ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the Iranian Mathematical Society

Vol. 43 (2017), No. 5, pp. 1195-1207

Title:

On the character space of Banach vector-valued function algebras

Author(s):

M. Abtahi

Published by the Iranian Mathematical Society http://bims.irs.ir

ON THE CHARACTER SPACE OF BANACH VECTOR-VALUED FUNCTION ALGEBRAS

M. ABTAHI

(Communicated by Hamid Reza Ebrahimi Vishki)

ABSTRACT. Given a compact space X and a commutative Banach algebra A, the character spaces of A-valued function algebras on X are investigated. The class of natural A-valued function algebras, those whose characters can be described by means of characters of A and point evaluation homomorphisms, is introduced and studied. For an admissible Banach A-valued function algebra A on X, conditions under which the character space $\mathfrak{M}(A)$ is homeomorphic to $\mathfrak{M}(\mathfrak{A}) \times \mathfrak{M}(A)$ are presented, where $\mathfrak{A} = C(X) \cap A$ is the subalgebra of A consisting of scalar-valued functions. An illustration of the results is given by some examples.

Keywords: Commutative Banach algebras, Banach function algebras, vector-valued function algebras, vector-valued characters. **MSC(2010):** Primary 46J10; Secondary 46J20.

1. Introduction and preliminaries

Let A be a commutative unital Banach algebra over the complex field \mathbb{C} . Every nonzero homomorphism $\phi:A\to\mathbb{C}$ is called a *character* of A. Denoted by $\mathfrak{M}(A)$, the set of all characters of A is nonempty and its elements are automatically continuous [13, Lemma 2.1.5]. Consider the Gelfand transform $\hat{A}=\{\hat{a}:a\in A\}$, where $\hat{a}:\mathfrak{M}(A)\to\mathbb{C}$ is defined by $\hat{a}(\phi)=\phi(a)$. The Gelfand topology of $\mathfrak{M}(A)$ is the weakest topology with respect to which every $\hat{a}\in\hat{A}$ is continuous. Endowed with the Gelfand topology, $\mathfrak{M}(A)$ is compact and Hausdorff. By [13, Theorem 2.1.8], an ideal M in A is maximal if and only if $M=\ker\phi$, for some $\phi\in\mathfrak{M}(A)$. For this reason, sometimes $\mathfrak{M}(A)$ is called the maximal ideal space of A. For more on the theory of commutative Banach algebras see, for example, [5,6,13,19].

1.1. Function Algebras. Let X be a compact Hausdorff space and C(X) be the Banach algebra of all continuous functions $f: X \to \mathbb{C}$ equipped with the

Article electronically published on 31 October, 2017. Received: 2 January 2016, Accepted: 13 May 2016.

uniform norm $||f||_X = \sup\{|f(x)| : x \in X\}$. A subalgebra $\mathfrak A$ of C(X) is called a function algebra on X if $\mathfrak A$ separates the points of X and contains the constant functions. If $\mathfrak A$ is equipped with some complete algebra norm $||\cdot||$, then $\mathfrak A$ is called a Banach function algebra. If the norm $||\cdot||$ of $\mathfrak A$ is equivalent to the uniform norm $||\cdot||_X$, then $\mathfrak A$ is called a uniform algebra.

Identifying the character space of a Banach function algebra \mathfrak{A} has been always a problem of interest for mathematicians in this field. For every $x \in X$, the evaluation homomorphism $\varepsilon_x : f \mapsto f(x)$ is a character of \mathfrak{A} , and the mapping $J : X \to \mathfrak{M}(\mathfrak{A}), x \mapsto \varepsilon_x$, imbeds X homeomorphically as a compact subset of $\mathfrak{M}(\mathfrak{A})$. If J is surjective, one calls \mathfrak{A} natural [6, Chapter 4]. In this case, the character space $\mathfrak{M}(\mathfrak{A})$ is identical to X. Note that every semisimple commutative Banach algebra A can be considered, through its Gelfand representation, as a natural Banach function algebra on its character space $\mathfrak{M}(A)$.

A relation between the character space $\mathfrak{M}(\mathfrak{A})$ of a Banach function algebra \mathfrak{A} and the character space $\mathfrak{M}(\bar{\mathfrak{A}})$ of its uniform closure $\bar{\mathfrak{A}}$ was revealed in [10] as follows.

Theorem 1.1 (Honary [10]). The restriction map $\mathfrak{M}(\bar{\mathfrak{A}}) \to \mathfrak{M}(\mathfrak{A})$, $\psi \mapsto \psi|_{\mathfrak{A}}$, is a homeomorphism if and only if $||\hat{f}|| \leq ||f||_X$, for all $f \in \mathfrak{A}$.

The above result appears to be very useful in identifying the character spaces in a wide class of Banach function algebras. We establish an analogue of this result for vector-valued function algebras in Section 3.

1.2. **Vector-valued function algebras.** Let A be a commutative unital Banach algebra, and let C(X,A) be the space of all A-valued continuous functions on X. Algebraic operations and the uniform norm $\|\cdot\|_X$ on C(X,A) are defined in the obvious way.

Definition 1.2 (c.f. [3,15]). A subalgebra \mathcal{A} of C(X,A) is called an A-valued function algebra on X if (1) \mathcal{A} contains the constant functions $X \to A$, $x \mapsto a$, for all $a \in A$, and (2) \mathcal{A} separates the points of X in the sense that, for every pair $x,y \in X$ with $x \neq y$, and for every maximal ideal M of A, there exists some $f \in A$ such that $f(x) - f(y) \notin M$. If \mathcal{A} is endowed with some algebra norm $\| \cdot \|$ such that the restriction of $\| \cdot \|$ to A is equivalent to the original norm of A and $\| f \|_X \leq \| f \|$, for every $f \in \mathcal{A}$, then \mathcal{A} is called a normed A-valued function algebra on X. If the given norm is complete, then \mathcal{A} is called a Banach A-valued function algebra. If the given norm is equivalent to the uniform norm $\| \cdot \|_X$, then \mathcal{A} is called an A-valued uniform algebra. When no confusion can arise, we use the same notation $\| \cdot \|$ for the norm of \mathcal{A} .

