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n-HOMOMORPHISMS

S. HEJAZIAN, M. MIRZAVAZIRI AND M. S. MOSLEHIAN*

Communicated by Heydar Radjavi

Abstract. Let A and B be two (complex) algebras. A linear

map ϕ : A → B is called an n-homomorphism if ϕ(a1 . . . an) =

ϕ(a1) . . . ϕ(an) for each a1, . . . , an ∈ A. In this paper, we in-

vestigate n-homomorphisms and their relation to homomor-

phisms. We characterize n-homomorphisms in terms of homo-

morphisms under certain conditions. Some results related to

continuity and commutativity are given as well.

1. Introduction

Let A and B be two algebras. A linear mapping ϕ : A → B is

called an n-homomorphism if ϕ(a1 . . . an) = ϕ(a1) . . . ϕ(an) for each

a1, . . . , an ∈ A. A 2-homomorphism is then a homomorphism, in

the usual sense, between algebras.
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For a homomorphism ϕ : A → B we can see that ϕ(a1 . . . an) =

ϕ(a1) . . . ϕ(an) for each a1, . . . , an ∈ A and for each n. The converse

is not true (see Example 2.1).

In this paper we examine the relationship between

notions of n-homomorphism and homomorphism. We investigate

n-homomorphisms which preserve commutativity under some con-

ditions and study n-homomorphisms on Banach algebras.

Throughout the paper, all Banach algebras are assumed to be

over the complex field C.

2. Relationship Between n-Homomorphisms and

Homomorphisms

We begin this section with a typical example:

Example 2.1. Let A be a unital algebra, a0 be a central element of

A with an
0 = a0 for some natural number n (for example an (n−1)-

root of the unit in C) and let θ : A → A be a homomorphism.

Define ϕ : A → A by ϕ(a) = a0θ(a). Then we have

ϕ(a1 . . . an) = a0θ(a1 . . . an)

= an
0θ(a1) . . . θ(an)

= a0θ(a1) . . . a0θ(an)

= ϕ(a1) . . . ϕ(an).

Hence ϕ is an n-homomorphism. In addition, a0 = ϕ(1A) when-

ever θ is onto.

The above example gives us an n-homomorphism as a multiple

of a homomorphism. Indeed, if A has the identity 1A then each n-

homomorphism is of this form, where a0 = ϕ(1A) as the following

proposition shows.
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Proposition 2.2. Let A be a unital algebra with identity 1A, B be

an algebra and ϕ : A → B be an n-homomorphism. If ψ : A → B is

defined by ψ(a) = (ϕ(1A))n−2ϕ(a) then ψ is a homomorphism and

ϕ(a) = ϕ(1A)ψ(a).

Proof. We have

ϕ(1A) = ϕ(1n
A) = (ϕ(1A))n,

and

ψ(ab) = (ϕ(1A))n−2ϕ(ab)

= (ϕ(1A))n−2ϕ(a1n−2
A b)

= (ϕ(1A))n−2ϕ(a)(ϕ(1A))n−2ϕ(b)

= ψ(a)ψ(b).

It follows from (ϕ(1A))n−1ϕ(a) = ϕ(1n−1
A a) = ϕ(a) that (ϕ(1A))n−1

is an identity for ϕ(A). Thus

ϕ(1A)ψ(a) = ϕ(1A)((ϕ(1A))n−2ϕ(a))

= (ϕ(1A))n−1ϕ(a)

= ϕ(a). �

Whence we characterized all n-homomorphisms on a unital alge-

bra. For a non-unital algebra A we use the unitization and some

other useful constructions. Recall that for an algebra A, the linear

space A1 = A ⊕ C = {(a, α)|a ∈ A, α ∈ C} equipped with the

multiplication (a, α)(b, β) = (ab+αb+ βa, αβ), so-called the uniti-

zation of A, is a unital algebra with identity (0, 1) containing A as

a two-sided ideal.
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Now we shall prove that each n-homomorphism is a multiple of

a homomorphism under some conditions.

Definition 2.3. An algebra A is called a factorizable algebra if for

each a ∈ A there are b, c ∈ A such that a = bc.

