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Abstract. The object of the present paper is to introduce and study a
type of non-flat semi-Riemannian manifolds, called, super generalized re-
current manifolds which generalizes both the notion of hyper generalized

recurrent manifolds [A.A. Shaikh and A. Patra, On a generalized class of
recurrent manifolds, Arch. Math. (Brno) 46 (2010) 71–78.] and weakly
generalized recurrent manifolds [A.A. Shaikh and I. Roy, On weakly gen-
eralized recurrent manifolds, Ann. Univ. Sci. Budapest Rolando Eötvös,

Sect. Math. 54 (2011) 35–45.]. The nature of associated 1-forms of a
super generalized recurrent manifold is determined and it is proved that
on a Roter type manifold [R. Deszcz, On Roter type manifolds, in: 5th

Conference on Geometry and Topology of Manifolds, Krynica, Poland,

2003.] such a notion is equivalent to the notion of generalized Ricci-
recurrent manifold [U.C. De, N. Guha and D. Kamilya, On generalized
Ricci-recurrent manifolds, Tensor (N.S.) 56 (1995), no. 3, 312–317.]. We
also obtain a sufficient condition for a super generalized recurrent mani-

fold to be a semisymmetric one and the existence of such notion is ensured
by a proper example.
Keywords: Recurrent manifold, hyper generalized recurrent manifold,

weakly generalized recurrent manifold, super generalized recurrent man-
ifold, semisymmetric manifold, Roter type manifold.
MSC(2010): Primary: 53B20; Secondary: 53B30, 53C25.

1. Introduction

Let M be a connected semi-Riemannian smooth manifold equipped with a
semi-Riemannian metric g. Let ∇, R, S and κ be respectively the Levi-Civita
connection, Riemann-Christoffel curvature tensor, Ricci tensor and scalar cur-
vature of M . The curvature of a manifold plays the crucial role to determine
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the shape of the manifold. From a given metric one can determine the cur-
vature but the converse is very cumbersome. For the sake of construction of
a curvature restricted geometric structure one needs to impose a restriction
on the curvature tensor by means of covariant derivatives or otherwise. It
is well known that covariant derivative is a generalization of partial deriva-
tive and higher order of covariant derivatives imposed on a curvature tensor
give rise to different types of curvature restricted geometric structures. For
example, Cartan in [1] and [2] introduced the notion of local symmetry and
semisymmetry by means of first and second order covariant derivatives respec-
tively. Again, as a generalization of recurrent as well as pseudosymmetric
manifold by Chaki [3], Tamássy and Binh [38] introduced the notion of weakly
symmetric manifolds. We note that as a generalization of locally symmetric
manifold, the notion of recurrent manifold was introduced by Ruse ([25–27],
see also [39]) as a kappa space, denoted by Kn, and latter named as recur-
rent space. Again, in 1979 Dubey [14] introduced the concept of generalized
recurrent manifold (briefly, (GK)n). It is noteworthy to mention that (GK)n
does not exist (see, [15, 20–22]). As a generalization of recurrent manifold, re-
cently, Shaikh and his coauthors introduced the notions of quasi generalized
recurrent manifold [34] (briefly, (QGK)n), hyper-generalized recurrent man-
ifold [33] (briefly, (HGK)n) and weakly generalized recurrent manifold [35]
(briefly, (WGK)n) along with their proper existence by suitable examples (see
also [28, 36]). We mention that every recurrent manifold is a 2-recurrent man-
ifold [19]. In [23, Lemma 2] it was stated that every 2-recurrent manifold is
semisymmetric [37]. Thus every recurrent manifold is semisymmetric. We also
mention that semisymmetric manifolds form a subclass of pseudosymmetric
manifolds (see, e.g., [8] and [29]).

The object of the present paper is to introduce and study a generalized
class of recurrent manifolds, called, super generalized recurrent manifolds [30]
(briefly, (SGK)n). The paper is organized as follows. Section 2 deals with
the rudimentary facts of various curvature restricted geometric structures and
tensors as preliminaries. Section 3 is concerned with main results. The nature
of associated 1-forms of a (SGK)n is determined and it is shown that if the
1-forms are closed and pairwise codirectional, then such a manifold is semisym-
metric. We also obtain a sufficient condition for a (SGK)n to be Kn, and it is
proved that on a Roter type manifold (see [5,6,8,13,29]) a (SGK)n is equivalent
to the notion of generalized Ricci-recurrent manifold [4]. The last section deals
with the existence of a (SGK)4 by a proper example with a suitable metric.
Finally the conclusion of the whole work is given.

2. Preliminaries

We now consider a connected semi-Riemannian smooth manifold (Mn, g),
n ≥ 3 (this condition is to be assumed throughout the paper unless otherwise
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stated). Let C∞(M), χ(M), χ∗(M) and T r
k (M) be respectively the algebra of

all smooth functions, the Lie algebra of all smooth vector fields, the Lie algebra
of all smooth 1-forms and the space of all smooth tensor fields of type (r, k) on
M .

