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n-HOMOMORPHISMS

S. HEJAZIAN, M. MIRZAVAZIRI AND M. S. MOSLEHIAN*

Communicated by Heydar Radjavi

ABSTRACT. Let A and B be two (complex) algebras. A linear
map ¢ : A — B is called an n-homomorphism if ¢(a; ...a,) =
o(a1)...¢(ay,) for each ay,...,a, € A. In this paper, we in-
vestigate m-homomorphisms and their relation to homomor-
phisms. We characterize n-homomorphisms in terms of homo-
morphisms under certain conditions. Some results related to

continuity and commutativity are given as well.

1. Introduction

Let A and B be two algebras. A linear mapping ¢ : A — B is
called an n-homomorphism if p(a; ...a,) = ¢(a1) ... (a,) for each
ai,...,a, € A. A 2-homomorphism is then a homomorphism, in
the usual sense, between algebras.
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For a homomorphism ¢ : 4 — B we can see that ¢(a;...a,) =
o(ar)...¢(ay,) for each ay, ..., a, € Aand for each n. The converse
is not true (see Example 2.1).

In this paper we examine the relationship between
notions of n-homomorphism and homomorphism. We investigate
n-homomorphisms which preserve commutativity under some con-
ditions and study n-homomorphisms on Banach algebras.

Throughout the paper, all Banach algebras are assumed to be

over the complex field C.

2. Relationship Between n-Homomorphisms and

Homomorphisms

We begin this section with a typical example:
Example 2.1. Let A be a unital algebra, ag be a central element of
A with af = ap for some natural number n (for example an (n—1)-
root of the unit in C) and let § : A — A be a homomorphism.
Define ¢ : A — A by ¢(a) = apf(a). Then we have
olay...a,) = agbay...a,)
= agb(a1)...0(an)
= apf(ay)...ap0(ay)
= p(ar)...o(an).
Hence ¢ is an n-homomorphism. In addition, ag = ¢(14) when-
ever 6 is onto.
The above example gives us an n-homomorphism as a multiple
of a homomorphism. Indeed, if A has the identity 14 then each n-
homomorphism is of this form, where ap = ¢(14) as the following

proposition shows.
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Proposition 2.2. Let A be a unital algebra with identity 14, B be
an algebra and ¢ : A — B be an n-homomorphism. Ify : A — B is
defined by ¥ (a) = (¢(14))"2p(a) then ¢ is a homomorphism and
ola) = p(L)(a).

Proof. We have

and

Plab) =

It follows from (p(14))" tp(a) = p(1% 'a) = p(a) that (¢(14))""}
is an identity for ¢(.A). Thus

e(La)(a) = o(1a)((e(1a)" *¢(a))
= (o(14))" 'o(a)
= (a). 0

Whence we characterized all n-homomorphisms on a unital alge-
bra. For a non-unital algebra A we use the unitization and some
other useful constructions. Recall that for an algebra A, the linear
space A; = A® C = {(a,a)la € A ,a € C} equipped with the
multiplication (a, ) (b, 5) = (ab+ ab+ [a, af), so-called the uniti-
zation of A, is a unital algebra with identity (0, 1) containing A as

a two-sided ideal.
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Now we shall prove that each n-homomorphism is a multiple of

a homomorphism under some conditions.

Definition 2.3. An algebra A is called a factorizable algebra if for
each a € A there are b, c € A such that a = be.

Theorem 2.4. Let A and B be two factorizable algebras, lan(B) =
{b e B;bB =0} = {0} and ¢ : A — B an onto n-homomorphism.
Then ker ¢ is a two-sided ideal of A and there is a unital algebra
B2 B and an x € B with 2" ! = 15 such that ¢ : A — B defined

by Y¥(a) = 2" %p(a) is a homomorphism.

Proof. Suppose that a € ker p and u € A. Since A is a factorizable

algebra there are uq,...u,_1 € A such that v = u; ...u,_,. Hence

plau) = plauy ... up—1) = p(a)p(ur) ... o(up—1) = 0.

Therefore au € ker ¢. Similarly ua € ker ¢.

Let B = {bo+f12+. . .4 fusz™ 2 b € By, and By, ..., Bns € C}
as a subset of the algebra B;[z] of all polynomials in z with coeffi-
cients in the unitization By of B. Using the ordinary multiplication
of polynomials, we define a multiplication on B by z"' = 1 and
bx = ¢(ay)p(ay) where b = p(a) = p(ajaz) and a = ajay € A. We
show that the multiplication is well-defined.

