t. This shows that
p divides (p+ 2)/t− 1, a contradiction.

Consequently, it follows, by Lemma 2.1, that G has a normal series 1⊴N ⊴
M⊴G such that π(N)∪π(G/M) ⊆ π1 and M/N is a non-abelian simple group.
In particular, p | |M/N |. If p = 3, then |G| = 60 and so |M/N | divides 60;
but the only non-abelian simple group of order less or equal to 60 is A5. Thus
M/N ∼= A5 and consequently G ∼= A5

∼= L2(4). Let next p ≥ 5. We show
that N = 1. Assume the contrary. Then |M/N | ≤ p(p + 1)(p + 2)/2 ≤ p3

and, from Lemma 2.3, recalling that p | |M/N |, we get that M/N ∼= L2(p),
with p a prime or M/N ∼= L2(p− 1) with p a Fermat prime. If M/N ∼= L2(p),
then p(p+ 1)(p− 1)/2 | p(p+ 1)(p+ 2), implying p = 7 and thus a = 3. Note
that |G| = 3|M/N | and 9 divides |G|. We obtain that |N | = 3. Let P7 ∈
Syl7(G). Then |P7| = 7. On the other hand, N ⋊ P7 ≤ G. Since k(G) = 9,
we conclude that N ⋊ P7 is a Frobenius group. However, in this situation, we
have |P7| | |N | − 1, which is a contradiction. Thus M/N ∼= L2(p − 1), where
p − 1 = 2(2a−1 − 1) is 2. This implies that a = 2 and thus p = 3, against our
assumption p ≥ 5. Consequently, N = 1.

Suppose that M ̸= G. Then M is a non-abelian simple group satisfying
|M | ≤ |G|/2 < p3. It follows by Lemma 2.3 that either M ∼= L2(p) or M ∼=
L2(p−1). If the former holds, then p(p+1)(p−1)/2 | p(p+1)(p+2), leading to
p = 7 and thus a = 3, indicating that |G/M | = 3. However, G/M ≤ Out(M) =
Out(L2(7)) ∼= C2, a contradiction. This shows that M ∼= L2(p−1), where p−1
is a power of 2. So p = 3 against p ≥ 5. Hence G = M is a simple group.

Note that |G| = p(p + 1)(p + 2). By [3], it follows that G is not a sporadic
simple group. On the other hand, if G ∼= An, then p ≤ n ≤ p + 2 since,
otherwise, there is an element of order 3p, which is contrary to the fact that
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k(G) = p + 2. Assume first that n = p + 2. Then by considering the group

orders, we obtain that p(p + 1)(p + 2) = (p+2)!
2 , which is impossible being

p ≥ 5. Assume next that n = p + 1. Then p(p + 1)(p + 2) = (p+1)!
2 , yielding

p + 2 = (p−1)!
2 . As a result, p + 2 ≥ 2(p − 1), leading to p ≤ 4, against p ≥ 5.

Consequently, n = p. Then |G| = |Ap| and 2(p + 1)(p + 2) = (p − 1)!, a
contradiction. Therefore, G is a simple group of Lie type. We discuss them
by a case by case analysis, showing that we always get a contradiction up to
G ∼= L2(2

a). Let q denote a prime power.

1. G ∼= Bn(q) with n ≥ 2, or Cn(q) with n ≥ 3.

Here p(p + 1)(p + 2) = 1
(2,q−1)q

n2 ∏n
i=1(q

2i − 1). If p | q, then q is a power

of p, which is impossible since n ≥ 2. Hence p | q2t − 1 for some 1 ≤ t ≤ n. On

the other hand, qn
2 | p + 1 or p + 2 as (p + 1, p + 2) = 1. As a consequence,

qn
2 ≤ p + 2 ≤ q2t + 1 ≤ q2n + 1, implying n = 2. Moreover, q4 = p + 2 or

q4 + 1 = p+ 2. If the latter holds, then p = q4 − 1 = (q2 − 1)(q2 + 1), against
p a prime. Hence q4 = p + 2. By considering the group orders, we see that
(q4 − 2)(q4 − 1)q4 = 1

2q
4(q2 − 1)(q4 − 1), which implies that q4 − 2 = 1

2 (q
2 − 1),

a contradiction.

2. G ∼= Dn(q) or
2Dn(q) with n ≥ 4.

If G ∼= Dn(q), then p(p+1)(p+2) = 1
(4,qn−1)q

n(n−1)(qn − 1)
∏n−1

i=1 (q
2i − 1).