For Π,Φ ∈ χ∗(M), the exterior product Π ∧ Φ is defined as

Π ∧ Φ =
1

2
(Π⊗ Φ− Φ⊗Π) ,

where ⊗ denotes the tensor product. We note that if Π∧Φ = 0, then Π and Φ
are said to be codirectional. Since ∇ is torsion free, the exterior derivative dΠ
of Π can be expressed as

dΠ(X,Y ) = (∇XΠ)(Y )− (∇Y Π)(X)

for all X,Y ∈ χ(M). We also note that Π is closed if dΠ = 0.
Now for A,E ∈ T 0

2 (M), the Kulkarni-Nomizu product A ∧ E is defined as
(see, e.g., [8, 30,31])

(A ∧ E)(X1, X2, Y1, Y2) = A(X1, Y2)E(X2, Y1) +A(X2, Y1)E(X1, Y2)(2.1)

−A(X1, Y1)E(X2, Y2)−A(X2, Y2)E(X1, Y1),

where X1, X2, Y1, Y2 ∈ χ(M). Throughout the paper we will consider X,Y ,
Xi, Yi ∈ χ(M), i = 1, 2, . . ., and the same symbol ∧ is used for both Kulkarni-
Nomizu product and exterior product.

Again for a symmetric (0, 2)-tensor A and X,Y ∈ χ(M) we can define the
C∞(M)-linear endomorphisms A and X ∧A Y on χ(M) respectively as

g(A X,Y ) = A(X,Y ) and (X ∧A Y )X1 = A(Y,X1)X −A(X,X1)Y.

The second level (0,2)-tensor A2 with corresponding endomorphism A 2 for
a symmetric (0, 2)-tensor A is defined as

A2(X,Y ) = A(A X,Y ) = g(A 2X,Y ).

In particular, the second level Ricci tensor S2 is given by

S2(X,Y ) = S(SX,Y ),

where S is the Ricci operator such that S(X,Y ) = g(SX,Y ).
In terms of the Kulkarni-Nomizu product and ∧A, the Weyl conformal cur-

vature tensor C (for n ≥ 4), the projective curvature tensor P , the concircular
curvature tensor W and the conharmonic curvature tensor K are respectively
given by

C = R− 1

n− 2
g ∧ S +

κ

2(n− 1)(n− 2)
g ∧ g,

P = R− 1

n− 1
(∧S),

W = R− κ

2n(n− 1)
g ∧ g and
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K = R− 1

n− 2
g ∧ S.

Now for D ∈ T 0
4 (M) and given X,Y ∈ χ(M), the C∞(M)-linear endomor-

phism D(X,Y ) is defined as

D(X,Y )X3 = D(X,Y )X3,

where D ∈ T 1
3 (M) such that g(D(X1, X2)X3, X4) = D(X1, X2, X3, X4). We

note that one can easily operate a C∞(M)-linear endomorphism L on T ∈
T 0
k (M) as

(L T )(X1, X2, · · · , Xk) =− T (LX1, X2, · · · , Xk)− · · ·
− T (X1, X2, · · · ,LXk).

In particular, for the endomorphisms D(X,Y ) andX∧AY , the (0, k+2)-tensors
D · T and Q(A, T ) are respectively given as

D · T (X1, X2, · · · , Xk, X, Y ) = (D(X,Y )T )(X1, X2, · · · , Xk)

= −T (D(X,Y )X1, X2, · · · , Xk)− · · · − T (X1, X2, · · · ,D(X,Y )Xk)

and

Q(A, T )(X1, X2, · · · , Xk, X, Y ) = ((X ∧A Y )T )(X1, X2, · · · , Xk)

= A(X,X1)T (Y,X2, · · · , Xk) + · · ·+A(X,Xk)T (X1, X2, · · · , Y )

−A(Y,X1)T (X,X2, · · · , Xk)− · · · −A(Y,Xk)T (X1, X2, · · · , X).

Again for A ∈ T 0
2 (M) and T ∈ T 0

k (M), A ∧ T and ∧T (see [7, 31], and also
references therein) are respectively given by

(A ∧ T )(X1, X2, Y1, Y2, · · · , Yk) =A(X1, Y2)T (X2, Y1, · · · , Yk)

+A(X2, Y1)T (X1, Y2, · · · , Yk)

−A(X1, Y1)T (X2, Y2, · · · , Yk)

−A(X2, Y2)T (X1, Y1, · · · , Yk),

(X ∧T Y )(X1, X2, · · · , Xk) =T (Y,X1, X3, · · ·Xk)g(X,X2)

− T (X,X1, X3, · · ·Xk)g(Y,X2).