Theorem 2.4. Let A and B be two factorizable algebras, lan(B) =

{b ∈ B; bB = 0} = {0} and ϕ : A → B an onto n-homomorphism.

Then kerϕ is a two-sided ideal of A and there is a unital algebra

B̃ ⊇ B and an x ∈ B̃ with xn−1 = 1B̃ such that ψ : A → B̃ defined

by ψ(a) = xn−2ϕ(a) is a homomorphism.

Proof. Suppose that a ∈ kerϕ and u ∈ A. Since A is a factorizable

algebra there are u1, . . . un−1 ∈ A such that u = u1 . . . un−1. Hence

ϕ(au) = ϕ(au1 . . . un−1) = ϕ(a)ϕ(u1) . . . ϕ(un−1) = 0.

Therefore au ∈ kerϕ. Similarly ua ∈ kerϕ.

Let B̃ = {b◦+β1x+. . .+βn−2x
n−2; b◦ ∈ B1, and β1, . . . , βn−2 ∈ C}

as a subset of the algebra B1[x] of all polynomials in x with coeffi-

cients in the unitization B1 of B. Using the ordinary multiplication

of polynomials, we define a multiplication on B̃ by xn−1 = 1 and

bx = ϕ(a1)ϕ(a2) where b = ϕ(a) = ϕ(a1a2) and a = a1a2 ∈ A. We

show that the multiplication is well-defined.

Let b = d ∈ B and b = ϕ(a) = ϕ(a1a2), d = ϕ(c) = ϕ(c1c2)

with a = a1a2, c = c1c2 ∈ A. Then we have ϕ(a1a2) = ϕ(c1c2). So

ϕ(a1a2)b2 . . . bn = ϕ(c1c2)b2 . . . bn for all b2 . . . bn ∈ B. Since ϕ is

onto, there exist u2 . . . un ∈ A such that ϕ(ui) = bi. We can then



n-Homomorphisms 17

write

ϕ(a1)ϕ(a2)ϕ(u2) . . . ϕ(un−2)ϕ(un−1un)

= ϕ(a1a2u2 . . . un−1un)

= ϕ(a1a2)ϕ(u2) . . . ϕ(un−1)ϕ(un)

= ϕ(c1c2)ϕ(u2) . . . ϕ(un−1)ϕ(un)

= ϕ(c1c2u2 . . . un−1un)

= ϕ(c1)ϕ(c2)ϕ(u2) . . . ϕ(un−2)ϕ(un−1un).

This implies that ϕ(a1)ϕ(a2)b = ϕ(c1)ϕ(c2)b for each b ∈ B, since

B is a factorizable algebra. Hence (ϕ(a1)ϕ(a2)−ϕ(c1)ϕ(c2))B = 0.

Since lan(B) = {0}, we conclude that ϕ(a1)ϕ(a2) = ϕ(c1)ϕ(c2).

In particular, ϕ(a)ϕ(b)xn−2 = ϕ(ab) for all a, b ∈ A. Note that

associativity of our multiplication is inherited from that of multi-

plication of polynomials.

We can inductively prove that ϕ(a1) . . . ϕ(am)xn−m = ϕ(a1 . . . am)

for all m ≥ 2. To show this, suppose that it holds for m ≥ 2 and

am+1 ∈ A. Then

ϕ(a1) . . . ϕ(am−1)ϕ(am)ϕ(am+1)x
n−m−1

= ϕ(a1) . . . ϕ(am−1)ϕ(am)ϕ(am+1)x
n−(m+1)xn−1

= ϕ(a1) . . . ϕ(am−1)(ϕ(am)ϕ(am+1)x
n−2)xn−m

= ϕ(a1) . . . ϕ(am−1)ϕ(amam+1)x
n−m

= ϕ(a1 . . . am−1amam+1).
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Now define ϕ̃ : A1 → B̃ by ϕ̃(a, α) = ϕ(a) + αx for each (a, α) ∈
A1. Then for each (a1, α1), . . . , (an, αn) ∈ A1 we have

