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Abstract. A natural algorithm with an optimal order of convergence
is proposed for numerical solution of a class of cordial weakly singular
Volterra integral equations. The equations of this class appear in heat

conduction problems with mixed boundary conditions. The algorithm
is based on a representation of the solution and compound Gaussian
quadrature rules with graded meshes. A comparative study is carried
out, which points out that the proposed method is the most efficient one

among other existing methods. In fact, the results of this paper introduce
a most-efficient decisive-choice for computing the solution of the heat con-
duction model.
Keywords: Cordial Volterra integral equation, heat conduction prob-

lem, mixed-type boundary condition, compound quadrature rule, graded
mesh.
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1. Introduction

In this paper we are concerned with the numerical solution of the linear
weakly singular Volterra integral equation

(1.1) y(t) =

∫ t

0

sµ−1

tµ
y(s) ds+ g(t), t ∈ (0, T ],

where µ is a positive parameter, and g is a given function of certain class.
equation (1.1) has been the subject of many recent researches (see, e.g. [5,6,14,
15] and references therein). Most of these researches are devoted to numerical
methods.
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Some authors considered a more general class of equations in the form of

(1.2) y(t) =

∫ t

0

a(t, s)
sµ−1

tµ
y(s) ds+ g(t), t ∈ (0, T ],

where a(., .) is a smooth function [1, 9]. equations of the form (1.2) lie in turn
in a wider class of the so-called cordial Volterra integral equations (see [16, 17,
19]). Let φ ∈ L1(0, 1), a(., .) be a continuous function on ∆T := {(t, s) : 0 ≤
s ≤ t ≤ T}, and g ∈ C(∆T × D), where D ⊂ R or D ⊂ C is an open set.
The corresponding linear and nonlinear cordial Volterra integral equations are
introduced by the operators Vφ,a and Vφ,g, respectively, defined on C[0, T ] by

(Vφ,au)(t) =

∫ t

0

t−1φ(t−1s)a(t, s)u(s) ds, 0 ≤ t ≤ T,

(Vφ,gu)(t) =

∫ t

0

t−1φ(t−1s)g(t, s, u(s)) ds, 0 ≤ t ≤ T.

Numerical solution of any linear cordial equation, including (1.1), is no longer
a challenging problem since we have now rich information about the spectrum
and eigenfunctions of the corresponding integral operator (see [16]). Among
linear cordial equations, however, the class of equations (1.1) with φ(x) = xµ−1

is of practical importance, and despite several proposed methods, the desire for
higher accuracy is still needed specially for smaller µ.

In practice, equation (1.1) appears in a heat conduction problem with cer-
tain mixed boundary conditions (cf. [2, 13]). To be precise, consider the heat
conduction problem

(1.3)
∂2u

∂x2
=

1

a2
∂u

∂t
, 0 ≤ x ≤ l,

with the initial condition

(1.4) u(x, 0) = 0, 0 ≤ x ≤ l,

and the mixed-type boundary conditions

∂u

∂x
(0, t)− u(0, t) = ϕ1(t),(1.5)

−∂u

∂x
(l, t)− u(l, t) = ϕ2(t).(1.6)

If we express the solution in terms of a specific single layer ansatz and then ap-
ply some suitable transformations, then the above heat problem will be reduced
to equation (1.1) (see [13] and references therein).

Among all the existing methods for the case µ ≤ 1, the quadrature rule [14]
and the spline collocation-interpolation method [19] have the optimal conver-
gence rate. Also, Euler’s method with extrapolation [13] provides highly accu-
rate approximations at a rather low cost. In this paper, we implement efficient
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composite quadrature rules [11], and introduce a new algorithm that is appli-
cable to equation (1.1) with any µ > 0. The main achievement is that the
resulting algorithm is the most efficient one among all the existing methods;
the convergence order is optimal, it is the most accurate and the most stable,
the computational cost is minimal, the assumptions under which the method
is applicable to equation (1.1) is also the weakest. Indeed the algorithm is
superior to other methods in all aspects.