From the above expressions we can state the following:

Proposition 2.1. For A ∈ T 0
2 (M) and D ∈ T 0

4 (M), the following conditions
hold:

(i) ∇(X ∧A Y ) = X ∧∇A Y and ∇(g ∧A) = g ∧ (∇A),
(ii) D · (X ∧A Y ) = X ∧D·A Y and D · (g ∧A) = g ∧ (D ·A) if D · g = 0.

Definition 2.2. A semi-Riemannian manifold M is said to be Einstein (resp.
Ein(2)) (see [31], and also references therein) if

S =
κ

n
g (resp. a1S

2 + a2S + a3g = 0),
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where a1, a2, a3 ∈ C∞(M). Moreover if a1 ̸= 0, then an Ein(2) manifold is
called proper.

Definition 2.3. A semi-Riemannian manifold M is said to be quasi-Einstein
if

(2.2) S = αg + βη ⊗ η

holds for some α, β ∈ C∞(M) and η ∈ χ∗(M). Especially, if α is identi-
cally zero, then the manifold is called Ricci simple (see [8] and also references
therein).

Quasi-Einstein manifolds arose during the study of exact solutions of the
Einstein field equations and the investigation on quasi-umbilical hypersurfaces
of conformally flat spaces, see, [8], and references therein. It is clear that every
non-Einstein quasi-Einstein manifold is a proper Ein(2) manifold [17, p. 600].

Definition 2.4. For T ∈ T 0
k (M), a semi-Riemannian manifold M is said to

be T -recurrent ([25–27]) if

(2.3) ∇T = Π⊗ T

holds on {x ∈ M : T ̸= 0 at x} for an 1-form Π, called the associated 1-form. If
T = R (resp. S) then the manifold is called recurrent (resp. Ricci recurrent).

Proposition 2.5. For A ∈ T 0
2 (M) and Π ∈ χ∗(M), we have

(i) ∇(X ∧A Y ) = Π⊗ (X ∧A Y ) if and only if ∇A = Π⊗A and
(ii) ∇(g ∧A) = Π⊗ (g ∧A) if and only if ∇A = Π⊗A.

Proposition 2.6. In a semi-Riemannian manifold M , ∇(S−ακg) = Π⊗(S−
ακg) if and only if ∇S = Π⊗S, where Π ∈ χ∗(M) and α ( ̸= 1

n ) is a constant.

Definition 2.7. For T ∈ T 0
4 (M), a semi-Riemannian manifold M is said to

be T -quasi generalized recurrent with (Π,Ψ, η) [34] (resp. T -hyper generalized
recurrent with (Π,Ψ) [33], T -weakly generalized recurrent with (Π,Ψ) [35]) if

(2.4) ∇T = Π⊗ T +Ψ⊗ [g ∧ (g + η ⊗ η)] ,

(resp.

(2.5) ∇T = Π⊗ T +Ψ⊗ g ∧ S,

(2.6) ∇T = Π⊗ T +Ψ⊗ S ∧ S)

holds on {x ∈ M : T ̸= 0 and g ∧ (g + η ⊗ η) ̸= 0 at x} (resp. {x ∈ M : T ̸=
0 and g ∧ S ̸= 0 at x}, {x ∈ M : T ̸= 0 and S ∧ S ̸= 0 at x}) for some Π, Ψ,
η ∈ χ∗(M), called the associated 1-forms. If T = R then the manifold is called
(QGK)n (resp. (HGK)n, (WGK)n).
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We note that for α = β, a quasi-Einstein manifold is (WGK)n if and only
if it is (QGK)n, and for 2α = β, a quasi-Einstein manifold is (HGK)n if and
only if it is (QGK)n. We also note that the condition (2.6), in some particular
form (T = R), was already presented in [24, p. 626]. Precisely, in that paper
the following equation was obtained

κRhijk,l = −κΦlRhijk + 4Φl(ShkSij − ShjSik).

Definition 2.8. For T ∈ T 0
4 (M), a semi-Riemannian manifold M is said to

be T -super generalized recurrent manifold [30] if

(2.7) ∇T = Π⊗ T +Φ⊗ S ∧ S +Ψ⊗ g ∧ S +Θ⊗ g ∧ g

holds on {x ∈ M : T ̸= 0 and any one of S ∧ S, g ∧ S is non-zero at x} for
some 1-forms Π, Φ, Ψ and Θ, called the associated 1-forms. Such a manifold is
denoted by TSGKn with (Π,Φ,Ψ,Θ). Especially, if T = R, then the manifold
is said to be (SGK)n.

Definition 2.9. For T ∈ T 0
4 (M), a semi-Riemannian manifold M is said to

be T -quasi generalized recurrent with (Π,Φ,Ψ, η) if

∇T = Π⊗ T +Φ⊗ g ∧ g +Ψ⊗ g ∧ (η ⊗ η)

holds on {x ∈ M : T ̸= 0 and g ∧ (η ⊗ η) is non-zero at x} for some 1-forms
Π, Φ, Ψ and η, called the associated 1-forms. Such a manifold is denoted by
TQGKn with (Π,Φ,Ψ).