Since the p-part of |G| is p and n(n−1) > 4, we get p ∤ q. As a result p | qn−1
or q2t − 1 for some 1 ≤ t ≤ n − 1. Assume that the former holds. Note that
qn(n−1) | p + 1 or p + 2. We see that qn(n−1) ≤ p + 2 ≤ (qn + 1), implying
n = 2, a contradiction. This forces that p | q2t − 1 for some 1 ≤ t ≤ n − 1.
Further, qn(n−1) ≤ p+2 ≤ q2t +1 ≤ q2(n−1) +1, also implies that n = 2, again
a contradiction. As a result, G ≇ Dn(q). Similarly it is checked that G ≇
2Dn(q).

3. G ∼= 2An(q) with n ≥ 2.

Here p(p+1)(p+2) = 1
(n+1,q+1)q

1
2n(n+1)

∏n
i=1(q

i+1− (−1)i+1). Since the p-

part of |G| is p and n ≥ 2, we obtain that p | qt+1−(−1)t+1 for some 1 ≤ t ≤ n.

Note that q
1
2n(n+1) | p+1 or p+2. Hence q

1
2n(n+1) ≤ p+2 ≤ qt+1−(−1)t+1+2 ≤

qn+1 + 3, which implies that n = 2 and q3 ∈ {p − 1, p, p + 1, p + 2}. Recall
that q3 | p+ 1 or p+ 2. If q3 | p+ 1 = 2a, then q is even and thus q = 2b, for
some b with 3b ≤ a. It follows that q3 ∈ {p − 1, p + 1}. If q3 = p + 1, then
23b = 2a and so 3b = a, against a a prime. If q3 = p−1, then 2b = 2(2a−1−1),
which gives a = 2, b = 1. But then p = 3 against the fact that we are dealing
with p ≥ 5. It follows that q3 | p + 2 and, in particular, q is odd. Thus
q3 = p+2 and we have (q3− 2)(q3− 1)q3 = 1

(3,q+1)q
3(q2− 1)(q3+1) leading to

(3, q+1)(q3−2)(q3−1) = (q2−1)(q3+1), which is easily checked as impossible.

4. G ∼= E8(q), E6(q), E7(q) or F4(q).
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Assume that G ∼= E8(q), then p(p+1)(p+2) = q120(q30 − 1)(q24 − 1)(q20 −
1)(q18−1)(q14−1)(q12−1)(q8−1)(q2−1). Then p | q120(q30−1)(q24−1)(q20−
1)(q18 − 1)(q14 − 1)(q12 − 1)(q8 − 1)(q2 − 1). Since the p-part of |G| is p, we
obtain that p | qt − 1 for some t ∈ {30, 24, 20, 18, 14, 12, 8, 2}. On the other
hand, q120 | p + 1 or q120 | p + 2, indicating that q120 ≤ p + 2 ≤ q30 + 1, a
contradiction. Similarly it is checked that G ≇ E6(q), E7(q) or F4(q).

5. G ∼= G2(q).
Here p(p+1)(p+2) = q6(q6 − 1)(q2 − 1). Moreover, p | (q6 − 1)(q2 − 1) and

(q6 − 1)(q2 − 1) | p(p + 1)(p + 2). Since the p-part of |G| is p, we obtain that
p | q6 − 1. Note that q6 | p + 1 or q6 | p + 2. Then q6 ≤ p + 2 ≤ q6 + 1, this
forces that q6 = p + 2 or q6 = p + 1 = 2a. If the latter case holds, then 6 | a,
against a a prime. Hence q6 = p+ 2. This indicates that q6(q6 − 1)(q6 − 2) =
q6(q6 − 1)(q2 − 1), leading to q6 = q2 + 1, a contradiction.

6. G ∼= 2E6(q).
Here p(p+1)(p+2) = 1

(3,q+1)q
36(q12−1)(q9+1)(q8−1)(q6−1)(q5+1)(q2−1),

which implies p | (q12 − 1)(q9 + 1)(q8 − 1)(q6 − 1)(q5 + 1)(q2 − 1). Since the
p-part of |G| is p, we obtain that p | qt − (−1)t for some t ∈ {12, 9, 8, 6, 5, 2}.
Note that q36 | p+1 or q36 | p+2. Then q36 ≤ p+2 ≤ qt− (−1)t+2 ≤ q12+3,
a contradiction.

7. G ∼= 2B2(q) or
2F4(q), where q = 22m+1 with m ≥ 1.

Suppose that G ∼= 2B2(q), where q = 22m+1 with m ≥ 1. Then p(p+1)(p+
2) = q2(q2 +1)(q− 1), which implies that 2a(2a +1)(2a − 1) = 24m+2(24m+2 +
1)(22m+1 − 1) with m ≥ 1. Thus a = 4m + 2, which being a a prime, gives
2m+ 1 = 1, contrary to m ≥ 1. Hence, G ≇ 2B2(q). Similarly, G ≇ 2F4(q).