The main idea of the proposed algorithm comes from [14], where certain
representations of the C1-solution of equation (1.1) are considered. For com-
puting such a solution, these representations are usually ignored by the authors
since they are in the form of singular integrals with an algebraic singularity at
0. Even if the m-point Gauss-Christoffel quadrature rule is implemented, one
does not achieve a convergence order higher than O(m−µ). In this paper, we
follow the idea of our previous work [14], where certain class of composite
quadrature rules on uniform meshes is considered. If suitable order-preserving
meshes (cf. [10, 11]) are considered instead, one achieves an algorithm with an
optimal order of convergence under weaker assumptions.

Although, at first look it seems that we have just implemented some well-
known quadrature rules on the problem, and this is a trivial task, the paper
have something more to say: It unveils that choosing this strategy in practice
leads to the most efficient algorithm for numerical solution of the problem, a
practically important fact that had not been discovered by the earlier authors.

The remainder of this paper is organized as follows. After introducing the
algorithm in Section 2, we carry out a comparative study in Section 3, which
points out that our proposed method is superior to other existing methods
from various aspects. In section 4, we give further numerical experiments,
which illustrate the capability and efficiency of the method. Finally, we give
some conclusions.

2. An algorithm with optimal rate of convergence

The following representation theorem is due to [7] and [9] and plays a fun-
damental role in the algorithm presented in this paper.

Theorem 2.1. (a) If µ > 1 and the function g belongs to Cr[0, T ] for some
positive integer r, then equation (1.1) possesses a unique solution u ∈ Cr[0, T ],
that can be represented as

(2.1) u(t) = g(t) + t1−µ

∫ t

0

sµ−2g(s) ds.

(b) If µ = 1 and g ∈ Cr[0, T ], r ≥ 1, then equation (1.1) has a family of solu-
tions in C[0, T ] of which only one has C1 continuity. The unique C1 solution
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of equation (1.1) can be represented explicitly as

(2.2) u(t) = g(t) +

∫ t

0

s−1g(s) ds.

(c) If 0 < µ < 1 and g ∈ Cr[0, T ], r ≥ 1, then equation (1.1) has a family
of solutions in C[0, T ] of which only one has C1 continuity. The unique C1

solution of equation (1.1) can be represented explicitly as

(2.3) u(t) = g(t) +
g(0)

µ− 1
+ t1−µ

∫ t

0

sµ−2(g(s)− g(0)) ds.

While other authors focused on efficient projection or discretization methods
for the Volterra operator of (1.1), the idea of the author is to consider the
representations proposed by Theorem 2.1 and compute the involved integrals
efficiently [14]. The originality of the present paper is that we enhance the latter
task by employing more efficient compound Gaussian quadrature rules [10,11].

By the variable transformation s = xt, we have

(2.4)

∫ 1

0

xµ−2ft(x) dx =

 t1−µ
∫ t

0
sµ−2g(s) ds, if µ > 1,

t1−µ
∫ t

0
sµ−2(g(s)− g(0)) ds, if 0 < µ ≤ 1,

where ft(x) = g(xt) if µ > 1, and ft(x) = g(xt) − g(0) if 0 < µ ≤ 1. Note
that x−1(g(xt) − g(0)), as a function of x, is always continuous on [0, T ] due
to the continuity of g′. Thus, considering the representations (2.1) or (2.3),
the problem of approximating the solution of (1.1) may be reduced to that of
approximating (possibly singular) integrals of the form

(2.5)

∫ 1

0

xα−1f(x) dx, α > 0.

Köhler [11] and Kaneko et al. [10], independently and almost simultaneously,
noticed that the compound Gaussian quadrature rules can compute weakly
singular integrals as accurate as the regular ones if the integration interval is
partitioned by suitable graded meshes. It is difficult to say any words about the
primacy since neither of the papers cited the other one. The authors in [10]
considered only the Gaussian rule, while the author of [11] considered any
quadrature rules in general. In the following, we give an overview of these two
papers and their main results.