Definition 2.10. For Z ∈ T 0
2 (M), a semi-Riemannian manifold M is said to

be generalized Z-recurrent manifold [4] (briefly, GZKn) if

(2.8) ∇Z = Π⊗ Z +Φ⊗ g

holds on {x ∈ M : ∇Z ̸= ξ ⊗ Z at x ∀ ξ ∈ χ∗(M)} ⊂ M for some Π and
Φ ∈ χ∗(M), called the associated 1-forms. In particular, if Z = S, the manifold
is called generalized Ricci-recurrent [4].

Definition 2.11. For T ∈ T 0
k (M), a semi-Riemannian manifold M is said to

be T -semisymmetric (briefly, TSSn) ([2, 37]) if

R · T = 0.

If we take T = R (resp. S), then the manifold is called semisymmetric (resp.
Ricci semisymmetric).

Definition 2.12. A semi-Riemannian manifold M is said to be Roter type
(briefly, RTn) ([5, 6, 8]) if its curvature tensor R can be expressed as

(2.9) R = N1 g ∧ g +N2 g ∧ S +N3 S ∧ S,

for some N1, N2 and N3 ∈ C∞(M). Moreover it is said to be proper RTn if
N3 ̸= 0.
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We mention that the notion of generalized Roter type manifold and its
warped product is studied in [29, 31, 32]. We note that the condition (2.9),
in some particular form, i.e.,

Rhijk =
2

κ
(ShkSij − ShjSik)

was already presented in [24, p. 625]. Curvature properties of semi-Riemannian
manifolds satisfying the condition Rhijk = Φ(ShkSij − ShjSik) were obtained
in [18].

3. Main results

Let M be a (SGK)n with (Π,Φ,Ψ,Θ). Then we have

(3.1) ∇R = Π⊗R+Φ⊗ S ∧ S +Ψ⊗ g ∧ S +Θ⊗ g ∧ g.

Contraction of (3.1) yields

(3.2) ∇S = Π1 ⊗ S2 +Φ1 ⊗ S +Ψ1 ⊗ g,

where Π1 = −2Φ, Φ1 = Π+ 2κΦ+ (n− 2)Ψ and Ψ1 = κΨ+ 2(n− 1)Θ.

Theorem 3.1. The associated 1-forms of a (SGK)n are not unique.

Proof. The second Bianchi identity is given by

(∇X1R)(X2, X3, X4, X5)+(∇X2R)(X3, X1, X4, X5)

+ (∇X3
R)(X1, X2, X4, X5) = 0.

In view of (3.1), the above identity entails

∑
X1,X2,X3

[
Π(X1)R(X2, X3, X4, X5) + Φ(X1)(S ∧ S)(X2, X3, X4, X5)

(3.3)

+ Ψ(X1)(g ∧ S)(X2, X3, X4, X5) + Θ(X1)(g ∧ g)(X2, X3, X4, X5)
]
= 0,

where
∑

X1,X2,X3

denotes the cyclic sum in X1, X2 and X3. Now contracting (3.3)

over X1 and X5, we get

−R(V,X4, X2, X3) + {κΨ(X3)−Ψ(S(X3)) + 2(n− 2)Θ(X3)}g(X2, X4)

+ {−κΨ(X2) + Ψ(S(X2))− 2(n− 2)Θ(X2)}g(X3, X4)

+ {Π(X3) + 2κΦ(X3)− 2Φ(S(X3)) + (n− 3)Ψ(X3)}S(X2, X4)

+ {−Π(X2)− 2κΦ(X2) + 2Φ(S(X2))− (n− 3)Ψ(X2)}S(X3, X4)

− 2Φ(X3)S
2(X2, X4) + 2Φ(X2)S

2(X3, X4) = 0,
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where V is the vector field corresponding to Π, i.e., g(V,X) = Π(X) for all
X ∈ χ(M). Again, contracting over X3 and X4, we obtain

− κΠ(X2) + 2
[
Π(S(X2)) + (κ(2) − κ2)Φ(X2) + 2κΦ(S(X2))

− 2Φ(S2(X2))− (n− 2){κΨ(X2)−Ψ(S(X2)) + (n− 1)Θ(X2)}
]
= 0,

where κ(2) is the trace of S2. The result follows from the last relation. □

Remark 3.2. We note that the associated 1-forms of a conformally (n ≥ 4)
(resp. projectively, concircularly, conharmonicly) (SGK)n are not unique.

Theorem 3.3. If M is a (SGK)n with (Π,Φ,Ψ,Θ), then its associated 1-forms
are linearly dependent with dκ such that

dκ = κΠ+ 2(κ2 − κ(2))Φ + 2(n− 1)[κΨ+ nΘ].

Proof. From (3.1) we have

(∇XS)(X1, X2) =(κΨ+ 2(n− 1)Θ)(X)g(X1, X2)− 2Φ(X)S2(X1, X2)

+ (Π + 2κΦ+ (n− 2)Ψ)(X)S(X1, X2).