8. G ∼= 2G2(q), where q = 32n+1 with n ≥ 1.
Here p(p+1)(p+2) = q3(q3 +1)(q− 1), which implies p | q3 +1 or p | q− 1.

Moreover, q3 | p + 2, since, otherwise, q3 | p + 1 = 2a, a contradiction. If
p | q3 +1, then q3 ≤ p+2 ≤ q3 +3, which, being p+2 and q odd, implies that
p + 2 ∈ {q3, q3 + 2}. If q3 = p + 2, then we get (q3 − 2)(q2 + q + 1) = q3 + 1,
which is clearly impossible. On the other hand, p + 2 = q3 + 2 gives p = q3,
against p a prime.

9. G ∼= 3D4(q).
Here p(p+1)(p+2) = q12(q8+q4+1)(q6−1)(q2−1). Moreover, p | q8+q+1

or p | qt − 1 for some t ∈ {6, 2}. Note that q12 | p+ 1 or p+ 2. If p | qt − 1 for
some t ∈ {6, 2}, then q12 ≤ p+2 ≤ qt+1 ≤ q6+1, a contradiction. This shows
that p | q8 + q4 +1. Similarly, q12 ≤ p+2 ≤ q8 + q4 +3, again a contradiction.

10. G ∼= Ln+1(q) with n ≥ 1.

From p(p + 1)(p + 2) = 1
(n+1,q−1)q

1
2n(n+1)

∏n
i=1(q

i+1 − 1), we obtain that

p | (qt+1 − 1) for some 1 ≤ t ≤ n. On the other hand, q
1
2n(n+1) | p+1 or p+2,
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so that q
1
2n(n+1) ≤ p+2 ≤ qn+1+1, which implies that n = 2 and q3 = p+1 or

p+2. If the former holds, then q3 = 2a, leading to q = 2 and a = 3 since a is a
prime. This shows that G ∼= L3(2) and thus |G| = 23 ·3 ·7. On the other hand,
we have |G| = 2a(2a − 1)(2a + 1) = 23 · 7 · 32, a contradiction. If q3 = p + 2,
we see that q3(q3 − 1)(q3 − 2) = q3(q2 − 1)(q3 − 1), implying q3 − q2 = 1. This
contradiction shows n = 1 and thus G ∼= L2(q).

Assume that q is odd. Then 1
2q(q−1)(q+1) = p(p+1)(p+2), implying q | p

or q | p+2. If q | p, then p = q. We see then that 1
2p(p

2 − 1) = p(p+1)(p+2).
This contradiction shows that q | (p + 2). On the other hand, it follows that
p | 1

2q(q−1)(q+1), yielding to p | q−1
2 or p | q+1

2 . It follows that q ≤ p+2 ≤ q+5
2 ,

which leads to q ≤ 5 and p = 3, against p ≥ 5. As a result, q is a power of 2.
Let q = 2s for some positive integer s. By comparing the orders of L2(2

s) and
L2(2

a), we obtain that s = a and G ∼= L2(2
a). □

4. Proof of Theorem B

Proof. Let G be a group such that |G| = p(p + 1)(p − 1)/2 = |L2(p)| and
k(G) = k(L2(p)) = p, where p ≥ 5 is a prime. Then {p} is a component of
Γ(G), which implies that t(G) ≥ 2 and Lemma 2.1 applies.

First we show thatG is not a Frobenius group. LetG = F⋊H be a Frobenius
group with Frobenius kernel F and Frobenius complement H. Then, by the
Frobenius partition, we have that p | |F | or p | |H|. If the former holds,
then |F | = p since {p} is a component of Γ(G) and F is nilpotent, yielding to
|H| = (p2 − 1)/2. Since |H| | |F | − 1, this forces (p+1)(p− 1)/2 | p, which is a
contradiction. Hence p | |H|. Let r ∈ π(F ) and Fr be a Sylow r-subgroup of F .
Since Fr is characteristic in F , we have that Fr ⋊H is also a Frobenius group
with Frobenius kernel Fr and complement H. Note that |F | | (p+1)(p− 1)/2.
We obtain that |Fr| either divides (p+1)/2 or (p−1)/2, because (p+1)/2 and
(p− 1)/2 are coprime. Thus p ≤ |H| ≤ (p− 1)/2, a contradiction.