Consider the integral

(2.6) I[f ] :=

∫ b

a

w(x)f(x) dx,

where f and/or the weight function w are allowed to have a singularity at the
endpoint a.
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2.1. A review to the paper of Köhler (1994). Let

(2.7) a = z0 < z1 < · · · < zn = b

be a partition of the integration interval, and let

0 ≤ x1 < · · · < xm ≤ 1

be nodes of an elementary quadrature formula on [0, 1]. The nodes of the
compound quadrature formula are then xi,j = zi−1 + xjhi for i = 1, . . . , n and
j = 1, . . . ,m, where hi := zi − zi−1. The compound quadrature rule is then
defined by

(2.8) Qn[f ] =

n∑
i=1

Qi[f ], and Qi[f ] =

m∑
j=1

ai,jf(xi,j),

where

(2.9) ai,j =

∫ zi

zi−1

w(x)lj

(
x− zi−1

hi

)
dx

are the weights corresponding to the elementary quadrature rule in each panel.
Here, lj(x) =

∏m
ν=1,ν ̸=j(x − xν)/(xj − xν). Indeed, f(x) is replaced in each

panel by an interpolation polynomial of degree m − 1. If x1,1 = a, and f has
an unbounded singularity at a, then the first summand in (2.8) is omitted.

In [11], it has been shown that the order of the selected elementary quad-
rature rule can be preserved in the presence of singularities if one uses the
compound quadrature rule with an appropriate partition (2.7). More precisely,
we have the following result.

Without loss of generality, let a = 0 and b = 1. Assume that the quadrature
rule, applied in each panel, is exact for any polynomial p of degree less than
k := m+ µ for some µ ≥ 0.

Theorem 2.2. Assume that f is k times differentiable on (0, 1], and∣∣∣w(i)(x)
∣∣∣ ≤ c1x

α1−i |ln d1x|α2 , x ∈ (0, 1], i = 0, . . . , µ,

∣∣∣f (i)(x)
∣∣∣ ≤ c2x

β1−i |ln d1x|β2 , x ∈ (0, 1], i = m, . . . , k,

|f(x)| ≤ c2x
β1 |ln d1x|β2 , x ∈ (0, 1],

where α1 > −1, α2 ∈ R, β1 > −1, β2 ∈ R, and 0 < d1 < 1. Let the mesh
points zi be defined by zi := (i/n)q, where

q >
k

1 + α1 + β1
.

Then the absolute error of the compound quadrature rule is O(n−k).
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2.2. A review to the paper of Kaneko et al. (1994). Similar results can
be found in [10], but with less generality. Indeed, the authors of [10] has been
considered only the Gaussian quadrature rule, while the results of [11] apply
to any kind of interpolatory quadrature rule.

Let S ⊂ [0, 1] contains a finite number of points. Define

ωS(x) = inf{|x− t| : t ∈ S},

measuring the distance of x from the set S.
For α > −1 and an integer k ≥ 0, a real-valued function f is said to be of

Type(α, k, S) if ∣∣∣f (k)(x)
∣∣∣ ≤ C [ωS(x)]

α−k
, x /∈ S,

and f ∈ Ck([0, 1] \ S).
Now consider the integral (2.6). At first, assume that f is allowed to has

a bounded singularity at a. Then, in the subinterval [a, z1], we replace f(x)
by its linear interpolant at the points a and z1. In other panels, we use the
m-point Gaussian quadrature rule w.r.t. the weight function w(x). Then we
have the following result (see [10]).

Theorem 2.3. Let w ∈ L1[a, b], and

f ∈ Type(α, 2m, {a}) ∩ C[a, b]

with α > 0. Consider the graded mesh zi = (i/n)q with q = 2m/α. Then the ab-
solute error of the compound m-point Gaussian quadrature rule is O(n−2m+1).

In a more general case, when f is allowed to has an unbounded integrable
singularity at a, we replace f(x) simply by zero in [a, z1]. Then we have the
following result (see [10]).

Theorem 2.4. Let w ∈ L∞[a, b], and

f ∈ Type (α, 2m, {a}) ∩ C[a, b]

with α > 0. Consider the graded mesh zi = (i/n)q with q = (2m+ 1)/(α+ 1).
Then the absolute error of the compound m-point Gaussian quadrature rule is
O(n−2m).

2.3. Connections. In order to see the analogy between Theorem 2.2 and The-
orem 2.4, we let w ≡ 1 and let x1, . . . , xm be nodes of m-point Gaussian rule
in [−1, 1]. Then, Theorem 2.2 is simplified as follows.