Again contracting the above equation overX1 andX2, we obtain the result. □

Theorem 3.4. An Einstein (SGK)n with (Π,Φ,Ψ,Θ) is a Kn and the relation
κ2

n2Φ+ κ
nΨ+Θ = 0 holds.

Proof. Since the manifold is Einstein, we have S = κ
ng and hence (3.1) reduces

to

∇R = Π⊗R+

[
κ2

n2
Φ+

κ

n
Ψ+Θ

]
⊗ g ∧ g.

Again in [22] Olszak and Olszak showed that for any semi-Riemannian manifold
satisfying such curvature condition, the coefficient of g ∧ g is zero. Hence the

manifold turns into a Kn and κ2

n2Φ+ κ
nΨ+Θ = 0 holds. □

Theorem 3.5. Let M be a (SGK)n with (Π,Φ,Ψ,Θ). If M is quasi-Einstein,
then it is a (QGK)n with (Π, α2Φ + αΨ + Θ, 2αβΦ + βΨ, η). Moreover M is
(QGK)n if

α2Φ+ αΨ+Θ = γ(2αβΦ+ βΨ),

where γ is a positive smooth function on M .

Proof. The proof is similar to the proof of the Theorem 3.4. □

We mention that the existence of a quasi-Einstein manifold which is (QGK)4
is given in Example 4.3 of this paper.

Theorem 3.6. If M is a (SGK)n with (Π,Φ,Ψ,Θ) and its associated 1-forms
are closed and pairwise codirectional, then it is a semisymmetric manifold.
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Proof. From (3.1) we have

∇XR = Π(X)⊗R+Φ(X)⊗ S ∧ S +Ψ(X)⊗ g ∧ S +Θ(X)⊗ g ∧ g.

Differentiating the above equation covariantly with respect to Y , we get

∇Y (∇XR) = (∇Y Π)(X)R+ (∇Y Φ)(X)S ∧ S

+ (∇Y Ψ)(X)g ∧ S + (∇Y Θ)(X)g ∧ g

+ [Π(X)Ψ(Y ) + Ψ(X)Φ1(Y ) + 2Φ(X)Ψ1(Y )] g ∧ S

+Π(X)Π(Y )R+Ψ(X)Π1(Y )g ∧ S2 + [Π(X)Θ(Y ) + Ψ(X)Ψ1(Y )] g ∧ g

+ 2Φ(X)Π1(Y )S ∧ S2 + [Π(X)Φ(Y ) + 2Φ(X)Φ1(Y )]S ∧ S.

In view of the last relation we get

R(X,Y ) ·R = ∇X(∇Y R)−∇Y (∇XR)

= dΠ(X,Y )R+ 2 [Φ(Y )Ψ(X)− Φ(X)Ψ(Y )] g ∧ S2

+
[
dΦ(X,Y ) + Φ(Y )(Π(X) + 2(n− 2)Ψ(X))

− Φ(X)(Π(Y ) + 2(n− 2)Ψ(Y ))
]
S ∧ S

+ [dΨ(X,Y )− 4(n− 1) (Θ(Y )Φ(X)−Θ(X)Φ(Y ))] g ∧ S

+
[
dΘ(X,Y )−Θ(Y )(Π(X) + 2(n− 1)Ψ(X))

+ Θ(X)(Π(Y ) + 2(n− 1)Ψ(Y ))
]
g ∧ g.

Thus we have

R ·R =dΠR− 4(Φ ∧Ψ)g ∧ S2 + [dΦ− 2Φ ∧ (Π− 2(n− 2)Ψ)]S ∧ S(3.4)

+[dΨ− 8(n− 1)Φ ∧Θ]g ∧ S + [dΘ− 2Θ ∧ (Π + 2(n− 1)Ψ)]g ∧ g

and hence the theorem is proved. □

Proposition 3.7. A (SGK)n with (Π,Φ,Ψ,Θ) is a generalized Ricci-recurrent
manifold if and only if Φ = 0 or it is a proper Ein(2) manifold.

Proof. The result follows from (3.2). □

Theorem 3.8. Let M be a proper RTn. Then the following statements are
equivalent:

(i) M is a (SGK)n.
(ii) M is a generalized Ricci-recurrent manifold.

Proof. Since M is a proper RTn, it is a proper Ein(2) manifold [31]. Now if
M is a (SGK)n, then by Proposition 3.7, it is a generalized Ricci-recurrent
manifold and hence (ii)⇒ (i).