ϕ̃(
n∏

i=1

(ai, αi)) = ϕ̃(
∑

αj1 . . . αjk
ai1 . . . ail),

where the summation is taken over all i1, . . . , il, j1, . . . , jk with i1 <

. . . < il, j1 < . . . < jk, 0 ≤ k, l ≤ n, {i1, . . . , il} ∩ {j1, . . . , jk} = ∅
and {i1, . . . , il} ∪ {j1, . . . , jk} = {1, . . . , n}. Thus if ϕ() denotes

1 ∈ C then we can write

ϕ̃(
n∏

i=1

(ai, αi)) =
∑

αj1 . . . αjk
ϕ(ai1 . . . ail)

=
∑

αj1 . . . αjk
ϕ(ai1) . . . ϕ(ail)x

k

=
n∏

i=1

(ϕ(ai) + αix) =
n∏

i=1

ϕ̃(ai, αi).

This shows that ϕ̃ is an n-homomorphism on A1. Now

Proposition 2.3 implies that ψ̃ : A1 → B̃ defined by ψ̃(a, α) =

(ϕ̃(1A1))
n−2ϕ̃(a, α) = (ϕ̃(0, 1))n−2(ϕ(a) + αx) = xn−2(ϕ(a) + αx)

is a homomorphism on A1. Thus ψ : A → B̃ defined by ψ(a) =

xn−2ϕ(a) is a homomorphism on A. �

Example 2.5. In general, the kernel of an n-homomorphism may

not be an ideal. As an example, take the algebra A of all 3 ×
3 matrices having 0 on and below the diagonal. In this algebra

product of any 3 elements is equal to 0, so any linear map from A
into itself is a 3-homomorphism but its kernel does not need to be

an ideal.



n-Homomorphisms 19

3. Commutativity

Recall that an algebra A is called semiprime if aAa = {0} implies

that a = 0 for each a ∈ A.

Lemma 3.1. If A is a semiprime algebra with center Z, and a ∈ A
is such that [a,A] ⊆ Z, then a ∈ Z.

Proof. For any x ∈ A we have a[a, x] = [a, ax] ∈ Z and [a, x] ∈ Z,

and hence [a, x]2 = [a[a, x], x] = 0. Since the center of a semiprime

ring cannot contain nonzero nilpotents, it follows that [a, x] = 0,

and so a ∈ Z. �

Theorem 3.2. Suppose that A and B are two algebras, B is

semiprime and ϕ : A → B is a surjective n-homomorphism. If

A is commutative, then so is B.

Proof. Let a be an arbitrary element of the commutative algebra

A. Then

[· · · [[︸ ︷︷ ︸
n−2

a, c1], c2], · · · ], cn−1] = [· · · [[︸ ︷︷ ︸
n−3

0, c2], · · · ], cn−1] = 0

for all c1, · · · , cn−1 ∈ A. Since ϕ is n-homomorphism, we get

[· · · [[︸ ︷︷ ︸
n−2

ϕ(a), ϕ(c1)], ϕ(c2)], · · · ], ϕ(cn−1)] = 0 ∈ ZB

for all c1, · · · , cn−1 ∈ A, where ZB denotes the center of B. Re-

peatedly applying Lemma 3.1 and applying the surjectivity of ϕ we

conclude that ϕ(a) ∈ ZB. Hence B = ZB is commutative. �
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4. n-Homomorphisms on Banach Algebras

Recall that the second dual A∗∗ of a Banach algebra A equipped

with the first Arens product is a Banach algebra. The first Arens

product is indeed characterized as the unique extension toA∗∗×A∗∗

of the mapping (a, b) 7→ ab from A × A into A with the following

properties :

(i) for each G ∈ A∗∗, the mapping F 7→ FG is weak*-continuous

on A∗∗;

(ii) for each a ∈ A, the mapping G 7→ aG is weak*-continuous on

A∗∗.

The second Arens product can be defined in a similar way. If the

first and the second Arens products coincide on A∗∗, then A is

called regular.

We identify A with its image under the canonical embedding i :

A −→ A∗∗.