Corollary 2.5. Assume that f is 2m times differentiable on (0, 1], and∣∣∣f (i)(x)
∣∣∣ ≤ c2x

β1−i |ln d1x|β2 , x ∈ (0, 1], i = m, . . . , 2m,

|f(x)| ≤ c2x
β1 |ln d1x|β2 , x ∈ (0, 1],
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where β1 > −1, β2 ∈ R, 0 < d1 < 1. Let the mesh points zi be defined by
zi := (i/n)q, where

q >
2m

1 + β1
.

Then the absolute error of the compound m-point Gaussian quadrature rule is
O(n−2m).

In Corollary 2.5, if we let β2 = 0, then we arrive at a result that is very
similar to Theorem 2.4, though the former is still more general than the latter.
Indeed, in Theorem 2.4, the grading exponent q takes one value which depends
on α, the degree of regularity of f , while in Corollary 2.5, q takes any value
being large enough.

2.4. The algorithm. Considering the representations (2.1)-(2.3) and Corol-
lary 2.5, our proposed algorithm for local approximation of the unique C1

solution of equation (1.1) can be summarized as follows.
For any given t > 0, define the function gµ on (0, 1] as

(2.10) gµ(x) :=

{
xµ−2g(xt), if µ ≥ 1,

xµ−2(g(xt)− g(0)), if 0 < µ < 1.

Then, the approximated solution at t, un,m(t), is described by

(2.11) un,m(t) =


g(t) +

∑n
i=1 Q

(G;i)[gµ], if µ ≥ 1,

g(t) +
g(0)

µ− 1
+
∑n

i=1 Q
(G;i)[gµ], if 0 < µ < 1,

where Q(G;i)[gµ] is the m-point Gauss-Legendre quadrature rule on the subin-
terval [zi−1, zi], as defined in Corollary 2.5.

Moreover, Corollary 2.5 implies that the above algorithm converges with an
optimal rate.

3. Comparisons

In this section we compare from various aspects the proposed algorithm (2.11)
with some efficient existing methods for equation (1.1) with µ < 1.

3.1. Euler’s method with extrapolation. In the Euler’s method for equa-
tion (1.1) (cf. [12, 13]), a uniform grid 0 = t0 < · · · < tn = T with stepsize
h := T/n is considered. The local approximate solution uh

i ≃ u(ti), where u is
the unique solution specified by Theorem 2.1, is computed recursively by

(3.1) uh
i = g(ti) +

1

tµi

i−1∑
j=0

Dju
h
j , i = 1, . . . , n,
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with a known uh
0 = u(0) and

(3.2) Dj :=
tµj+1 − tµj

µ
, j = 0, . . . , n− 1.

If t−αg(t) ∈ C2[0, T ], for some α ∈ R, then some error estimates have been
obtained in [13], which allow an application of a general extrapolation proce-
dures, e.g. the E-algorithm [3]. The numerical results are very satisfactory even
for small µ. However, the algorithm (2.11) is still preferred in many essential
aspects.
Limitations: The method of [13] is applicable when ḡ(t) := t−αg(t), for some
α ∈ R, is at least two times differentiable on [0, T ], and ḡ(0) ̸= 0. The
method (2.11), however, does not need any smoothness of g(x) at the end-
point x = 0. For an example, the numerical results in Section 4 show the
algorithm (2.11) is successfully applicable to the function g(t) = t1.5(1 + ln t),
t ∈ [0, 1]; for any α, however, the derivative of t−αg(t) at t = 0 either vanishes
or does not exist.
Complexity: In the Euler’s method (3.1) for approximating n instances of the
solution at t1, . . . , tn, one needs evaluation of g at n distinct points, evaluation
of the power function tµ at n distinct points, n(n+3)/2−1 multiplications, and
n(n+3)/2− 1 additions. If one decides to apply the E-algorithm, the method
should be performed for some increasing n, which increase the complexity. If
n is doubled in each row of the E-algorithm, the complexity reduces since the
coarser grid is included in the finer one, and then g as well as the power function
needs to be evaluated only on the coarsest grid.

It seems the method (2.11) provides an approximation of the solution only
at one instance point t, and if one needs an approximation at another point, the
process should be performed from the beginning. The following result shows
that only one performance of the method can provide an approximation on the
whole graded mesh.

Corollary 3.1. Let all assumptions of Corollary 2.5 hold. Then the absolute
error of the compound m-point Gaussian quadrature rule, when applied to the
integral

(3.3)

∫ zk

0

w(x)f(x) dx,

is of order O(k−2m), for k = 2, . . . , n.