Continuing the work of Yood [18], Hausner [9] proved that τ is a character of C(X,A) if, and only if, there exist a point $x \in X$ and a character $\phi \in \mathfrak{M}(A)$ such that $\tau(f) = \phi(f(x))$, for all $f \in C(X,A)$, whence $\mathfrak{M}(C(X,A))$ is homeomorphic to $X \times \mathfrak{M}(A)$. (In this regard, see [1].) We call a Banach A-valued

function algebra *natural* if, like C(X,A), its character space is identical to $X \times \mathfrak{M}(A)$. For instance, in Example 4.1, we will see that the A-valued Lipschitz algebra $\operatorname{Lip}(X,A)$ is natural; see also [7,11]. Natural A-valued function algebras are studied in Section 2.

1.3. Notations and conventions. Throughout, X is a compact Hausdorff space, and A is a semisimple commutative unital Banach algebra. The unit element of A is denoted by $\mathbf{1}$, and the set of invertible elements of A is denoted by $\operatorname{Inv}(A)$. If $f: X \to \mathbb{C}$ is a function and $a \in A$, we write fa to denote the A-valued function $X \to A$, $x \mapsto f(x)a$. If \mathfrak{A} is a function algebra on X, we let $\mathfrak{A}A$ be the linear span of $\{fa: f \in \mathfrak{A}, a \in A\}$, so that any element $f \in \mathfrak{A}A$ is of the form $f = f_1a_1 + \cdots + f_na_n$ with $f_j \in \mathfrak{A}$ and $a_j \in A$. Given an element $a \in A$, we use the same notation a for the constant function $X \to A$ given by a(x) = a, for all $x \in X$, and consider A as a closed subalgebra of C(X, A). Since A has a unit element $\mathbf{1}$, we identify \mathbb{C} with the closed subalgebra $\mathbb{C}\mathbf{1}$ of A. Whence every continuous function $f: X \to \mathbb{C}$ can be considered as the continuous A-valued function and adopt the identification $C(X) = C(X)\mathbf{1}$ as a closed subalgebra of C(X, A). Finally, for a family \mathbb{M} of A-valued functions on X, a point $x \in X$, and a character $\phi \in \mathfrak{M}(A)$, we set

$$\mathcal{M}(x) = \{ f(x) : f \in \mathcal{M} \}, \quad \phi[\mathcal{M}] = \{ \phi \circ f : f \in \mathcal{M} \}.$$

2. Natural vector-valued function algebras

Let \mathcal{A} be an A-valued function algebra on X. Assume that M is a maximal ideal of A, $x_0 \in X$, and set

$$(2.1) \qquad \mathcal{M} = \{ f \in \mathcal{A} : f(x_0) \in M \}.$$

The fact that \mathcal{M} is an ideal of \mathcal{A} is obvious. We prove that \mathcal{M} is maximal. Take a function $g \in \mathcal{A} \setminus \mathcal{M}$ so that $g(x_0) \notin \mathcal{M}$. Since \mathcal{M} is maximal in \mathcal{A} , there exist $a \in \mathcal{M}$ and $b \in \mathcal{A}$ such that $\mathbf{1} = a + g(x_0)b$. Consider b as a constant function of X into \mathcal{A} and let $f = \mathbf{1} - gb$. Then $f(x_0) = a \in \mathcal{M}$ so that $f \in \mathcal{M}$ and $\mathbf{1} = f + gb$ which means that the ideal of \mathcal{A} generated by $\mathcal{M} \cup \{g\}$ is equal to \mathcal{A} . Hence \mathcal{M} is maximal in \mathcal{A} .

Definition 2.1. An A-valued function algebra \mathcal{A} on X is called *natural* on X, if every maximal ideal \mathcal{M} of \mathcal{A} is of the form (2.1), for some $x_0 \in X$ and $M \in \mathfrak{M}(A)$.

In case $A = \mathbb{C}$, natural A-valued function algebras coincide with natural (complex) function algebras.

Theorem 2.2. Let A be an A-valued function algebra on X. If M is a maximal ideal in A and $M(x_0) \neq A$, for some $x_0 \in X$, then

(1) $\mathcal{M}(x_0)$ is a maximal ideal of A;

- (2) $\mathcal{M}(x) = A \text{ for } x \neq x_0$;
- (3) $\mathcal{M} = \{ f \in \mathcal{A} : f(x_0) \in M \}, \text{ where } M = \mathcal{M}(x_0).$

Proof. It is easily verified that $\mathcal{M}(x_0)$ is an ideal. We show that $\mathcal{M}(x_0)$ is maximal. Assume that $a \notin \mathcal{M}(x_0)$. Then a, as a constant function on X, does not belong to \mathcal{M} . Hence, the ideal of \mathcal{A} generated by $\mathcal{M} \cup \{a\}$ is equal to \mathcal{A} meaning that $\mathbf{1} = f + ag$, for some $f \in \mathcal{M}$ and $g \in \mathcal{A}$. In particular, $\mathbf{1} = f(x_0) + ag(x_0)$ which implies that the ideal of A generated by $\mathcal{M}(x_0) \cup \{a\}$ is equal to A. Hence, $\mathcal{M}(x_0)$ is maximal.

Now, assume that $x \neq x_0$. Since \mathcal{A} separates the points of X (Definition 1.2), for the maximal ideal $\mathcal{M}(x_0)$ in A, there is a function $f \in \mathcal{A}$ such that $f(x) - f(x_0) \notin \mathcal{M}(x_0)$. Define g(s) = f(s) - f(x) so that $g(x_0) \notin \mathcal{M}(x_0)$. This implies that $g \notin \mathcal{M}$. Since \mathcal{M} is maximal, there are $h \in \mathcal{M}$ and $k \in \mathcal{A}$ such that h + kg = 1. Hence, $\mathbf{1} = h(x) \in \mathcal{M}(x)$ and $\mathcal{M}(x) = A$.

It is proved in [1] that the algebra C(X, A) satisfies all conditions in Theorem 2.2. Therefore C(X, A) is natural.

Corollary 2.3. Let A be an A-valued function algebra on X.

- (1) The algebra A is natural if, and only if, for every proper ideal \mathcal{I} in A, there exists some $x_0 \in X$ such that $\mathcal{I}(x_0) \neq A$.
- (2) If \mathcal{I} is an ideal in \mathcal{A} such that $\mathcal{I}(x_0)$ and $\mathcal{I}(x_1)$, for $x_0 \neq x_1$, are proper ideals in \mathcal{A} , then \mathcal{I} cannot be maximal in \mathcal{A} .

