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Abstract. In this paper, the fractional–order form of three dimensional

chemostat model with variable yields is introduced. The stability analysis
of this fractional system is discussed in detail. In order to study the dy-
namic behaviours of the mentioned fractional system, the well known non-
standard (NSFD) scheme is implemented. The proposed NSFD scheme

is compared with the forward Euler and fourth order Runge–Kutta meth-
ods. Numerical results show that the NSFD approach is easy and accurate
when applied to fractional–order chemostat model.
Keywords: Chemostat model, fractional–order differential equation, sta-

bility, nonstandard finite difference scheme.
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1. Introduction

Competition modelling is one of the important topics in the mathematical
biology. The simplest form of competition, however, occurs when individuals
of different species compete for the same limited source foods, in some way
species inhibit each other growth. This is called exploitative competition. A
simple example of this type of competition occurs in a laboratory device, called
a chemostat or a continuous culture, that models competition in a very simple
lake [31].

The intuitively obvious fact that many biological systems are systems with
memory is now confirmed by rigorous research. Moreover, in most biological
processes, in particular of the chemostat, the observed response of a cell popu-
lation at a certain time instant is the combined result of various biological pro-
cesses that had been initiated at different moments in the past as a response
to the instantaneous environmental conditions prevailing at each particular
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time. Hence, the kinetics of the fermentation processes should be considered
as depending not only on the current process state, but also on a weighted
average of the states at past moments, i.e. of the culture memory [25, 26, 32].
As we know, most of the mathematical models of these biological processes are
based on ordinary differential equations (ODEs) of integer–order that disregard
memory and after effects. It is worth noting that describing the behaviour of
these systems by fractional–order differential equations is more useful than
their classical integer–order counterpart, due to good memory and hereditary
properties of fractional derivatives. In other words, calculating time–fractional
derivative at time t requires all previous history before time t. Also using
fractional–order differential equations can help us to reduce the errors arising
from the neglected parameters in modelling real life phenomena [3]. However,
fractional–order differential equations are closely related to fractals which are
abundant in biological systems [9]. It should be emphasized that in the liter-
ature the fractional calculus has been used as an efficient tool to simulate the
true nature of so many systems in diverse and widespread fields of science and
engineering. For example, fractional calculus has been successfully applied to
system biology [2,3,9,12,33], physics [10,14], chemistry and biochemistry [34],
hydrology [17, 30], medicine [5, 13], and finance [6]. Hence study and use the
fractional–order differential equations help us achieve a better understanding
of the chemostat model behaviour in general. In the other hand, analytical
solutions of these types of fractional equations cannot generally be obtained,
hence good numerical schemes are playing important role in identifying the so-
lution behaviour of such fractional equations and exploring their applications.
Nevertheless, Among numericals methods, NSFD schemes can alternatively be
used to obtain more qualitative results and remove numerical instabilities.

This paper is organized as follows: In next Section, we elaborate the def-
inition and some basic properties of Günwald–Letnikov (GL) approximation
as well we discuss that how NSFD scheme can be implemented for systems of
ODEs. In Section 3, fractional–order form of the chemostat model is introduced
and also stability theorem and fractional Routh–Hurwitz stability conditions
are given for the local asymptotic stability of the fractional–order systems.
Section 4 is devoted to the study of the stability analysis of the fractional–
order chemostat model. In Section 5, the idea of NSFD scheme for solving the
fractional–order chemostat model is presented. Finally, the theoretical results
obtained in former section are compared with the other numerical methods and
the simulated numerical results are given.

2. Preliminaries

Although the discussion of the fractional calculus is as old as integer–order
calculus, the complexity and the lack of applications postponed its progress
till a few decades ago. Recently, most of the dynamical systems, based on the



1167 Zeinadini and Namjoo

integer–order calculus, have been modified into the fractional–order domain due
to the extra degrees of freedom and the flexibility which can be used to precisely
fit the experimental data much better than the integer–order modelling.