Proof. Apply to (3.3) the change of variables x = zkt and consider the partition
ti := (i/k)q, i = 0, . . . , k, where q is the same. Now, it is enough to apply
Corollary 2.5 with zi replaced by ti. Then the result follows since zi = tizk. □

Without loss of generality, consider equation (1.1) on [0, 1]. If µ < 1, then
the desired solution at t = 1, represented by (2.3), is approximated by using
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the formula (2.8):

(3.4) un
n := g(1) +

g(0)

µ− 1
+

n∑
i=1

Qi[gµ],

with gµ(x) = xµ−2(g(x) − g(0)). If one compute Qi[gµ], for i = 1, . . . , n, then
the approximation at zk, k = 2, . . . , n− 1, is also available:

(3.5) un
k := g(zk) +

g(0)

µ− 1
+

k∑
i=1

Qi[gµ].

Thus, un
2 , . . . , u

n
n can be computed recursively. Since computing Qi[gµ] for each

i requires m multiplications and m− 1 additions, the total process requires at
most mn function evaluations, mn+1 multiplications, and m(n+1) additions.
In practice one takes m to be a fixed and usually small (i.e. m ≪ n) integer and
let n increases until the desired accuracy is achieved. There are many tables
in the literature for abscissas and weights of the Gauss-Legendre quadrature
rule (e.g. [4]), so one does not need to pay any cost for computing these values
(one needs only m multiplications and n additions for the linear transformation
of the abscissas into the panels and m multiplications for computing the new
weights, hwj/2). Thus, the complexity of the method (2.11) is considerably
less than that of Euler’s method, which has been shown above to be O(n2).
The same discussion holds for the case when µ ≥ 1.
A numerical experiment: As a numerical comparison, we have solved the fol-
lowing example of (1.1) by using the method (2.11) and compare it with the
solution given in [13]: {

g(t) = t0.3(1 + t),

µ = 0.5,

with the exact solution u(t) = −4t0.3 + 2.25t1.3. If the Euler’s method with
n = 40 × 2j , for j = 0, . . . , 5, is employed, and then the E-algorithm, as
described in [13], is applied, the absolute error is reduced to 1.01 × 10−10

(cf. [13, Table 3 ]). According to the above discussion on the complexity of
the Euler’s method, this procedure takes 2, 560 function evaluations, at least
1, 095, 780 multiplications, and at least 1, 095, 780 additions.

The representation (2.3) is valid when g is at least in C1[0, 1], so the method
(2.11) can not directly be applied to the above example. However, it is easy
to see that t0.3ū(t), ū ∈ C1[0, 1], is the solution to equation (1.1) iff ū(t)
is its unique solution with ḡ(t) = 1 + t. Then by the method (2.11) with
m = 9, n = 128, we have achieved a higher accuracy with the absolute error
5.73 × 10−11. This costs only 1152 function evaluations, 1171 multiplications,
and 1289 additions.
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3.2. Modified Euler’s method on graded meshes. In Euler’s method, u(s)
is approximated on each panel by u(tj), while in the modified Euler’s method,
introduced in [15], it is approximated by (u(tj+1)+u(tj))/2. This increases the
complexity of the Euler’s method even more, though the accuracy enhances.
Our numerical experiences, however, show that the direct method of this paper
is still far more accurate. For example, if we take g(t) = t1.5 + t + 1 and
µ = 0.5, then the absolute error of the modified Euler’s method on a graded
mesh is 6.98E-7, when the number of panels n is 20480 (see [15, Table 3]).
However, the absolute error by the method (2.11) with n = 32 and m = 5 will
be 5.52E-8. This costs only 160 function evaluations, 171 multiplications, and
197 additions.

3.3. Composite quadrature rules on uniform meshes. The first direct
method based on the representations (2.1)–(2.3) of the solution is the composite
quadrature rule [14], which is applied on uniform meshes. The complexity and
the accuracy of the method are comparable to those of the direct method (2.11).
However, some extra convergence conditions (cf. [14, Theorems 6 and 8 ]) should
be imposed on it, which in turn impose limitations on its applicability. For
example, let g(t) = (1 − 2t)7/3/(1 + t2), µ = 0.1, and T = 1.55. The absolute
error of the method of [14] with n = 160,m = 5 is 39.15 (cf. [14, Table 4]),
while it is near 2.97E-6 by the method of this paper with n = 8,m = 5.