The next discussion requires a concept of zero sets. The zero set of a function $f: X \to A$ is defined as $Z(f) = \{x: f(x) = \mathbf{0}\}$. This concept of zero set, however, is not useful here in our discussion because, in general, the algebra A may contain nonzero singular elements. Instead, the following slightly modified version of this concept appears to be very useful.

Definition 2.4. For a function $f: X \to A$, the *singular set* of f is defined to be

(2.2)
$$Z_{s}(f) = \{x \in X : f(x) \notin Inv(A)\}.$$

The following is an analogy of [6, Proposition 4.1.5 (i)].

Theorem 2.5. Let A be a Banach A-valued function algebra on X. Then A is natural if, and only if, for each finite set $\{f_1, \ldots, f_n\}$ of elements in A with $\bigcap_{i=1}^n Z_s(f_i) = \emptyset$, there exist $g_1, \ldots, g_n \in A$ such that

$$f_1g_1+\cdots+f_ng_n=\mathbf{1}.$$

Proof. (\Rightarrow) Suppose that \mathcal{A} is natural and, for a finite set $\{f_1, \ldots, f_n\}$ in \mathcal{A} , assume that $Z_{\mathbf{s}}(f_1) \cap \cdots \cap Z_{\mathbf{s}}(f_n) = \emptyset$. Let \mathcal{I} be the ideal generated by $\{f_1, \ldots, f_n\}$. If $\mathcal{I} \neq \mathcal{A}$, then, since \mathcal{A} is natural, by Corollary 2.3, there exists a point $x_0 \in X$

such that $\mathcal{I}(x_0) \neq A$. In particular, the elements $f_1(x_0), \ldots, f_n(x_0)$ are all singular in A, which means that $x_0 \in Z_{\mathrm{s}}(f_1) \cap \cdots \cap Z_{\mathrm{s}}(f_n)$, a contradiction. Therefore, $\mathcal{I} = \mathcal{A}$ whence there exist $g_1, \ldots, g_n \in \mathcal{A}$ such that $f_1g_1 + \cdots + f_ng_n = 1$. (\Leftarrow) To show that \mathcal{A} is natural, we take a maximal ideal \mathcal{M} of \mathcal{A} and, using Corollary 2.3, we show that $\mathcal{M}(x_0) \neq A$, for some $x_0 \in X$. Assume, towards a contradiction, that, for every $x \in X$, there exists a function $f_x \in \mathcal{M}$ such that $f_x(x) = 1$. Set $V_x = f_x^{-1}(\operatorname{Inv}(A))$. Then $\{V_x : x \in X\}$ is an open covering of the compact space X. So there exist finitely many points $x_1, \ldots, x_n \in X$ such that $X \subset V_{x_1} \cup \cdots \cup V_{x_n}$. Then $Z_{\mathrm{s}}(f_{x_1}) \cap \cdots \cap Z_{\mathrm{s}}(f_{x_n}) = \emptyset$. By the assumption, there exist functions $g_1, \ldots, g_n \in \mathcal{A}$ such that $f_{x_1}g_1 + \cdots + f_{x_n}g_n = 1$. Hence, $1 \in \mathcal{M}$, which is a contradiction.

Let $f \in \mathcal{A}$ and suppose that $Z_{s}(f) = \emptyset$ so that $f(X) \subset \text{Inv}(A)$. Since the inverse mapping $a \mapsto a^{-1}$ of Inv(A) onto itself is continuous, the mapping $x \mapsto f(x)^{-1}$, denoted by 1/f, is a continuous A-valued function on X. Hence f is invertible in C(X,A). However, f may not be invertible in A. Let us call A a full subalgebra of C(X,A) if every $f \in A$ that is invertible in C(X,A) is invertible in A. The following is an analogy of [2, Theorem 2.1].

Theorem 2.6. Let A be a Banach A-valued function algebra on X such that \bar{A} , the uniform closure of A, is natural. If $1/f \in A$ whenever $f \in A$ and $Z_s(f) = \emptyset$, then A is natural.

Proof. We apply Theorem 2.5 to prove that \mathcal{A} is natural. Let f_1, \ldots, f_n be elements in \mathcal{A} such that $Z_{\mathbf{s}}(f_1) \cap \cdots \cap Z_{\mathbf{s}}(f_n) = \emptyset$. We prove the existence of a finite set $\{g_1, \ldots, g_n\}$ of elements in \mathcal{A} such that $f_1g_1 + \cdots + f_ng_n = \mathbf{1}$. Regarding f_1, \ldots, f_n as elements of $\bar{\mathcal{A}}$, since $\bar{\mathcal{A}}$ is natural, again by Theorem 2.5, there exist h_1, \ldots, h_n in $\bar{\mathcal{A}}$ such that $f_1h_1 + \cdots + f_nh_n = \mathbf{1}$. For each h_j , there is some $g_j \in \mathcal{A}$ such that $\|h_j - g_j\|_X < \left(\sum_{j=1}^n \|f_j\|_X\right)^{-1}$. Thus

$$(2.3) \left\| \mathbf{1} - \sum_{j=1}^{n} f_{j} g_{j} \right\|_{X} = \left\| \sum_{j=1}^{n} f_{j} h_{j} - \sum_{j=1}^{n} f_{j} g_{j} \right\|_{X} \le \sum_{j=1}^{n} \|f_{j}\|_{X} \|h_{j} - g_{j}\|_{X} < 1.$$

Hence, for every $x \in X$, $f(x) = \sum f_j(x)g_j(x)$ is an invertible element of A, so that for the function $f = \sum f_jg_j$, which belongs to A, we have $Z_{\mathbf{s}}(f) = \emptyset$. By the assumption, there is a function g in A such that $\mathbf{1} = fg = \sum f_j(g_jg)$. Now, Theorem 2.5 shows that A is natural.

An application of the above theorem is given in Example 4.1.

Let \mathcal{A} be a Banach A-valued function algebra. For every point $x \in X$ and character $\phi \in \mathfrak{M}(A)$ define

$$\varepsilon_x \diamond \phi : \mathcal{A} \to \mathbb{C}, \quad \varepsilon_x \diamond \phi(f) = \varepsilon_x(\phi \circ f) = \phi(f(x)).$$

Then $\varepsilon_x \diamond \phi$ is a character of \mathcal{A} with $\ker(\varepsilon_x \diamond \phi) = \{ f \in \mathcal{A} : f(x) \in \ker \phi \}$, which of course is of the form (2.1). Define

(2.4)
$$\mathcal{J}: X \times \mathfrak{M}(A) \to \mathfrak{M}(A), \quad (x, \phi) \to \varepsilon_x \diamond \phi.$$

Theorem 2.7. The mapping \mathcal{J} is a homeomorphism of $X \times \mathfrak{M}(A)$ onto a compact subset of $\mathfrak{M}(A)$. If A is natural, then $\mathfrak{M}(A)$ is homeomorphic to $X \times \mathfrak{M}(A)$.