Let b =d € Band b = p(a) = ¢(araz2),d = p(c) = ¢(c1c2)
with a = ajag, ¢ = c1¢co € A. Then we have p(ajaz) = ¢(cic2). So
p(aras)by ... by, = p(c1ce)by ... b, for all by...b, € B. Since ¢ is
onto, there exist us...u, € A such that ¢(u;) = b;. We can then
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write

plar)p(az)p(us) - . . p(Un—2)P(tn_11n)

= p(ajagus ... Up_1uy)

= plar1az2)p(uz) . .. p(tn_1)p(u,)

C1CoUs . . . Upy_1Up,)

(
(
(
= placa)p(uz) ... p(up—1)p(us)
= ¢
(

= plcr)plea)p(ua) - . p(tn_2)P(Un_11n).

This implies that ¢(a1)p(az)b = @(c1)p(c2)b for each b € B, since
B is a factorizable algebra. Hence (¢(a1)p(az) — ¢(c1)e(c2))B = 0.
Since lan(B) = {0}, we conclude that ¢(a;)p(az) = @(c1)p(cs).
In particular, p(a)p(b)z"? = p(ab) for all a,b € A. Note that
associativity of our multiplication is inherited from that of multi-
plication of polynomials.

We can inductively prove that p(ay) ... ¢(ay,)z" ™™ = @(a; ... an)
for all m > 2. To show this, suppose that it holds for m > 2 and
am+1 € A. Then

plar) .. plam—1)@(am)o(ampr) 2"~
= @(a1) .- (am—1)P(@m)p(am )"~
= plar) ... p(am1)(0(am)p(@mr)z" )"
= ¢(a1) ... o(am-1)p(amamir)z"™™
(
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Now define ¢ : A; — B by $(a, ) = ¢(a) + az for each (a,a) €
A;. Then for each (a1, 1), ..., (a,, a,) € A; we have

n
gp(H a;, o)) E Qjy o QG Gy - - Gy ),
i=1

where the summation is taken over all i, ...,4;, J1, ..., Jr With i; <
< < o < k0 < KL n,{z’l,...,il}ﬂ{jl,...,jk} =0
and {i1,...,04} U {j1,...,Jx} = {1,...,n}. Thus if ¢() denotes

1 € C then we can write

n

@(H(ahai)) = Zaﬁ' a]kso Qi - - 'aiz)

i=1

- Zaﬁ g p(aq) .. p(ag)ot

== H(Qp az +051 H &17041

=1

This shows that ¢ is an n-homomorphism on A;. Now
Proposition 2.3 implies that ¢ : A; — B defined by @(a,a) =
(B(1L4))"23(a,0) = (B(0,1))"*(p(a) + az) = a"*(p(a) + az)
is a homomorphism on A;. Thus ¢ : A — B defined by ¢(a) =

" 2p(a) is a homomorphism on A. O

Example 2.5. In general, the kernel of an n-homomorphism may
not be an ideal. As an example, take the algebra A of all 3 x
3 matrices having 0 on and below the diagonal. In this algebra
product of any 3 elements is equal to 0, so any linear map from A
into itself is a 3-homomorphism but its kernel does not need to be

an ideal.
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3. Commutativity

Recall that an algebra A is called semiprime if a.Aa = {0} implies
that a = 0 for each a € A.

Lemma 3.1. If A is a semiprime algebra with center Z, and a € A
is such that [a, A] C Z, then a € Z.

Proof. For any = € A we have ala, ] = [a,ax] € Z and [a, 2] € Z,
and hence [a, z]* = [a[a, z], 2] = 0. Since the center of a semiprime

ring cannot contain nonzero nilpotents, it follows that [a,z] = 0,
and so a € Z. O

Theorem 3.2. Suppose that A and B are two algebras, B is
semiprime and ¢ : A — B is a surjective n-homomorphism. If

A is commutative, then so is B.