Even if the convergence conditions of the direct method of [14] are satisfied,
our new method is still far more accurate, since its convergence is of optimal
order under very weak conditions. For example, let g(t) = t3((21/31) ln t +
100/961), µ = 0.1, and T = 1.55. The absolute error of the method of [14]
with n = 160,m = 5 is 4.48E-5 (cf. [14, Table 3]), while it is near 1.26E-10 by
the method of this paper with n = 8,m = 5.

3.4. Spline collocation method. Spline collocation methods have been de-
veloped for linear and nonlinear cordial Volterra integral equations (see [18,19]),
so they can be employed to solve equation (1.1) for any µ > 0. Although,
convergence of the method is of optimal order (cf. [18, Theorem 4.2]), its com-
plexity is not comparable to that of the rule (2.11). If g ∈ Cm[0, T ], then the
method consists of recurrent solving of n linear systems, each one of order m,
where n = T/h and h > 0 is a small step size. In this case, the error decays as
O(hm), for decreasing h. The (i+ 1)-th system (i = 0, . . . , n− 1) corresponds
to the matrix Im −Di, where Im is the identity matrix of order m, and Di is
an m×m-matrix with the entries

Di =
(
di,ij,k

)m

j,k=1
.

Each entry di,ij,k is a definite integral and, in general, should be computed by

quadrature rules. The right-hand-side of the system is also determined by m2i

similar integrals, di,lj,k, l = 0, . . . , i−1, j = 1, . . . ,m, k = 1, . . . ,m. If calculation
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of each di,lj,k requires r flops, then we need m2(i+1)r flops for constructing the

i-th system; so in total we need m2n(r(n+ 3)/2 + 1) flops. After constructing
the systems, additional O(m2n) flops are needed for solving them.

Despite the method is rather costly, its accuracy is considerably less than
that of the rule (2.11). For example, consider equation (1.1) with g(t) = t9/2,
µ = 0.1, and T = 1. Since g ∈ C4[0, 1], one can use the spline colloca-
tion method with m = 4. By choosing four Lobatto points as collocation
parameters, the absolute errors at t = 1 will be 1.3E-3, 1.9E-4, 9.0E-6 for
n = 8, 16, 32, respectively. This is while the error of the proposed rule (2.11)
with (m,n) = (4, 4) will be 7.1E-10.

Note also that conditions under which the rule (2.11) converges with an opti-
mal order is weaker than the corresponding conditions for the spline collocation
method. In the latter method, the parameter m depends on the smoothness
degree of g in [0, T ], while in our proposed rule, it does not depend on the dif-
ferentiability of g at 0 (see Corollary 2.5). For instance, in the above example
with g(t) = t9/2, one can employ the rule with any integer m > 0, while in the
spline collocation method m can not exceed 4.

The applicability of the spline collocation method, i.e. the solvability of all
of the systems Im−Di (i = 0, . . . , n−1), is another important issue. According
to [18], the applicability conditions reduce to

(3.6) det(Im −Di) ̸= 0,

for only some small values of i. It has been proved that the piecewise linear
collocation method (m = 2) is always applicable (cf. [8, Theorem 5]). Also
the piecewise quadratic collocation method is applicable when 0 is chosen as
the first collocation parameter (cf. [8, Theorem 8]). For larger m, there is a
conjecture (not proved yet) that the spline collocation method with any choice
of collocation parameters is always applicable to equation (1.1).

Remark 3.2. The first tree methods mentioned above are devoted to equa-
tion (1.1), while the spline collocation method has been extended to wider
class of cordial Volterra equations, either linear or nonlinear (cf. [19]). The
above discussion shows that to specifically solve the special equation (1.1), our
proposed algorithm is superior to the spline collocation method. Certainly,
for other equations of the large class of cordial Volterra equations, the pro-
posed algorithm is unapplicable, but this is not an important matter in the
real world problems; yet, we do not know any applications of these equations
in engineering, physics, etc.