Proof. Take $x \in X$, $\phi \in \mathfrak{M}(A)$, and set $\tau_0 = \varepsilon_x \diamond \phi$. Let W be a neighbourhood of τ_0 in $\mathfrak{M}(A)$ of the form

$$W = \{ \tau \in \mathfrak{M}(\mathcal{A}) : |\tau(f_i) - \tau_0(f_i)| < \varepsilon, \ 1 \le i \le n \},\$$

where $f_1, \ldots, f_n \in \mathcal{A}$. Take

$$U = \{ y \in X : ||f_i(y) - f_i(x)|| < \varepsilon/2, \ 1 \le i \le n \},$$

$$V = \{ \psi \in \mathfrak{M}(A) : |\psi(f_i(x)) - \phi(f_i(x))| < \varepsilon/2, \ 1 \le i \le n \}.$$

Then U is a neighbourhood of x in X and V is a neighbourhood of ϕ in $\mathfrak{M}(A)$, so that $U \times V$ is a neighbourhood of (x, ϕ) in $X \times \mathfrak{M}(A)$. If $(y, \psi) \in U \times V$ then, for every i $(1 \le i \le n)$,

$$|\psi(f_i(y)) - \phi(f_i(x))| \le |\psi(f_i(y)) - \psi(f_i(x))| + |\psi(f_i(x)) - \phi(f_i(x))|$$

$$< ||\psi|| ||f_i(y) - f_i(x)|| + \varepsilon/2 \le \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

This shows that $\varepsilon_y \diamond \psi \in W$ and thus \mathcal{J} is continuous. Finally, if \mathcal{A} is natural then every maximal ideal of \mathcal{A} is of the form (2.1) which means that every character $\tau \in \mathfrak{M}(\mathcal{A})$ is of the form $\tau = \varepsilon_x \diamond \phi$, for some $x \in X$ and $\phi \in \mathfrak{M}(\mathcal{A})$. Hence, \mathcal{J} is a surjection and thus a homeomorphism.

3. Characters on vector-valued function algebras

We turn to a more general case where a vector-valued function algebra may not be natural. Let \mathcal{A} be a Banach A-valued function algebra. We show that, under certain conditions, the character space $\mathfrak{M}(\mathcal{A})$ is identical to $\mathfrak{M}(\mathfrak{A}) \times \mathfrak{M}(A)$, where $\mathfrak{A} = C(X) \cap \mathcal{A}$ is the subalgebra of \mathcal{A} consisting of scalar-valued functions. To this end, we should restrict ourself to the class of admissible algebras. If $f \in \mathcal{A}$ and $\phi \in \mathfrak{M}(A)$, it is clear that $\phi \circ f \in C(X)$; it is not, however, clear whether the A-valued function $(\phi \circ f)\mathbf{1}$ belongs to \mathcal{A} . In fact, [3, Example 2.4] shows that it may very well happen that $(\phi \circ f)\mathbf{1} \notin \mathcal{A}$.

Definition 3.1 ([3]). The A-valued function algebra A is called admissible if

$$\{(\phi \circ f)\mathbf{1}: f \in \mathcal{A}, \ \phi \in \mathfrak{M}(A)\} \subset \mathcal{A}.$$

Note that \mathcal{A} is admissible if, and only if, $\phi[\mathcal{A}]\mathbf{1} \subset \mathcal{A}$, for all $\phi \in \mathfrak{M}(A)$.

Admissible vector-valued function algebras exist around in abundant. Some typical examples are C(X,A), $\operatorname{Lip}(X,A)$, P(K,A), R(K,A), etc. Tensor products of the form $\mathfrak{A} \otimes A$, where \mathfrak{A} is a (Banach) function algebra on X, can be seen as admissible A-valued function algebras. (More details are given in Example 4.4).

During this section, we assume that \mathcal{A} is admissible and set $\mathfrak{A} = \mathcal{A} \cap C(X)$. Then \mathfrak{A} is the subalgebra of \mathcal{A} consisting of all complex functions in \mathcal{A} , it forms a complex function algebra by itself, and $\mathfrak{A} = \phi[\mathcal{A}]$, for all $\phi \in \mathfrak{M}(A)$. Our aim is to give a description of maximal ideals in \mathcal{A} . To begin, take a character $\phi \in \mathfrak{M}(A)$ and a maximal ideal M of \mathfrak{A} , and set

$$\mathfrak{M} = \{ f \in \mathcal{A} : \phi \circ f \in \mathsf{M} \}.$$

Then \mathcal{M} is a maximal ideal of \mathcal{A} . One way to see this (though it can be seen directly) is as follows. Take $\psi \in \mathfrak{M}(\mathfrak{A})$ with $\mathsf{M} = \ker \psi$ and define

$$\psi \diamond \phi : \mathcal{A} \to \mathbb{C}, \quad \psi \diamond \phi(f) = \psi(\phi \circ f).$$

Note that $\psi(\phi \circ f)$ is meaningful since $\phi \circ f \in \mathfrak{A}$. The functional $\psi \diamond \phi$ is a character of \mathcal{A} with $\ker(\psi \diamond \phi) = \mathcal{M}$. Hence \mathcal{M} is a maximal ideal of \mathcal{A} . The main question is whether any maximal ideal \mathcal{M} of \mathcal{A} is of the form (3.2).

Lemma 3.2. A maximal ideal \mathfrak{M} of \mathcal{A} is of the form (3.2) if and only if $\phi[\mathfrak{M}] \neq \mathfrak{A}$ for some $\phi \in \mathfrak{M}(A)$.

Proof. If M is of the form (3.2) then clearly $\phi[M] \neq \mathfrak{A}$. Conversely, assume that $\phi[M] \neq \mathfrak{A}$ for some $\phi \in \mathfrak{M}(A)$. Then $\phi[M]$ is an ideal of \mathfrak{A} . We show that it is maximal. If $g \notin \phi[M]$, then $g = g\mathbf{1}$ (as an A-valued function on X) does not belong to M. Since M is maximal in A, the ideal generated by $M \cup \{g\}$ is equal to A. This implies that $\mathbf{1} = f + gh$, for some $f \in M$ and $h \in A$. Since $\phi \circ g = g$, we get $1 = \phi \circ f + g(\phi \circ h)$. This means that the ideal of \mathfrak{A} generated by $\phi[M] \cup \{g\}$ is equal to \mathfrak{A} . Thus, $\phi[M]$ is maximal. Set $M = \phi[M]$ and $M_1 = \{f \in A : \phi \circ f \in M\}$. Then $M \subset M_1$ and both M and M_1 are maximal ideals. Hence, $M = M_1$.