Now differentiating (2.9) covariantly and then using the defining condition
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of generalized Ricci-recurrent manifold, it is easy to check that M is a (SGK)n.
Hence (ii)⇒ (i). □

By using Proposition 2.5, we can easily state the following:

Theorem 3.9. Let M be a (SGK)n with (Π,Φ,Ψ,Θ). If M is generalized
Ricci-recurrent with associated 1-forms Π and Φ, then it is

(i) projectively (SGK)n with
(
Π,Φ,Ψ,Θ− Φ

2(n−2)

)
for Π = Π,

(ii) concircularly (SGK)n with
(
Π,Φ,Ψ,Θ− κΠ+nΦ−κΠ

2n(n−1)

)
,

(iii) conharmonicly (SGK)n with
(
Π,Φ,Ψ− Π−Π

n−2 ,Θ− Φ
n−2

)
,

(iv) conformally (SGK)n with
(
Π,Φ,Ψ− Π−Π

n−2 ,Θ− Φ
n−2 + κΠ+nΦ−κΠ

2(n−1)(n−2)

)
for

n ≥ 4.

From definition, we can state the following:

Proposition 3.10. Let T ∈ T 0
4 (M). If ∇(T−R) = Π⊗(T−R), then (TSGK)n

with (Π,Φ,Ψ,Θ) and (SGK)n with (Π,Φ,Ψ,Θ) are equivalent. Conversely, if
M is a (TSGK)n and (SGK)n with (Π,Φ,Ψ,Θ), then ∇(T−R) = Π⊗(T−R).

Corollary 3.11. If M is a (SGK)n with (Π,Φ,Ψ,Θ), then it is

(i) conformally (SGK)n (n ≥ 4) with (Π,Φ,Ψ,Θ) if and only if it is Ricci
recurrent with Π as its 1-form of recurrence.

(ii) projectively (SGK)n with (Π,Φ,Ψ,Θ) if and only if it is Ricci recurrent
with Π as its 1-form of recurrence.

(iii) concircularly (SGK)n with (Π,Φ,Ψ,Θ) if and only if dκ = κΠ.
(iv) conharmonicly (SGK)n with (Π,Φ,Ψ,Θ) if and only if it is Ricci re-

current with Π as its 1-form of recurrence.

Proof. From Proposition 3.10 and Proposition 2.5, it follows that M is confor-
mally (SGK)n (n ≥ 4) if and only if (S − 2κ

n−1g) is recurrent with associated

1-form Π. Again from Proposition 2.6, (S− 2κ
n−1g) is recurrent with associated

1-form Π if and only if M is Ricci recurrent with associated 1-form Π. Hence
(i) is proved.

Again from Proposition 3.10, M is projectively (SGK)n if and only if
1

n−2X ∧S Y is recurrent, or S is recurrent (by Proposition 2.5) and hence

(ii) is proved.
Similarly (iii) and (iv) can be proved. □

4. Examples

Example 4.1. Let M = {(x1, x2, x3, x4) ∈ R4 : x1, x2, x3, x4 > 0} be an open
connected subset of R4 such that

f2
1 − f2

2 > 0,
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where f1 =
(
x3 + x4

)
(x1)2(x2)2 and f2 =

(
x1 + x2

)
(x3)2(x4)2. We note that

if x1 > x3 and x2 > x4, then

f1 − f2 =

(
x3 + x4

(x3x4)2
− x1 + x2

(x1x2)2

)(
x1x2x3x4

)2
=

(
1

x3x4

(
1

x3
+

1

x4

)
− 1

x1x2

(
1

x1
+

1

x2

))
(det(g))2 > 0.

Let M be endowed with the Riemannian metric g given by

(4.1) ds2 = gijdx
idxj = x2(dx1)2 + x1(dx2)2 + x4(dx3)2 + x3(dx4)2.

The non-zero components (up to symmetry) of the Riemann-Christoffel curva-
ture tensor R, the Ricci tensor S and the scalar curvature κ are given by

R1212 =
1

4

(
1

x2
+

1

x1

)
, R3434 =

1

4

(
1

x4
+

1

x3

)
and

S11 = µ1g11, S22 = µ1g22, µ1 = − (x1 + x2)(x3x4)2

4 (x1x2x3x4)
2 = − f2

4(det(g))2
,

S33 = µ2g33, S44 = µ2g44, µ2 = − (x3 + x4)(x1x2)2

4 (x1x2x3x4)
2 = − f1

4(det(g))2
,

κ = ghkShk = 2(µ1 + µ2) = − f1 + f2

2 (x1x2x3x4)
2 = − f1 + f2

2(det(g))2
.

From the main results of [37] it follows that M is semisymmetric manifold.
Evidently, M is a 2-quasi-Einstein manifold. We refer to [9, 10] and [11] for
recent results on 2-quasi-Einstein manifolds. Again the non-zero components
(up to symmetry) of ∇R and ∇S are given as

R1212,1 = −
x1

x2 + 2

4(x1)2
, R1212,2 = −

x2

x1 + 2

4(x2)2
,

R3434,3 = −
x3

x4 + 2

4(x3)2
, R3434,4 = −

x4

x3 + 2

4(x4)2
and

S11,1 =
x1 + 2x2

4(x1)3x2
, S11,2 =

2x1 + x2

4(x1)2(x2)2
, S22,1 =

x1 + 2x2

4(x1)2(x2)2
,

S22,2 =
2x1 + x2

4x1(x2)3
, S33,3 =

x3 + 2x4

4(x3)3x4
,

S33,4 =
2x3 + x4

4(x3)2(x4)2
, S44,3 =

x3 + 2x4

4(x3)2(x4)2
, S44,4 =

2x3 + x4

4x3(x4)3
.