Proof. Let a be an arbitrary element of the commutative algebra

A. Then

R
o
P
o
>
o

S
s
I

[+ [0, ], ent] =0
——

n—2 n—3

for all ¢1,--- ,c,_1 € A. Since ¢ is n-homomorphism, we get

[ [[ela), eler)], elea)], -] plen-1)] = 0 € Zp
~2
for all ¢,---,c,_1 € A, where Z5 denotes the center of B. Re-
peatedly applying Lemma 3.1 and applying the surjectivity of ¢ we
conclude that p(a) € Zz. Hence B = Zi is commutative. O
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4. n-Homomorphisms on Banach Algebras

Recall that the second dual A** of a Banach algebra A equipped
with the first Arens product is a Banach algebra. The first Arens
product is indeed characterized as the unique extension to A** x A**
of the mapping (a,b) — ab from A x A into A with the following
properties :

(i) for each G € A™, the mapping F +— FG is weak*-continuous
on A**;

(ii) for each a € A, the mapping G +— aG is weak*-continuous on
A

The second Arens product can be defined in a similar way. If the
first and the second Arens products coincide on A**, then A is
called regular.

We identify A with its image under the canonical embedding ¢ :

Theorem 4.1. Suppose that A and B are two Banach algebras
and ¢ : A — B is a continuous n-homomorphism. Then the second
adjoint p** : A — B** of ¢ is also an n-homomorphism.

If, in addition, A is Arens reqular and has a bounded approrimate

identity, then ¢ is a certain multiple of a homomorphism.

Proof. Let Fi,...,F, € A™. By Goldstine’s theorem (cf. [3]),

there are nets (a;), ..., (a}) in A such that

% . 1 * : n __
weak” —lim; a; = Fi, ..., weak’—lim; a} = F,.
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Since ¢** is weak” —continuous, we have
O*(Fy ... F,) = ¢ (weak"— lizm. .. weak”— lijm aj ... ay)

= weak*—lim...weak*—lim o™ (a} ...a")
i j ! J

. % . * : 1 n
= weak —hzm...weak —lljrrlgp(ai .o.ay)

= weak*—lim...weak*—lim(p(a}) ... p(a”))
i j

= weak”—lim¢(a}) ... weak*—lim ¢(a’)
) J

= weak’—lim ¢**(a;) ... weak™— lim ¢**(a}})
7 J

= ¢7(FR). 9T (F).

If A is Arens regular and has a bounded approximate identity ,
it follows from and Proposition 28.7 of [1] that .4** has an identity.
By proposition 2.3, there exists a homomorphism v : A** — B**
such that ¢(a) = ¢**|a(a) = ** (14 )10(a) for all a € A. O

Remark 4.2. A computational proof similar to that of Theorem
6.1 of [2] may be used in extending n-homomorphisms to the second

duals.

Now suppose that ¢ is a non-zero 3-homomorphism from a unital
algebra A to C. Then ¢(1) =1 or —1. Hence either ¢ or —p is a
character on A. If A is a Banach algebra, then ¢ is automatically
continuous; cf. Theorem 16.3 of [1]. It may however happen that a

3-homomorphism is not continuous.

Example 4.3. Let A be the algebra of all 3 by 3 matrices having
0 on and below the diagonal and B be the algebra of all A-valued

continuous functions from [0, 1] into A with sup norm. Then B is an
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infinite dimensional Banach algebra B in which the product of any
three elements is 0. Since B is infinite dimensional, there are linear
discontinuous maps (as discontinuous 3-homomorphisms) from B

into itself.

Theorem 4.4. Let A be a W*-algebra and B a C*-algebra. If ¢ :
A — B is a weakly-norm continuous 3-homomorphism preserving

the involution, then ||| < 1.

Proof. The closed unit ball of A is compact in weak topology. By
the Krein-Milman theorem this convex set is the closed convex hull
of its extreme points. On the other hand, the extreme points of
the closed unit ball of A are the partial isometries x such that (1 —
zz*)A(l — z*x) = {0}, cf. Problem 107 of [4], and Theorem 1.10.2

*

of [5]. Since p(zz*x) = p(x)p(z)*p(x), the mapping ¢ preserves
the partial isometries. Since every partial isometry z has norm

|z|| <1, we conclude that

oMzl = 11 Nl < Y Nille(z)ll < 1,
=1 =1 i=1

where x4, ..., x, are partial isometries, \; ...\, > 0 and Z/\i =1.
i=1
It follows from weak continuity of ¢ that ||¢]| < 1. O

Question. Is every x-preserving n-homomorphism between C*-

algebras continuous?
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