If $\mathfrak{M} = \ker \tau$, for some $\tau \in \mathfrak{M}(\mathcal{A})$, then \mathfrak{M} is of the form (3.2) if and only if $\tau = \psi \diamond \phi$, for some $\psi \in \mathfrak{M}(\mathfrak{A})$ and $\phi \in \mathfrak{M}(A)$. Let us extend the mapping \mathcal{J} in (2.4) to $\mathfrak{M}(\mathfrak{A}) \times \mathfrak{M}(A)$ as follows.

(3.3)
$$\mathcal{J}: \mathfrak{M}(\mathfrak{A}) \times \mathfrak{M}(A) \to \mathfrak{M}(A), \quad \mathcal{J}(\psi, \phi) = \psi \diamond \phi.$$

The mapping is injective for if $\psi \diamond \phi = \psi' \diamond \phi'$ then

$$\phi(a) = \psi(\phi(a)) = \psi'(\phi'(a)) = \phi'(a) \quad (a \in A), \psi(f) = \psi(\phi(f)) = \psi'(\phi'(f)) = \psi'(f) \quad (f \in \mathfrak{A}).$$

which implies that $\phi = \phi'$ and $\psi = \psi'$. The main question is whether \mathcal{J} is surjective. If $\tau \in \mathfrak{M}(\mathcal{A})$ then $\phi = \tau|_{\mathcal{A}} \in \mathfrak{M}(\mathcal{A})$ and $\psi = \tau|_{\mathfrak{A}} \in \mathfrak{M}(\mathfrak{A})$. The

question is whether the equality $\tau = \psi \diamond \phi$ holds true; of course, it does hold if $\phi[\mathcal{M}] \neq \mathfrak{A}$.

Theorem 3.3. If the mapping \mathcal{J} in (3.3) is a surjection, then it is a homeomorphism and, therefore, the character space $\mathfrak{M}(\mathcal{A})$ is identical to $\mathfrak{M}(\mathfrak{A}) \times \mathfrak{M}(\mathcal{A})$.

Proof. Suppose that \mathcal{J} is a surjection (an thus a bijection). Since both the domain and the range are compact Hausdorff spaces, it suffices to prove that \mathcal{J} is open. Take $\psi_0 \in \mathfrak{M}(\mathfrak{A})$, $\phi_0 \in \mathfrak{M}(A)$ and set $\tau_0 = \mathcal{J}(\psi_0, \phi_0) = \psi_0 \diamond \phi_0$. Let U and V be neighborhoods of ψ_0 and ϕ_0 of the following form

$$U = \{ \psi \in \mathfrak{M}(\mathfrak{A}) : |\psi(f) - \psi_0(f)| < \varepsilon_1 \quad (f \in F_1) \},$$

$$V = \{ \phi \in \mathfrak{M}(A) : |\phi(a) - \phi_0(a)| < \varepsilon_2 \quad (a \in F_2) \},$$

where F_1 and F_2 are finite sets in \mathfrak{A} and A, respectively. Take $F = F_1 \cup F_2$ as a finite set in \mathcal{A} , $\varepsilon = \min\{\varepsilon_1, \varepsilon_2\}$ and set

$$W = \{ \tau \in \mathfrak{M}(\mathcal{A}) : |\tau(f) - \tau_0(f)| < \varepsilon \quad (f \in F) \}.$$

Then W is a neighborhood of τ_0 in $\mathfrak{M}(A)$ and $W \subset \mathfrak{J}(U \times V)$. Hence \mathfrak{J} is open.

The rest of this section is devoted to investigating conditions under which \mathcal{J} is surjective.

Theorem 3.4 (P). For a character $\tau \in \mathfrak{M}(A)$ with $\mathfrak{M} = \ker \tau$ and $\phi = \tau|_A$, the following are equivalent.

- (i) $\phi[\mathcal{M}] \neq \mathfrak{A}$.
- (ii) \mathcal{M} is of the form (3.2) with $M = \phi[\mathcal{M}]$.
- (iii) For every $f \in \mathcal{A}$, if $\phi \circ f = \mathbf{0}$ then $f \in \mathcal{M}$.
- (iv) For every $f \in \mathcal{A}$, $\tau(\phi \circ f) = \tau(f)$.
- (v) For every $f \in \mathcal{A}$, if $f(X) \subset \mathcal{M}$ then $f \in \mathcal{M}$.
- (vi) $\tau = \psi \diamond \phi$, for some $\psi \in \mathfrak{M}(\mathfrak{A})$.

Proof. The equivalence (i) \Leftrightarrow (ii) is just Lemma 3.2. The implication (ii) \Rightarrow (iii) is clear. To see the implication (iii) \Rightarrow (iv), let $g = f - (\phi \circ f)\mathbf{1}$. Then $\phi \circ g = \mathbf{0}$ and thus $g \in \mathcal{M}$ and $\tau(g) = 0$. Hence, $\tau(\phi \circ f) = \tau(f)$. The implication (iv) \Rightarrow (iii) is clear.

To prove (iii) \Leftrightarrow (v), we note that $f(X) \subset \mathcal{M}$ if and only if $\phi \circ f = \mathbf{0}$. In fact, $f(X) \subset \mathcal{M}$ means that, for every $x \in X$, the element f(x), as a constant function of X into A, belongs to \mathcal{M} . This, in turn, means that $\tau(f(x)) = \phi(f(x)) = 0$, for all $x \in X$, which means that $\phi \circ f = \mathbf{0}$.

To prove (iii) \Rightarrow (vi), first note that \mathcal{A} being admissible implies that

$$\mathfrak{A} = \phi[\mathcal{A}] = \{\phi \circ f : f \in \mathcal{A}\}.$$

Define $\psi: \mathfrak{A} \to \mathbb{C}$ by $\psi(\phi \circ f) = \tau(f)$. This is well-defined for if $\phi \circ f = \phi \circ g$ then, by the assumption, $f - g \in \mathcal{M}$ which in turn implies that $\tau(f) = \tau(g)$. Obviously, $\psi \in \mathfrak{M}(\mathfrak{A})$ and $\tau = \psi \diamond \phi$.