2.1. Grünwald–Letnikov approximation. Derivatives of fractional–order
have been introduced in several ways. In this paper we consider GL approach.
The GL method for the one–dimensional fractional derivative takes the follow-
ing form [28]:

Dαx(t) = f(t, x(t)), x(0) = x0, t ∈ [0, tf ],(2.1)

Dαx(t) = lim
h→0

h−α

[
t

h
]∑

j=0

(−1)
j

(
α

j

)
x(t− jh),

where Dα, h and [t/h] denote the fractional derivative, the step size and the
integer part of t/h, respectively. Therefore, the Equation (2.1) is discretized as
follows:

n∑
j=0

cαj xn−j = f(tn, xn), n = 1, 2, 3,...

where tn = nh, xn−j is approximation of x(tn−j) and cαj , j = 1, 2 . . . , n are
GL coefficients that defined as:

cαj = (1− 1 + α

j
)cαj−1, cα0 = h−α, j = 1, 2, 3, ..., n.

2.2. Nonstandard finite difference schemes. NSFD schemes were firstly
proposed by Mickens [19, 24] for ODEs and successively, their use has been
investigated in several fields. To describe NSFD scheme, we consider an ODE
such as

(2.2)
dx

dt
= f(t, x, λ), x(0) = x0, t ∈ [0, tf ],

where λ is a parameter. Given a discretization tn = nh, NSFD is constructed
by following two main steps:

(i) The derivative at the left–hand side of the Equation (2.2) is replaced
by a discrete form

(2.3)
dx

dt
≈

xn+1 − xn

ϕ(h, λ)
,

where xn is an approximation of x(tn).
(ii) The nonlinear term in the Equation (2.2) is replaced by a nonlocal

discrete representation F (t, xn+1, xn, . . . , λ) depending on some of the
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previous approximation. Hence the gained scheme is described as fol-
lows:

(2.4)
xn+1 − xn

ϕ(h, λ)
= F (t, xn+1, xn, . . . , λ).

The discrete derivative on the left–hand side of the Equation (2.4) is a gener-
alization of the classical discrete representation for the first derivative that is
obtained by using ϕ(h, λ) = h.

The denominator function ϕ(h, λ), that is a function of step size, must have
consistency condition

(2.5) ϕ(h, λ) = h+O(h2),

to ensure that the discrete representation of (2.3) converges to the correspond-
ing continuous derivative as h → 0. Examples of denominator functions that
satisfy the condition (2.5) are h, sin(h), 1 − e−h, (1− e−λh)/λ and so forth.
The papers of Mickens [20,21,23] give a general procedure for determining ϕ(h)
for systems of ODEs. In general, for an ODE with polynomial terms,

dx

dt
= ax+ (NL), NL ≡ Nonlinearterms,

the NSFD discretization for the linear expression is given by Mickens [23]

xn+1 − xn

ϕ
= axn + (NL)n,

where the denominator function is

ϕ(h, a) =
eah − 1

a
.

Note that if a = 0 then the denominator function is just h, i.e., ϕ(h) = h.
The first NSFD requirement is that the dependent functions should be mod-

elled on the discrete–time computational grid. Particular examples of this in-
clude the following functions [20,22]

xy ≈ xn+1yn, xy ≈ xnyn+1,

x2 ≈ 2xn+1xn−x2
n, x2 ≈ 2xn

xn+1 + xn

2
.

By applying this technique and using the GL discretization method, it yields
the following relation

xn+1 =

−
n+1∑
j=1

cαj xn+1−j + f(tn+1, xn+1)

cα0
, n = 0, 1, 2, . . . ,

where cα0 = ϕ(h)−α.
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3. Fractional–order Chemostat model

At time t, let s(t) denotes the concentration of nutrient in the vessel, x(t)
and y(t) denote the concentration of two microorganism. The mathematical
model takes the form

ds

dt
= (s0 − s)Q− 1

δ1
(
m1s

k1 + s
− L)x− 1

δ2

m2s

k2 + s
y,

dx

dt
= x(

m1s

k1 + s
− L−Q),

dy

dt
= y(

m2s

k2 + s
−Q),

s(0) = s0, x(0) = x0, y(0) = y0,

(3.1)

where s0 is the input concentration of nutrient, Q is the washout rate, mi is
the maximal growth rates, ki is the Michaelis–Menton constants, δi is the yield
coefficients and L is the intrinsic consumption rate for the first microorganism,
which are all positive. This model is usually called the Monod model or the
model with Michaelis Menten dynamics [4, 15,27].