Also the non-zero components (up to symmetry) of g ∧ g, g ∧ S and S ∧ S are
given by

(g ∧ g)1212 = −2x1x2, (g ∧ g)1313 = −2x2x4, (g ∧ g)1414 = −2x2x3,
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(g ∧ g)2323 = −2x1x4, (g ∧ g)2424 = −2x1x3, (g ∧ g)3434 = −2x3x4;

(g ∧ S)1212 =
1

2

(
1

x2
+

1

x1

)
, (g ∧ S)1313 =

f1 + f2
4(x1)2x2(x3)2x4

,

(g ∧ S)1414 =
f1 + f2

4x1(x2)2(x3)2x4
, (g ∧ S)2323 =

f1 + f2
4(x1)2x2x3(x4)2

,

(g ∧ S)2424 =
f1 + f2

4x1(x2)2x3(x4)2
, (g ∧ S)3434 =

1

2

(
1

x4
+

1

x3

)
and

(S ∧ S)1212 = −
(
x1 + x2

)2
8(x1)3(x2)3

, (S ∧ S)1313 = −
(
x1 + x2

) (
x3 + x4

)
8(x1)2x2(x3)2x4

,

(S ∧ S)1414 = −
(
x1 + x2

) (
x3 + x4

)
8(x1)2x2x3(x4)2

, (S ∧ S)2323 = −
(
x1 + x2

) (
x3 + x4

)
8x1(x2)2(x3)2x4

,

(S ∧ S)2424 = −
(
x1 + x2

) (
x3 + x4

)
8x1(x2)2x3(x4)2

, (S ∧ S)3434 = −
(
x3 + x4

)2
8(x3)3(x4)3

.

Then it is easy to check that the manifold M is a (SGK)4 with (Π,Φ,Ψ,Θ),
where Π, Φ, Ψ and Θ are given by

(4.2) Πi =



8Θ1(f1−f2)
2−x1(x2)2(x1+2x2)(x3+x4)

2

(x1+x2)(x3+x4)(f1+f2)
for i = 1

8Θ2(f1−f2)
2−(x1)2x2(2x1+x2)(x3+x4)

2

(x1+x2)(x3+x4)(f1+f2)
for i = 2

8Θ3(f1−f2)
2−(x1+x2)

2
x3(x4)2(x3+2x4)

(x1+x2)(x3+x4)(f1+f2)
for i = 3

8Θ4(f1−f2)
2−(x1+x2)

2
(x3)2x4(2x3+x4)

(x1+x2)(x3+x4)(f1+f2)
for i = 4,

(4.3) Φi =



2x1(x2)2(x3)2(x4)2
(

8Θ1x1

x3+x4 − x1+2x2

(f1−f2)

)
x1+x2 for i = 1

2(x1)2x2(x3)2(x4)2
(

8Θ2x2

x3+x4 − 2x1+x2

(f1−f2)

)
x1+x2 for i = 2

2(x1)2(x2)2x3(x4)2
(

8Θ3x3

x1+x2 + x3+2x4

(f1−f2)

)
x3+x4 for i = 3

2(x1)2(x2)2(x3)2x4

(
8Θ4x4

x1+x2 + 2x3+x4

(f1−f2)

)
x3+x4 for i = 4,

(4.4) Ψi =



x1(x2x3x4)2[16Θ1x
1(f1−f2)−(x1+2x2)(x3+x4)]
f2
1−f2

2
for i = 1

x2(x1x3x4)2[16Θ2x
2(f1−f2)−(2x1+x2)(x3+x4)]
f2
1−f2

2
for i = 2

x3(x1x2x4)2[16Θ3x
3(f1−f2)+(x1+x2)(x3+2x4)]
f2
1−f2

2
for i = 3

x4(x1x2x3)2[16Θ4x
4(f1−f2)+(x1+x2)(2x3+x4)]
f2
1−f2

2
for i = 4.

We note that the associated 1-forms of such (SGK)4 are not unique (hence
Theorem 3.1 is verified). We also note that the manifold is neither hyper
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generalized recurrent nor weakly generalized recurrent. Since the metric g is the
Cartesian product of two 2-dimensional metrics, the main results of [37] states
that M is a semisymmetric manifold. Moreover, in view of Proposition 3.4
of [16], M is a Roter type manifold. The last conclusion, is also an immediate
consequence of the considerations presented in [12] (p. 12 and Theorem 4.1).