Finally, we prove that (vi) \Rightarrow (i). Towards a contradiction, assume that $\phi[\mathcal{M}] = \mathfrak{A}$. Then $\phi \circ f = \mathbf{1}$, for some $f \in \mathcal{M}$. Hence $1 = \psi(\mathbf{1}) = \psi(\phi \circ f) = \tau(f) = 0$ which is absurd.

Convention. We say that ' \mathcal{A} has property \mathcal{P} ' if every $\mathcal{M} \in \mathfrak{M}(\mathcal{A})$ satisfies one (and hence all) of conditions in Theorem 3.4. Hence \mathcal{A} has \mathcal{P} if and only if the mapping \mathcal{J} in (3.3) is surjective.

Let $\bar{\mathcal{A}}$ denote the uniform closure of \mathcal{A} in C(X,A). The restriction map

$$\mathfrak{M}(\bar{\mathcal{A}}) \to \mathfrak{M}(\mathcal{A}), \quad \bar{\tau} \mapsto \bar{\tau}|_{\mathcal{A}},$$

is one-to-one and continuous with respect to the Gelfand topology [10]. We write $\mathfrak{M}(\bar{A}) = \mathfrak{M}(A)$ if it is a homeomorphism.

Proposition 3.5. If A has P then \bar{A} has P. If \bar{A} has P and $||\hat{f}|| \leq ||f||_X$, for all $f \in A$, then A has P.

Proof. Suppose that \mathcal{A} has \mathcal{P} . Take $\bar{\tau} \in \mathfrak{M}(\bar{\mathcal{A}})$, set $\tau = \bar{\tau}|_{\mathcal{A}}$ and $\phi = \bar{\tau}|_{\mathcal{A}} = \tau|_{\mathcal{A}}$. Since \mathcal{A} has \mathcal{P} , by Theorem 3.4 (iv), $\tau(\phi \circ f) = \tau(f)$, for all $f \in \mathcal{A}$. Given $f \in \bar{\mathcal{A}}$, there is a sequence $\{f_n\}$ in \mathcal{A} such that $||f_n - f||_X \to 0$. Hence, $||\phi \circ f_n - \phi \circ f||_X \to 0$, and thus

$$\bar{\tau}(\phi \circ f) = \lim_{n \to \infty} \bar{\tau}(\phi \circ f_n) = \lim_{n \to \infty} \tau(\phi \circ f_n) = \lim_{n \to \infty} \tau(f_n) = \lim_{n \to \infty} \bar{\tau}(f_n) = \bar{\tau}(f).$$

Again, by Theorem 3.4 (iv), we see that $\bar{\mathcal{A}}$ has \mathcal{P} .

Now, assume that $\bar{\mathcal{A}}$ has \mathcal{P} , and $\|\hat{f}\| \leq \|f\|_X$, for all $f \in \mathcal{A}$. Take $\tau \in \mathfrak{M}(\mathcal{A})$ and $\phi = \tau|_A$. Extend τ to a character $\bar{\tau} : \bar{\mathcal{A}} \to \mathbb{C}$ (this is possible since $\|\hat{f}\| \leq \|f\|_X$, for all $f \in \mathcal{A}$). Note that still we have $\phi = \bar{\tau}|_A$. Since $\bar{\mathcal{A}}$ satisfies \mathcal{P} , we have $\bar{\tau}(\phi \circ f) = \bar{\tau}(f)$, for all $f \in \bar{\mathcal{A}}$. This implies that $\tau(\phi \circ f) = \tau(f)$, for all $f \in \mathcal{A}$, and thus \mathcal{A} has \mathcal{P} .

The following is a vector-valued version of Theorem 1.1.

Theorem 3.6. For an admissible Banach A-valued function algebra A with $\mathfrak{A} = C(X) \cap A$, let \bar{A} and $\bar{\mathfrak{A}}$ be the uniform closures of A and \mathfrak{A} , respectively. Consider the following statements:

- (i) $\mathfrak{M}(\overline{A}) = \mathfrak{M}(A)$.
- (ii) $\|\hat{f}\| \leq \|f\|_X$, for all $f \in \mathcal{A}$.
- (iii) $||f|| \le ||f||_X$, for all $f \in \mathfrak{A}$.
- (iv) $\mathfrak{M}(\overline{\mathfrak{A}}) = \mathfrak{M}(\mathfrak{A})$.

Then (i) \Leftrightarrow (ii) \Rightarrow (iii) \Leftrightarrow (iv). If A satisfies P, then (iii) \Rightarrow (ii).

Proof. The equivalences (i) \Leftrightarrow (ii) and (iii) \Leftrightarrow (iv) follow from the main theorem in [10]. The implication (ii) \Rightarrow (iii) is obvious, because $\mathfrak{A} \subset \mathcal{A}$.

Assume that \mathcal{A} satisfies \mathcal{P} , and $\|\hat{f}\| \leq \|f\|_X$, for all $f \in \mathfrak{A}$. Fix a function $f \in \mathcal{A}$ and take an arbitrary character $\tau \in \mathfrak{M}(\mathcal{A})$. Since \mathcal{A} has \mathcal{P} , we have $\tau = \psi \diamond \phi$, where $\psi = \tau|_{\mathfrak{A}}$ and $\phi = \tau|_{\mathcal{A}}$. Since $\phi \circ f \in \mathfrak{A}$, we have

$$|\tau(f)| = |\psi(\phi \circ f)| \le \|\widehat{\phi \circ f}\| \le \|\phi \circ f\|_X \le \|f\|_X.$$

Hence $\|\hat{f}\| \leq \|f\|_X$, for all $f \in \mathcal{A}$.

4. Examples

To illustrate the results, we devote this section to some examples.

Example 4.1. Let (X, ρ) be a compact metric space. A function $f: X \to A$ is called an A-valued Lipschitz function if

(4.1)
$$L(f) = \sup \left\{ \frac{\|f(x) - f(y)\|}{\rho(x, y)} : x, y \in X, \ x \neq y \right\} < \infty.$$

The space of A-valued Lipschitz functions on X is denoted by Lip(X, A). For any $f \in \text{Lip}(X, A)$, the Lipschitz norm of f is defined by $||f||_L = ||f||_X + L(f)$. This makes Lip(X, A) an admissible Banach A-valued function algebra on X with $\text{Lip}(X) = \text{Lip}(X, A) \cap C(X)$, where $\text{Lip}(X) = \text{Lip}(X, \mathbb{C})$ is the classical complex Lipschitz algebra on X.