4. A numerical example

Consider the C1 solutions at t = 1 of equation (1.1) with g(t) = t1.5(1+ln t)
on [0, 1], for µ = 0.1 and µ = 0.01. In order to illustrate the theoretical results
of this paper, we apply the algorithm (2.11) to this example.
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Table 1. Absolute errors and numerical orders of convergence for
the sample equation with g(t) = t1.5(1 + ln t) and µ = 0.1.

n m = 2 m = 3 m = 4 m = 5

10 1.56× 10−2 3.82× 10−3 1.58× 10−3 9.51× 10−4

20 1.81× 10−3 1.42× 10−4 1.94× 10−5 4.08× 10−6

40 1.83× 10−4 4.12× 10−6 1.64× 10−7 1.01× 10−8

80 1.69× 10−5 1.04× 10−7 1.13× 10−9 1.91× 10−11

160 1.47× 10−6 2.40× 10−9 6.88× 10−12 3.08× 10−14

320 1.22× 10−7 5.19× 10−11 3.88× 10−14 4.51× 10−17

640 9.73× 10−9 1.07× 10−12 2.07× 10−16 6.17× 10−20

1280 7.58× 10−10 2.15× 10−14 1.06× 10−18 8.06× 10−23

2560 5.78× 10−11 4.19× 10−16 5.25× 10−21 1.01× 10−25

Rate 3.7 5.7 7.7 9.6

Table 2. Absolute errors and numerical orders of convergence for
the sample equation with g(t) = t1.5(1 + ln t) and µ = 0.01.

n m = 2 m = 3 m = 4 m = 5

10 4.23× 10−2 1.38× 10−2 7.27× 10−3 5.40× 10−3

20 5.30× 10−3 5.72× 10−4 1.06× 10−4 2.97× 10−5

40 5.61× 10−4 1.78× 10−5 9.79× 10−7 8.31× 10−8

80 5.35× 10−5 4.67× 10−7 7.11× 10−9 1.67× 10−10

160 4.74× 10−6 1.11× 10−8 4.49× 10−11 2.81× 10−13

320 3.99× 10−7 2.45× 10−10 2.59× 10−13 4.23× 10−16

640 3.24× 10−8 5.14× 10−12 1.40× 10−15 5.91× 10−19

1280 2.55× 10−9 1.04× 10−13 7.28× 10−18 7.82× 10−22

2560 1.96× 10−10 2.05× 10−15 3.64× 10−20 9.95× 10−25

Rate 3.7 5.7 7.6 9.6

By (2.10),

(4.1) gµ(x) = xµ−0.5(1 + lnx),

for x ∈ (0, 1]. Now, Corollary 2.5 should be applied to gµ, as suggested by the
algorithm.

If µ = 0.1, then gµ(t) satisfies conditions of Corollary 2.5 with β1 = −0.40.
Since gµ is m times differentiable on (0, 1] for each m ≥ 1, one should take
q > 2m/(1− 0.40) to achieve the convergence rate of O(n−2m). For µ = 0.01,
we have the same discussion with β1 = −0.49. Then, we should take q >
2m/(1−0.49). Table 1 shows the results. As it is seen, the rates of convergence
(see the last row) are in accordance with the theoretical order of convergence
O(n−2m), for some choices of m. As it is seen, despite low smoothness degree
of g(t) and smallness of µ, the accuracy of the method is rather high. By
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the discussion given in Section 3 and the results of Table 1, we can certainly
claim that the algorithm (2.11) is the most efficient algorithm proposed in the
literature for numerical solution of equation (1.1).

5. Conclusions

We have suggested a simple and highly accurate algorithm for numerical so-
lution of equation (1.1) even when the parameter µ is very small. The method
is based on a representation of the solution that contains an integral term with
one algebraic singularity at zero. If traditional quadrature methods are applied
to this integral, then we obtain a low rate of convergence for smaller µ. How-
ever, if the compound Gaussian quadrature rule with a suitable graded mesh
is applied, one obtains an optimal rate of convergence under some rather weak
conditions. The complexity of the algorithm is rather low, while its accuracy
is higher than all other existing methods. Moreover, the rate of convergence
is optimal under rather weak conditions on g. These properties make the al-
gorithm as the most-efficient decisive-choice for computing the solution of the
heat conduction model (1.1).
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