Here we investigate the system of equations (3.1) with yield coefficients
δ1 = A+Bs3, δ2 = C+Ds4, which means that the production of the microbial
biomasses is very sensitive to the concentration of the nutrient. In the system
equations (3.1) we have used the growth rate functions

Fi(s) =
mis

ki + s
, i = 1, 2,

which have following common features:

(i) Fi(0) = 0.
(ii) Fi is an increasing function of s.
(iii) Fi approaches to a constant value as s approaches to infinity.

Now we introduce fractional–order form of the system of equations (3.1). The
new system is described by the following set of fractional differential equations
of order α1, α2, α3 > 0, with initial population; i.e., s(0) > 0, x(0) > 0, y(0) >
0.

Dα1s(t) = (s0 − s)Q− 1

δ1
(
m1s

k1 + s
− L)x− 1

δ2

m2s

k2 + s
y,

Dα2x(t) = x(
m1s

k1 + s
− L−Q),

Dα3y(t) = y(
m2s

k2 + s
−Q),

s(0) = s0, x(0) = x0, y(0) = y0,
0 < αi ≤ 1, i = 1, 2, 3.

(3.2)

Recently, many investigations were devoted to the stability analysis of fractional–
order nonlinear systems [7,8,11,16,29]. In order to analyze the stability of the
model, stability theorem on fractional–order systems and fractional Routh–
Hurwitz stability conditions are introduced.
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Theorem 3.1 ([18]). Consider the following commensurate fractional–order
system:

(3.3) Dαx(t) = f(x(t)), x(0) = x0, t ∈ [0, tf ],

where 0 < α ≤ 1 and x ∈ Rn. Equilibrium point E of the system (3.3),
calculated by solving f(x) = 0, is locally asymptotically stable if all eigenvalues

of the Jacobian matrix J ≡ ∂f

∂x
that evaluated at the equilibrium point E,

satisfy:

(3.4) |arg(λ)| > α
π

2
.

Proposition 3.2 ([1]). Suppose P (λ) = λ2+bλ+c is characteristic polynomial

of the Jacobian matrix
∂f

∂x
, evaluated at the equilibrium point E. For 0 < α ≤ 1,

the eigenvalues of Jacobian matrix J ≡ ∂f

∂x
, satisfy condition (3.4) in Theorem

3.1 if

b > 0, c > 0,

or

b ≤ 0, 4c > b2,
∣∣∣tan−1(

√
4c− b2/b)

∣∣∣ > α
π

2
.

4. Stability analysis of the equilibrium points

In this section we investigate the local asymptotic stability of the equilibrium
points of the system of equations (3.2). The equilibrium points of this system
are:

E0 = (s0, 0, 0),

E1 = (β1, (s0 − β1)(A+Bβ3
1), 0),

E2 = (β2, 0, (s0 − β2)(C +Dβ4
2)),

where

β1 =
k1(L+Q)

m1 − (L+Q)
, β2 =

Qk2
m2 −Q

.

Note that the equilibrium points Ei, i = 0, 1, 2, have real biological meaning
if their components are non–negative. Since s0 > 0, the equilibrium point E0

exists by biological meaning. Also the equilibrium points E1 and E2 have real
biological meaning when 0 < βi < s0, i = 1, 2. Now let us verify the stability
of these equilibrium points. The Jacobian matrix of the system (3.2) at the
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equilibrium point E = (s, x, y) is

(4.1) J(s, x, y) =



T (s, x, y) − 1

A+Bs
(
m1s

k1 + s
− L) − 1

C +Ds3
m2s

k2 + s

m1k1x

(k1 + s)2
m1s

k1 + s
− L−Q 0

m2k2y

(k2 + s)2
0

m2s

k2 + s
−Q


,

where

T (s, x, y) = −Q− x

A+Bs3
m1k1

(k1 + s)2
+

3Bxs2

(A+Bs3)2
(
m1s

k1 + s
− L)

− y

C +Ds4
k2m2

(k2 + s)2
+

4Ds3y

(C +Ds4)2
m2s

k2 + s
.