We suppose then that G is a 2-Frobenius group. It follows, by Lemma 2.2,
that G has a 2-Frobenius series 1 ◁ H ⊴ K ⊴ G such that |K/H| = p and
|G/K| | p − 1. Write K = H ⋊ A, where A is a cyclic group of order p. We
show that π(H) = {2}. Assume the contrary and let q ∈ π(H) with q ̸= 2.
Let Hq be a Sylow q-subgroup of H. Since (p+ 1, p− 1) = 2, we see that |Hq|
either divides (p+ 1)/2 or (p− 1)/2, indicating that |Hq| ≤ (p+ 1)/2. On the
other hand, since Hq ⋊A is also a Frobenius group of Frobenius kernel Hq and
complement A, we also have p | |Hq|−1, so |Hq| ≥ p+1, a contradiction. Thus
we have shown that |H| = 2a, for a suitable a ∈ N.

Next we show that 2a = p + 1. Recall that we have p | 2a − 1 and thus
2a ≥ p + 1. In particular, being p ≥ 5, we get that a ≥ 3 and so p ≥ 7.
Moreover, we have 2a | p2− 1, so that p2− 1 = 2au, for some u ∈ N. By 2a ≡ 1
(mod p), we get immediately −1 ≡ u (mod p). That is, p | u+1. In particular,
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u ≥ p− 1 and then p2 − 1 = 2au ≥ 2a(p− 1). It follows that p+1 ≥ 2a and so
2a = p+ 1.

We now show that H admits no proper A-invariant subgroup. By contra-
diction, let 1 < U < H be a A-invariant subgroup. Then the group U ⋊A is a
Frobenius group and thus p | |U | − 1. In particular, p ≤ |U | − 1. On the other
hand, being U < H, we also have |U | < |H|, so that |U | ≤ p, it follows that
p ≤ |U | − 1 ≤ p− 1, a contradiction. Consider now Φ(H). Since this group is
characteristic in H, then it is A-invariant. Moreover, by definition, Φ(H) < H.
Thus necessarily, we have Φ(H) = 1 and H is an elementary abelian 2-group
of order 2a = p+ 1. In particular, G is solvable.

Moreover, for every s ∈ π((p− 1)/2), we have 2s ∈ πe(G). Let x ∈ G be of
order s and note that s ̸= 2, p. Then H⟨x⟩ ≤ G. If x acts fixed-point-freely on
H, then H⟨x⟩ ≤ G is a Frobenius group with kernel H and complement ⟨x⟩,
so that s | 2a − 1 = p, which is a contradiction. Thus there exists y ∈ H \ {1}
such that xy = yx.

By Schur-Zassenhaus theorem, H has a complement L in G. Moreover,
G/H ∼= L is a Frobenius group with kernelK/H. Let L = A⋊B be a Frobenius
group with kernel A and complement B, respectively. Then G = HAB, where
|A| = p and |B| = p−1

2 = 2a−1 − 1.
Assume that CG(H) > H as H is abelian. Write CG(H) = H × T . Since

CG(H) ⊴ G, we have T ⊴ G. If p | |T |, then 2p ∈ πe(G), against k(G) = p.
This implies that T is a normal π((p − 1)/2)-subgroup of G. Recall that G is
solvable and B is a Hall π((p − 1)/2)-subgroup of G. It follows that T ≤ B.
Moreover, T × A ≤ G, contrary to the fact that L = A ⋊ B is a Frobenius
group.

As a result, CG(H) = H. Further, G/H ≤ Aut(H). This indicates that H
has a Frobenius group of automorphisms. By [11, Theorem 1(a)], we obtain
that |H| = |CH(B)||B|. Let |CH(B)| = 2m for some positive integer m ≤ a.

Then 2a = (2m)(2
a−1−1), leading to a = m(2a−1 − 1). We see easily that

a = 3 and m = 1. Consequently, G is a 2-Frobenius group with order 168 with
6 ∈ πe(G), as required.

We finally assume that G has a normal series 1 ⊴ N ⊴ M ⊴ G such that
π(N) ∪ π(G/M) ⊆ π1 and M/N is a non-abelian simple group. We easily
see that p | |M/N |. Moreover, since p ≥ 5, we have |M/N | divides |G| and
|G| < p3, which implies that M/N ∼= L2(p) or L2(p − 1) by Lemma 2.3. If
M/N ∼= L2(p − 1), then |L2(p − 1)| divides |G|, leading to p(p − 1)(p − 2) |
p(p − 1)(p + 1)/2 and forcing p = 5. In this case, M/N ∼= L2(4) ∼= L2(5)
implies that G ∼= L2(5), as required. To close, assume that M/N ∼= L2(p).
Then, clearly, M = G ∼= L2(p). □
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