Theorem 4.1. Suppose that A and B are two Banach algebras

and ϕ : A → B is a continuous n-homomorphism. Then the second

adjoint ϕ∗∗ : A∗∗ → B∗∗ of ϕ is also an n-homomorphism.

If, in addition, A is Arens regular and has a bounded approximate

identity, then φ is a certain multiple of a homomorphism.

Proof. Let F1, . . . , Fn ∈ A∗∗. By Goldstine’s theorem (cf. [3]),

there are nets (a1
i ), . . . , (a

n
j ) in A such that

weak∗− limi a
1
i = F1, . . . ,weak∗− limj a

n
j = Fn.
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Since ϕ∗∗ is weak∗−continuous, we have

ϕ∗∗(F1 . . . Fn) = ϕ∗∗(weak∗− lim
i
. . .weak∗− lim

j
a1

i . . . a
n
j )

= weak∗− lim
i
. . .weak∗− lim

j
ϕ∗∗(a1

i . . . a
n
j )

= weak∗− lim
i
. . .weak∗− lim

j
ϕ(a1

i . . . a
n
j )

= weak∗− lim
i
. . .weak∗− lim

j
(ϕ(a1

i ) . . . ϕ(an
j ))

= weak∗− lim
i
ϕ(a1

i ) . . .weak∗− lim
j
ϕ(an

j )

= weak∗− lim
i
ϕ∗∗(a1

i ) . . .weak∗− lim
j
ϕ∗∗(an

j )

= ϕ∗∗(F1) . . . ϕ
∗∗(Fn).

If A is Arens regular and has a bounded approximate identity ,

it follows from and Proposition 28.7 of [1] that A∗∗ has an identity.

By proposition 2.3, there exists a homomorphism ψ : A∗∗ → B∗∗

such that ϕ(a) = ϕ∗∗|A(a) = ϕ∗∗(1A∗∗)ψ(a) for all a ∈ A. �

Remark 4.2. A computational proof similar to that of Theorem

6.1 of [2] may be used in extending n-homomorphisms to the second

duals.

Now suppose that ϕ is a non-zero 3-homomorphism from a unital

algebra A to C. Then ϕ(1) = 1 or −1. Hence either ϕ or −ϕ is a

character on A. If A is a Banach algebra, then ϕ is automatically

continuous; cf. Theorem 16.3 of [1]. It may however happen that a

3-homomorphism is not continuous.

Example 4.3. Let A be the algebra of all 3 by 3 matrices having

0 on and below the diagonal and B be the algebra of all A-valued

continuous functions from [0, 1] into A with sup norm. Then B is an
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infinite dimensional Banach algebra B in which the product of any

three elements is 0. Since B is infinite dimensional, there are linear

discontinuous maps (as discontinuous 3-homomorphisms) from B
into itself.

Theorem 4.4. Let A be a W ∗-algebra and B a C∗-algebra. If ϕ :

A → B is a weakly-norm continuous 3-homomorphism preserving

the involution, then ‖ϕ‖ ≤ 1.

Proof. The closed unit ball of A is compact in weak topology. By

the Krein-Milman theorem this convex set is the closed convex hull

of its extreme points. On the other hand, the extreme points of

the closed unit ball of A are the partial isometries x such that (1−
xx∗)A(1− x∗x) = {0}, cf. Problem 107 of [4], and Theorem I.10.2

of [5]. Since ϕ(xx∗x) = ϕ(x)ϕ(x)∗ϕ(x), the mapping ϕ preserves

the partial isometries. Since every partial isometry x has norm

‖x‖ ≤ 1, we conclude that

‖ϕ(
n∑

i=1

λixi)‖ = ‖
n∑

i=1

λiϕ(xi)‖ ≤
n∑

i=1

λi‖ϕ(xi)‖ ≤ 1,

where x1, . . . , xn are partial isometries, λ1 . . . λn > 0 and
n∑

i=1

λi = 1.

It follows from weak continuity of ϕ that ‖ϕ‖ ≤ 1. �

Question. Is every ∗-preserving n-homomorphism between C∗-

algebras continuous?
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