Using the local components of R, g∧ g, g∧S and S ∧S, we can easily check
that the manifold fulfills (2.9) and hence is a Roter type manifold, where

N1 = −
(
x1 + x2

) (
x3 + x4

)
(f1 + f2)

8(f1 − f2)2
= − f1f2(f1 + f2)

8(f1 − f2)2(det(g))2
,

N2 = −
2(x1)2(x2)2

(
x1 + x2

)
(x3)2(x4)2

(
x3 + x4

)
(f1 − f2)2

= − 2f1f2
8(f1 − f2)2

,

N3 = −2(x1)2(x2)2(x3)2(x4)2(f1 + f2)

(f1 − f2)2
= −2(f1 + f2)(det(g))

2

(f1 − f2)2
.

Consequently in view of Theorem 3.8, the manifold is generalized Ricci-recurrent
satisfying

∇S = Π⊗ S +Φ⊗ g,

where Π and Φ are given by

(4.5) Πi =



(x1+2x2)(x3)2(x4)2

x1(f1−f2)
for i = 1

(2x1+x2)(x3)2(x4)2

x2(f1−f2)
for i = 2

(x1)2(x2)2(x3+2x4)
−x3(f1−f2)

for i = 3
(x1)2(x2)2(2x3+x4)

−x4(f1−f2)
for i = 4,

(4.6) Φi =



(x1+2x2)(x3+x4)
4x1(f1−f2)

for i = 1

(2x1+x2)(x3+x4)
4x2(f1−f2)

for i = 2

(x1+x2)(x3+2x4)
−4x3(f1−f2)

for i = 3

(x1+x2)(2x3+x4)
−4x4(f1−f2)

for i = 4.

Also it is easy to check that the manifold under consideration is semisym-
metric. Again, M is not Ricci recurrent but generalized Ricci-recurrent and
(SGK)4. Hence by Theorem 3.9, it is conformally, concircularly and conhar-
monicly (SGK)4 with distinct associated 1-forms.

Remark 4.2. If we consider the following metrics

ds2 = x2(dx1)2 + x1(dx2)2 + x4(dx3)2 − x3(dx4)2,

ds2 = x2(dx1)2 + x1(dx2)2 − x4(dx3)2 − x3(dx4)2 and
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ds2 = x2(dx1)2 − x1(dx2)2 + x4(dx3)2 − x3(dx4)2

on a suitable open connected subset of R4, then it can be easily seen that all
the above results are true.

Example 4.3 ([36]). Let M be an open connected subset of R4 such that
x1, x2, x3, x4 > 0, endowed with the Riemannian metric

(4.7) ds2 = gijdx
idxj = ex

1+x3

(dx1)2 + 2dx1dx2 + (dx3)2 + ex
1

(dx4)2.

Then the non-zero components (up to symmetry) of the Riemann-Christoffel
curvature tensor R and the Ricci tensor S are given by

R1313 = −1

2
ex

1+x3

, R1414 = −ex
1

4
,

S11 =
1(1 + 2ex

1+x3

)

4ex1+x3 g11.

The scalar curvature of this metric κ = 0. Again the non-zero components (up
to symmetry) of ∇R and ∇S are given by:

R1313,1 = −ex
1+x3

2
= R1313,3, S11,1 = S13,3 = −ex

1+x3

2
.

Using the local components of R, ∇R, g and S, we can easily check that the
manifold is Ricci simple satisfying

S = η ⊗ η

for

ηi(x) =

{
− 1

2

√
1 + 2ex1+x3 for i = 1

0 otherwise.

Evidently, any Ricci simple manifold is a quasi-Einstein manifold. Again it is
easy to check that the manifold is a (QGK)4 with (Π,Φ,Ψ, η) for Φ ≡ 0,

(4.8) Πi(x) =

{
− 2ex

1+x3

1−2ex1+x3 for i = 1, 3

0 otherwise,

and

(4.9) Ψi(x) =

{
2ex

1+x3

1−4e2x1+2x3 for i = 1, 3

0 otherwise.
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Conclusion

In the present paper we introduce a generalized class of recurrent manifolds,
named, super generalized recurrent manifold and also study the curvature prop-
erties of such a manifold. It is shown that its associated 1-forms are not unique,
and they are linearly dependent with dκ. It is also shown that if the associated
1-forms are closed and pairwise codirectional, then a (SGK)n is semisymmet-
ric. It is proved that an Einstein (SGK)n is a Kn. Also we obtain a sufficient
condition (namely, Roter type condition) for the equivalency of a (SGK)n and
a generalized Ricci-recurrent manifold. Finally the existence of a (SGK)4 is
given by a non-trivial example. Also an example of a quasi-Einstein (QGK)4
is given.
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Budapest Rolando Eötvös, Sect. Math. 54 (2011) 35–45.

[36] A.A. Shaikh, I. Roy and H. Kundu, On the existence of a generalized class of recurrent
manifolds, Arxiv:1504.02534v1 [math.DG].



1225 Shaikh, Roy and Kundu
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