The characteristic equation of the Jacobian matrix J at the equilibrium point
E0 is

P (λ) = (λ+Q)(λ2 + b1λ+ c1) = 0,

where

b1 = L+ 2Q− (
m1s0
k1 + s0

+
m2s0
k2 + s0

), c1 = (L+Q− m1s0
k1 + s0

)(Q− m2s0
k2 + s0

).

Eigenvalues of the matrix J at the equilibrium point E0 are

λ1 = −Q, λ2 = −(L+Q− m1s0
k1 + s0

), λ3 = −(Q− m2s0
k2 + s0

).

These eigenvalues are real, hence by Theorem 3.1 the equilibrium point E0 is
stable if λi < 0, i = 1, 2, 3. Since Q > 0, the inequality λ1 < 0 holds. Also
inequalities λ2 < 0 and λ3 < 0 are satisfied when βi > s0, i = 1, 2. Therefore
the equilibrium point E0 is stable if

βi > s0, i = 1, 2.

The characteristic equation of the Jacobian matrix J , evaluated at the equilib-
rium point E1, is

P (λ) = (λ− a2)(λ
2 + b2λ+ c2) = 0,

where

a2 =
m2β1

k2 + β1
−Q,

b2 = Q− (s0 − β1)(
3BQβ2

1

A+Bβ3
1

− m1k1

(k1 + β1)
2 ),

c2 = (s0 − β1)
m1k1

(k1 + β1)
2Q.
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To consider the stability of the equilibrium point E1, let

R1 =
3Qβ2

1(s0 − β1)(k1 + β1)
2 −Qβ3

1(k1 + β1)
2 −m1k1β1

3(s0 − β1)

Q(k1 + β1)
2
+m1k1(s0 − β1)

.

Note that a2 is a real root of the characteristic equation of the Jacobian matrix
J at the equilibrium point E1, therefore conditions a2 < 0, or equivalently
β1 < β2 and c2 > 0, are necessary for stability of the equilibrium point E1 (
Theorem 3.1 and Proposition 3.2). Since all parameters in chemostat model
are positive and s0 > β1, the condition c2 > 0 holds. We now consider the
following two cases:

(i) If b2 > 0 or equivalently
A

B
≥ R1 then by Theorem 3.1, E1 is a stable

equilibrium point of the system of equations (3.2).

(ii) If b2 ≤ 0 or equivalently
A

B
≤ R1 and

(4.2) 4c2 > b22,

∣∣∣∣∣tan−1(

√
4c2 − b22
b2

)

∣∣∣∣∣ > α
π

2
,

then the equilibrium point E1 is stable ( Proposition 3.2).

In case (ii), the second condition in (4.2), combining with the first condition,
is equivalent to

4cos2(α
π

2
)c2 > b22.

If we let

R2 =
3β2

1Q(s0 − β1)(k1 + β1)
2

(Q+ 2 cos(α
π

2
)
√
c2)(k1 + β1)

2
+m1k1(s0 − β1)

− β3
1 ,

then case (ii) follows that R2 <
A

B
≤ R1.

The characteristic equation of the equilibrium point E2 is

P (λ) = (λ− a3)(λ
2 + b3λ+ c3) = 0,

where

a3 =
m1β2

k1 + β2
− L−Q,

b3 = Q− (s0 − β2)(
4QDβ2

3

C +Dβ4
2

− m2k2

(k2 + β2)
2 ),

c3 = (s0 − β2)
m2k2

(k2 + β2)
2Q.

Let

R3 =
4Qβ3

2(s0 − β2)(k2 + β2)
2 − β4

2Q(k2 + β2)
2 − β4

2(s0 − β2)m2k2

Q(k2 + β2)
2
+ (s0 − β2)m2k2

,
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just as the previous case, conditions a3 < 0 and c3 > 0 are necessary for stability
of the equilibrium point E2. Positivity of the parameters and condition s0 > β2,
show that c3 > 0. But inequality a3 < 0 holds provided that β2 < β1. Now, we
have the following two cases:

(i) If b3 > 0 ( equivalently
C

D
> R3 ) then by Theorem 3.1 the equilibrium

point E2 is stable.