The algebra $\operatorname{Lip}(X)$ satisfies all conditions in the Stone-Weierstrass Theorem and thus it is dense in C(X). On the other hand, by [9, Lemma 1], C(X)A is dense in C(X,A) and thus $\operatorname{Lip}(X)A$ is dense in C(X,A). Since $\operatorname{Lip}(X,A)$ contains $\operatorname{Lip}(X)A$, we see that $\operatorname{Lip}(X,A)$ is dense in C(X,A).

It is easy to verify that if $f \in \text{Lip}(X,A)$ and $Z_s(f) = \emptyset$, then $1/f \in \text{Lip}(X,A)$. Since C(X,A) is natural, Theorem 2.6 now implies that Lip(X,A) is natural. By Theorem 2.7, $\mathfrak{M}(\text{Lip}(X,A))$ is homeomorphic to $X \times \mathfrak{M}(A)$. See also [7] and [11].

Example 4.2. Assume that $A = \mathbb{C}^n$, for some positive integer n. Then, for every admissible Banach A-valued function algebra \mathcal{A} on X, the mapping \mathcal{J} in (3.3) is surjective and thus $\mathfrak{M}(\mathcal{A})$ is identical to $\mathfrak{M}(\mathfrak{A}) \times \mathfrak{M}(\mathbb{C}^n)$.

To see this, we show that \mathcal{A} satisfies condition (i) of Theorem 3.4. Note that $\mathfrak{M}(\mathbb{C}^n) = \{\pi_1, \dots, \pi_n\}$, where $\pi_i : \mathbb{C}^n \to \mathbb{C}$ is the projection on *i*-th component. Assume \mathcal{M} is an ideal in \mathcal{A} and $\mathbf{1} \in \pi_i[\mathcal{M}]$, for all $i = 1, \dots, n$. Hence, for every i, there is some $f_i \in \mathcal{M}$ such that $\pi_i \circ f_i = \mathbf{1}$. Let $\{e_1, \dots, e_n\}$ be the standard basis of \mathbb{C}^n . Then e_i , as a constant function of X into A, belongs to A. Since \mathcal{M} is an ideal, we have $\mathbf{1} = e_1 f_1 + \dots + e_n f_n \in \mathcal{M}$. Hence, $\mathcal{M} = \mathcal{A}$ and \mathcal{M} cannot be maximal.

If $\mathcal{X} = \{1, \ldots, n\}$, then $\mathbb{C}^n = C(\mathcal{X})$. The above example states that, given any admissible Banach $C(\mathcal{X})$ -valued function algebra, we have $\mathfrak{M}(\mathcal{A}) = \mathfrak{M}(\mathfrak{A}) \times \mathfrak{M}(C(\mathcal{X}))$. If \mathcal{X} is an arbitrary compact Hausdorff space, it is unknown whether the result still holds for any admissible Banach $C(\mathcal{X})$ -valued function algebra.

But, the following shows that it does hold for admissible $C(\mathcal{X})$ -valued uniform algebras.

Example 4.3. Assume that $A = C(\mathcal{X})$, for some compact Hausdorff space \mathcal{X} . Then, for every admissible A-valued uniform algebra \mathcal{A} on X, the mapping \mathcal{J} in (3.3) is surjective, and thus $\mathfrak{M}(\mathcal{A}) = \mathfrak{M}(\mathfrak{A}) \times \mathfrak{M}(C(\mathcal{X}))$.

To see this, first we show that \mathcal{A} is isometrically isomorphic to $C(\mathcal{X}, \mathfrak{A})$. Take a function $f \in \mathcal{A}$. Then f(x), for every $x \in X$, is a function in $C(\mathcal{X})$. Define $\tilde{f}: \mathcal{X} \to \mathfrak{A}$ by $\tilde{f}(\xi)(x) = f(x)(\xi)$. In fact, $\tilde{f}(\xi) = \phi_{\xi} \circ f$ where ϕ_{ξ} is the evaluation character of $A = C(\mathcal{X})$ at ξ , and, since \mathcal{A} is admissible, $\tilde{f}(\xi)$ belongs to \mathfrak{A} . Now, define $T: \mathcal{A} \to C(\mathcal{X}, \mathfrak{A})$ by $Tf = \tilde{f}$. It is easily verified that T is an algebra homomorphism, and

$$||f||_X = \sup_{x \in X} ||f(x)|| = \sup_{x \in X} \sup_{\xi \in \mathcal{X}} |f(x)(\xi)| = \sup_{\xi \in \mathcal{X}} ||\tilde{f}(\xi)|| = ||\tilde{f}||_{\mathcal{X}}.$$

Since the range of T contains all elements of the form $g_1h_1+\cdots+g_nh_n$, where $n \in \mathbb{N}$, $g_i \in C(\mathcal{X})$ and $h_i \in \mathfrak{A}$, and these functions are dense in $C(\mathcal{X}, \mathfrak{A})$, we have T surjective. It follows that T is an isometric isomorphism. By [9, Theorem], $\mathfrak{M}(C(\mathcal{X}, \mathfrak{A}))$ is identical to $\mathfrak{M}(\mathfrak{A}) \times \mathcal{X}$, which means that $\mathfrak{M}(\mathcal{A})$ is identical to $\mathfrak{M}(\mathfrak{A}) \times \mathfrak{M}(\mathcal{A})$.

Example 4.4 (Tensor Products). Let \mathfrak{A} be a Banach function algebra on X and consider the algebraic tensor product $\mathfrak{A} \otimes A$. There exists, by [5, Theorem 42.6], a linear operator $T: \mathfrak{A} \otimes A \to \mathfrak{A} A$ such that

$$T\left(\sum_{i=1}^{n} f_i \otimes a_i\right) = \sum_{i=1}^{n} f_i a_i.$$

The operator T is an algebra isomorphism so that $\mathfrak{A} \otimes A$ can be seen as an admissible A-valued function algebra on X. We identify every element $f \in \mathfrak{A} \otimes A$ with its image Tf as an A-valued function on X. Let $\|\cdot\|_{\gamma}$ be an algebra cross-norm on $\mathfrak{A} \otimes A$ so that the completion $\mathfrak{A} \widehat{\otimes}_{\gamma} A$ is a Banach algebra. The mapping T extends to an isometric isomorphism of $\mathfrak{A} \widehat{\otimes}_{\gamma} A$ onto a Banach A-valued function algebra on X. For example, if $\|\cdot\|_{\epsilon}$ is the injective tensor norm, then $\mathfrak{A} \widehat{\otimes}_{\epsilon} A$ is isometrically isomorphic to the uniform closure $\overline{\mathfrak{A} A}$ of $\mathfrak{A} A$ and $\|f\|_{\epsilon} = \|f\|_{X}$, for all $f \in \mathfrak{A} \otimes A$.