(ii) If −2
√
c3 cos(α

π

2
)) < b3 ≤ 0 then the equilibrium point E2 is stable

(Proposition 3.2).

By analogy with the case of the equilibrium point E1, case (ii) is equal to

R4 <
C

D
≤ R3 , where

R4 =
4Qβ3

2(s0 − β2)(k2 + β2)
2

(Q+ 2 cos(α
π

2
)
√
c3)(k2 + β2)

2
+m2k2(s0 − β2)

− β4
2 .

Theorem 4.1. Let 0 < α ≤ 1, then for the equilibrium points E0 , E1 and E2

of the system of equations (3.2), the following statements hold.

(i) If βi > s0, i = 1, 2, then the equilibrium point E0 is stable.

(ii) If β1 < β2 and
A

B
> R1 or β1 < β2 and R2 <

A

B
≤ R1 , then the

equilibrium point E1 is stable.

(iii) If β2 < β1 and
C

D
> R3 or β2 < β1 and R4 <

C

D
≤ R3 , then the

equilibrium point E2 is stable.

5. NSFD scheme for fractional–order Chemostat model

Mickens suggests that a general multistep numerical scheme that approxi-
mate the solution of the Equation (2.2) can be written in the form Equation
(2.4) where the denominator function ϕ(h, λ) is of the form h + O(h2), and
F (t, xn+1, xn, . . . , λ) is a nonlocal representation of the function f(tn, x(tn), λ).
The terminology of nonlocal approximation comes from the fact that the ap-
proximation of a given function f(t, x, λ) is not only at point xn, by f(tn, xn, λ),
but can eventually depends on more points of the orbits. Examples of how
the rules are used to develop the discretizations presented in Section 2 (see
[20, 22, 23] for more details). In this section, we present numerical simulation
to illustrate the results obtained in the previous section. By using definition of
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GL derivative and use NSFD scheme for the model we have:

n+1∑
j=0

cα1
j sn+1−j = (s0 − sn)Q− 1

A+Bs3n
(
m1sn+1

k1 + sn
− L)xn

− 1

C +Ds4n

m2sn+1yn
k2 + sn

,

n+1∑
j=0

cα2
j xn+1−j = xn(

m1sn+1

k1 + sn+1
)− (L+Q)xn,

n+1∑
j=0

cα3
j yn+1−j = yn

m2sn+1

k2 + sn+1
−Qyn,

where tn = nh and cαi
j , i = 1, 2, 3 are the GL coefficients defined as:

cαi
j = (1− 1 + αi

j
)cαi

j−1, cαi
0 = (ϕi(h)),

−αi j = 1, 2, . . . , n+ 1, i = 1, 2, 3.

with

ϕ1(h) =
1− e−Qh

Q
, ϕ2(h) =

1− e−(Q+L)h

Q+ L
, ϕ3(h) =

1− e−Qh

Q
.

Comparing the previous difference equation with system of equations (3.2) we
note the following:

(i) The linear term on the right–hand side of the first equation in the
system of equations (3.2), −s replaced by −sn. Also the nonlinear
terms in the numerator of the first equation, s replaced by sn+1.

(ii) The linear and nonlinear terms on the right–hand side of the second
and third equation in the system (3.2) replaced by sn+1.

(iii) The linear and nonlinear terms x and y of the second and third equa-
tions replaced by xn and yn, respectively.

(iv) In order to provide an explict scheme, the nonlinear terms in the de-
nominators of the first equation s replaced by sn.
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Manipulating previous discretization we get the following equations:

(5.1)

sn+1 =

−
n+1∑
j=1

cα1
j sn+1−j + (s0 − sn)Q+

Lxn

A+Bsn3

cα1
0 +

m1xn

(A+Bsn3)(k1 + sn)
+

m2yn
(C +Ds4n)(k2 + sn)

,

xn+1 =

−
n+1∑
j=1

cα2
j xn+1−j + xn(

m1sn+1

k1 + sn+1
− L−Q)

cα2
0

,

yn+1 =

−
n+1∑
j=1

cα3
j yn+1−j + yn(

m2sn+1

k2 + sn+1
−Q)

cα3
0

.