It is proved in [4] that

- (1) $\mathfrak{A} \widehat{\otimes}_{\gamma} A$ is an admissible Banach A-valued function algebra on X.
- (2) If $f \in \mathfrak{A} \widehat{\otimes}_{\gamma} A$ and $\phi \in A^*$ then $\phi \circ f \in \mathfrak{A}$ and $\|\phi \circ f\| \leq \|\phi\| \|f\|_{\gamma}$.

We now show that every $\tau \in \mathfrak{M}(\mathfrak{A} \widehat{\otimes}_{\gamma} A)$ is of the form $\tau = \psi \diamond \phi$, with $\phi = \tau|_A$ and $\psi = \tau|_{\mathfrak{A}}$. Since $\mathfrak{A} \otimes A$ is dense in $\mathfrak{A} \widehat{\otimes}_{\gamma} A$, it is enough to show that $\tau = \psi \diamond \phi$ on $\mathfrak{A} \otimes A$. First, note that every $f \in \mathfrak{A} \otimes A$ can be seen, through the isomorphism

(4.2), as
$$f = f_1 a_1 + \dots + f_n a_n$$
. Hence, $\phi \circ f = \phi(a_1) f_1 + \dots + \phi(a_n) f_n$ and
$$\tau(f) = \tau(f_1 a_1 + \dots + f_n a_n)$$
$$= \tau(f_1) \tau(a_1) + \dots + \tau(f_n) \tau(a_n)$$
$$= \psi(f_1) \phi(a_1) + \dots + \psi(f_n) \phi(a_n)$$
$$= \psi(\phi(a_1) f_1 + \dots + \phi(a_n) f_n)$$
$$= \psi(\phi \circ f).$$

This proves that $\tau = \psi \diamond \phi$ on $\mathfrak{A} \otimes A$ and thus $\tau = \psi \diamond \phi$ on $\mathfrak{A} \widehat{\otimes}_{\gamma} A$. We conclude that $\mathfrak{M}(\mathfrak{A} \widehat{\otimes}_{\gamma} A) = \mathfrak{M}(\mathfrak{A}) \times \mathfrak{M}(A)$. This result, however, can be derived from the following more general result due to Tomiyama [17].

Theorem 4.5 ([17]). Suppose that A and B are commutative Banach algebras. If $A \widehat{\otimes}_{\gamma} B$ is a Banach algebra for a cross-norm γ , then $\mathfrak{M}(A \widehat{\otimes}_{\gamma} B)$ is homeomorphic to $\mathfrak{M}(A) \times \mathfrak{M}(B)$.

Acknowledgement

The author expresses his sincere gratitude to the referee for their careful reading and suggestions that improved the presentation of this paper.

REFERENCES

- M. Abel, M. Abtahi, Description of closed maximal ideals in topological algebras of continuous vector-valued functions, Mediterr. J. Math. 11 (2014), no. 4, 1185–1193.
- [2] M. Abtahi, Normed algebras of infinitely differentiable Lipschitz functions, Quaest. Math. 35 (2012), no. 2, 195–202.
- [3] M. Abtahi, Vector-valued characters on vector-valued function algebras, Banach J. Math. Anal. 10 (2016), no. 3, 608–620.
- [4] M. Abtahi and S. Farhangi, Vector-valued spectra of Banach algebra valued continuous functions, Rev. R. Acad. Cienc. Exacts Fis. Nat. Ser. A Math. (2016) https://doi. org/10.1007/s13398-016-0367-2.
- F.F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag, Berlin, Heidelberg, New York, 1973.
- [6] H.G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. 24, Clarendon Press, Oxford, New York, 2000.
- [7] K. Esmaeili and H. Mahyar, The character spaces and Silov boundaries of vector-valued Lipschitz function algebras, *Indian J. Pure Appl. Math.* 45 (2014), no. 6, 977–988.
- [8] T.W. Gamelin, Uniform Algebras, Prentice Hall Press, 1969.
- [9] A. Hausner, Ideals in a certain Banach algebra, Proc. Amer. Math. Soc. 8 (1957), 246–249.
- [10] T.G. Honary, Relations between Banach function algebras and their uniform closures, Proc. Amer. Math. Soc. 109 (1990), no. 2, 337–342.
- [11] T.G. Honary, A. Nikou and A.H. Sanatpour, On the character space of vector-valued Lipschitz algebras, Bull. Iranian Math. Soc. 40 (2014), no. 6, 1453–1468.
- [12] J. Horváth, Topological Vector Spaces and Distributions, Vol. I, Addison-Wesley, Reading, Mass., 1966.
- [13] E. Kaniuth, A Course in Commutative Banach Algebras, Grad. Texts in Math. 246, Springer, 2009.

- [14] G.M. Leibowitz, Lectures on Complex Function Algebras, Scott Foresman, 1970.
- [15] A. Nikou and A.G. O'Farrell, Banach algebras of vector-valued functions, $Glasgow\ Math.$ J. **56** (2014), no. 2, 419–426.
- [16] E.L. Stout, The Theory of Uniform Algebras, Bogden & Quigley, 1971.
- [17] J. Tomiyama, Tensor products of commutative Banach algebras, Tôhoku Math. J. (2) 12 (1960), 147–154.
- [18] B. Yood, Banach algebras of continuous functions, Amer. J. Math. 73 (1951) 30–42.
- [19] W. Żelazko, Banach Algebras, Translated from the Polish by M.E. Kuczma. Elsevier Publishing Co. Amsterdam-London-New York; PWN-Polish Scientific Publishers, Warsaw, 1973.

(Mortaza Abtahi) School of Mathematics and Computer Sciences, Damghan University, Damghan, P.O. Box 36715-364, Damghan, Iran.

 $E\text{-}mail\ address: \verb|abtahi@du.ac.ir; mortaza.abtahi@gmail.com||}$