Remark 5.1. Since cαi
0 > 0, and using the subsequent recursive formula

cαi
j = (1− 1 + αi

j
)cαi

j−1, j = 1, 2, . . . , n+ 1,

it is understood that cαi
j < 0 for j = 1, 2, . . . , n + 1. It is not difficult to see

that if the inequalities

(−cα1
1 −Q) = (α1c

α1
0 −Q) > 0,

(−cα2
1 − L−Q) = (α2c

α2
0 − L−Q) > 0,(5.2)

(−cα3
1 −Q) = (α3c

α3
0 −Q) > 0,

together with sn > 0, xn > 0 and yn > 0 are satisfied, then sn+1 > 0, xn+1 >

0 and yn+1> 0. On the other hand, if hα <
α

L+Q
, where α = min

1⩽i⩽3
αi and

0 < h ⩽ 1, then hα2 <
α2

L+Q
and hαi <

αi

Q
, i = 1, 3. Moreover, since

1− e−ah

a
⩽ h for a > 0 and 0 < h ⩽ 1, it follows that inequalities (5.2) hold.

As a matter of fact, according to the above discussion as well as exploiting the
principal of induction a sufficient condition to ensure positivity of the NSFD

scheme is hα ⩽ min{1, α

L+Q
}.

6. Numerical results

Analytical studies always remain incomplete without numerical verification
of the results. In this section we present numerical simulation to illustrate
the result obtained in previous sections. Now we consider the fractional–order
chemostat model in several cases. For the parameter values m1 = 1.5, m2 =
1.25, k1 = 1.6, k2 = 1.75, Q = 0.5 and initial conditions s0 = 0.75, x0 = 0.5,
y0 = 0.4, numerical solutions of the system of equations (3.2) converge to the
equilibrium point E0 (Figure 1).
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Figure 1. Numerical solutions of the system of equations
(3.2) converge to the equilibrium point E0 for different αi with
step size h = 1.5.
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Figure 2. Numerical solutions of the system of equations
(3.2) converge to the equilibrium point E1 for different αi with
step size h = 1.5.

These values satisfy conditions β1 > s0 and β2 > s0 (for these set of data
β1 = 0.8490 and β2 = 1.1667). For parameter values A = 2, B = 2, k1 = 0.4,
k2 = 1, m1 = 2.4, L = 0.2, Q = 0.64 and initial conditions s0 = 1.75, x0 = 1,
y0 = 1, numerical solutions of the system of equations (3.2) converge to the

equilibrium point E1 (Figure 2). For these values we have
A

B
> R1 and β1 < β2

that ensure solutions converge to the equilibrium point E1 (for this set of data

β1 = 0.2554, β2 = 0.2712,
A

B
= 1, R1 = 0.0202). Finally for parameter values

C = 0.25, D = 3.7, k2 = 3.25, m2 = 3, L = 0.02, Q = 0.625 and initial
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Figure 3. Numerical solutions of the system of equations
(3.2) converge to the equilibrium point E2 for different αi with
step size h = 1.5.

conditions s0 = 1.1, x0 = 1, y0 = 1, we have
C

D
> R2 and β1 > β2 (for this

set of data,
C

D
= 0.0676, R2 = −0.0357, β1 = 1.1026 and β2 = 0.8553 ). With

these conditions numerical solutions converge to the equilibrium point E2 . All
numerical solutions illustrated in Figures 1∼ 3, gained by step size h = 1.5,
this step size shows high accuracy of NSFD scheme.
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Figure 4. Numerical solutions of the system of equations
(3.2) converge to the equilibrium point E1 for some αi with
step size h = 0.1.

Remark 6.1. Note that the conditions b2, b3 > 0 are necessary for stability
of the equilibrium points E1 and E2 when αi = 1, but in obtained fractional–
order model b1 and b2 might be less or equal to zero and the equilibrium
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points E1 and E2 are stable yet. We observe that for parameter values A = 2,
B = 4, C = 0.015, D = 0.98, k1 = 1, k2 = 3.5, m1 = 1, m2 = 1, L = 0.02,
s0 = 2.35 and Q = 0.6, the sing of b2 is negative (b2 = −0.0070), but for some
0 < αi < 1 the numerical solutions of the system of equations (3.2) converge to
the equilibrium point E1. Also by using the values, A = 1 B = 33.02, C = 2,
D = 3.7, k1 = 3, k2 = 3 , m1 = 2.4, m2 = 3, L = 0.02, s0 = 1.1 and Q = 0.62,
the value of b3 is less than zero (b3 = −0.274 ), but the equilibrium point E2

is stable yet (Proposition 3.2 and Figures 4 and 5).

In Tables 1–3 the NSFD scheme for the system of equations (3.2) with
forward Euler and fourth order Runge–Kutta methods are compared when
αi = 1, i = 1, 2, 3. This comparison is done for different time step size h. As
we observe, the numerical solutions obtained from the NSFD scheme convergent
for high step size h. Therefore the numerical solutions of NSFD scheme have
better manner than Euler and Runge–Kutta methods. Also in Figures 6 and
7, forward Euler and fourth order Runge–Kutta methods are compared with
NSFD scheme graphically.

Remark 6.2. In the Figures 6 and 7 numerical results of the proposed NSFD
scheme for α1 = α2 = α3 = 1, which corresponds to the integer–order chemo-
stat model, illustrated. From the numerical results in these figures and Tables
1–3 it is concluded that the approximation solutions obtained by the NSFD
scheme is good agreement with the asymptotically stability of the equilibrium
points. Also these results show robustness of the NSFD scheme in the high
step size.
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Figure 5. Numerical solutions of the system of equations
(3.2) converge to the equilibrium point E2 for some αi with
step size h = 0.1.
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Figure 6. Numerical solutions of forward Euler and fourth order
Runge–Kutta and NSFD methods converge to the equilibrium point
E1 with step sizes h = 0.01 for NSFD scheme and h = 0.001 for
Euler and fourth–order Runge–Kutta .
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Figure 7. Numerical solutions of forward Euler and fourth order
Runge–Kutta and NSFD methods converge to the equilibrium point
E1 with step sizes h = 0.1 for NSFD scheme and h = 0.001 for Euler
and fourth–order Runge–Kutta .

7. Conclusion

In this paper the fractional form of the chemostat model with variable yields
is introduced. The local stability analysis as well as the dynamic behaviour of
mentioned system are studied. Moreover, a NSFD scheme has been inves-
tigated for the numerical solution of the model. Positivity of the presented
NSFD scheme discussed. The obtained numerical results of NSFD scheme are
compared with the forward Euler and fourth order Runge–Kutta methods in
integer–order case. Numerical results show that NSFD schemes are useful tool
for detecting the local stability of equilibrium points.
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h Euler Runge–Kutta NSFD

0.1 Convergence Convergence Convergence
0.2 Convergence Convergence Convergence
0.5 Divergence Convergence Convergence
2.5 Divergence Convergence Convergence

5 Divergence Divergence Convergence
10 Divergence Divergence Convergence

Table 1. Qualitative result of the equilibrium point E0 for
different step sizes h.

h Euler Runge–Kutta NSFD

0.1 Convergence Convergence Convergence
0.2 Convergence Convergence Convergence
0.3 Convergence Convergence Convergence
0.5 Divergence convergence Convergence

5 Divergence Divergence Convergence
10 Divergence Divergence Convergence

Table 2. Qualitative result of the equilibrium point E1 for
different step sizes h.

h Euler Runge–Kutta NSFD

0.1 Convergence Convergence Convergence
0.2 convergence convergence Convergence
0.5 Divergence convergence Convergence
3.5 Divergence Divergence Convergence

5 Divergence Divergence Convergence
8 Divergence Divergence Convergence

Table 3. Qualitative result of the equilibrium point E2 for
different step sizes h.
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