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Abstract. Given a frame of a separable Hilbert space H, we present
some iterative methods for solving an operator equation Lu = f , where L

is a bounded, invertible and symmetric operator on H. We present some
algorithms based on the knowledge of frame bounds, Chebyshev method
and conjugate gradient method, in order to give some approximated solu-
tions to the problem. Then we investigate the convergence and optimality

of them.
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1. Introduction

The analysis of numerical schemes for operator equation

(1.1) Lu = f,

where L : H → H is a boundedly invertible and self adjoint operator on a
separable Hilbert space H is a field of enormous current interest. Linear dif-
ferential or integral equation in variational form are among such operations.
Inverting the operator L can be complicated if the dimension of H is enough
large, hence, a suitable option is to use an algorithm to obtain the approxima-
tions of the solution. In this among, one of the powerful mathematical tool is to
use wavelet spaces that are applicable in many areas such as image and signal
processing. Wavelet basis functions on any bounded domain include locally
compact support that allows us to have a sparse stiffness matrix. Moreover,
they can be used to construct adaptive numerical schemes that are guaranteed
to converge with optimal order (see for instance [7]). In [1,6–8] some numerical
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algorithms for solving this system have been developed by using wavelets. Usu-
ally, constructing wavelets with specific properties on bonded domain or on a
closed manifold is a hard mission and some serious drawbacks such as stability
problems cannot be avoided [10, 11]. On the other hand, using wavelet basis
functions usually generate a coefficient matrix with relatively high condition
number. This necessity to have basis functions for wavelet spaces can gen-
erate the above mentioned drawbacks. Therefore, a slightly weaker concept,
namely frames, can be applied to get rid of constructing basis functions. Let
H be a separable Hilbert space with dual H∗ and Λ be a countable set of in-
dices. A family Ψ = (ψλ)λ∈Λ ⊂ H is a frame for H, if there exist constants
0 < A ≤ B <∞ such that for all f ∈ H,

(1.2) A∥f∥2H ≤
∑
λ∈Λ

|⟨f, ψλ⟩|2 ≤ B∥f∥2H .

The constants A and B are called lower and upper frame bound, respectively.
Those sequences which satisfy only the upper inequality in (1.2) are called
Bessel sequences. A frame is called a tight frame, if A = B. If A = B = 1, it

is called a Parseval frame. For an index set Λ̃ ⊂ Λ, (ψλ)λ∈Λ̃ is called a frame
sequence if it is a frame for its closed span. Since frames in comparison with
wavelets have more freedom in generating the solution space, hence construc-
tion of frames is much easier than that of wavelets. Moreover, frames can be
generated by functions with smaller compact support that makes sparser the
coefficient matrix. On the other hand, since we are working with a weaker
concept, one can expect to have a coefficient matrix with relatively low condi-
tion number. In [9, 14, 19] we can see some iterative methods for solving the
equation (1.1) by using frames. Richardson method is a usual iterative method
in solving operator equations with boundary conditions (see [9]). Fornasier
and Stevenson used the steepest descent method to solve the operator equa-
tions in frame spaces. We present two algorithms in which we use Chebyshev
and conjugate gradient methods for solving operator equations. In proving the
convergence of both algorithms, we observe that the selection of suitable frame
bounds is very efficient for faster convergence of an algorithm.

This paper is organized as follows. In Section 2, we give some preliminaries
on frames. Algorithm of Chebyshev and its convergence for solving operator
equation is given in Section 3. In Chapter 4, we present conjugate gradient
method to approximate the solution of an operator equation in the frame space.
Finally, in Section 5, we present some numerical experiments to confirm our
theoretical results.
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2. Preliminaries

For a frame Ψ = (ψλ)λ∈Λ ⊂ H, let T : ℓ2(Λ) → H be the synthesis operator

T ((cλ)λ) =
∑
λ∈Λ

cλψλ,

and T ∗ : H → ℓ2(Λ) be the analysis operator

T ∗(f) = (⟨f, ψλ⟩)λ∈Λ.

Also, suppose that S := TT ∗ : H → H is the frame operator

S(f) =
∑
λ∈Λ

⟨f, ψλ⟩ψλ.

Note that T and T ∗ are surjective and injective operators, respectively, and T ∗

is the adjoint of T . Because of (1.2), T is bounded and

(2.1) ∥T∥ℓ2(Λ)→H = ∥T ∗∥H→ell2(Λ) ≤
√
B.

The operator S is a positive definite invertible operator satisfying

(2.2) AIH ≤ S ≤ BIH

and B−1IH ≤ S−1 ≤ A−1IH (see [5]). Moreover, the sequence

Ψ̃ = (ψ̃λ)λ∈Λ = (S−1ψλ)λ∈Λ,

is a frame (called the canonical dual frame) for H with bounds B−1, A−1. In
this case every f ∈ H has the expansion

(2.3) f =
∑
λ∈Λ

⟨f, ψ̃⟩ψλ =
∑
λ∈Λ

⟨f, ψλ⟩ψ̃.

In [5], it has been shown that if Ψ = (ψλ)λ∈Λ ⊂ H is a frame for H with
bounds A and B, and if L is a bounded invertible operator on H, then the
sequence Φ = (Lψλ)λ∈Λ would be a frame for H with bounds A

∥L−1∥2
H→H

and

B∥L∥2H→H .
Furthermore, if L is self adjoint, S is the frame operator of Ψ and S′ is the
frame operator of Φ, then for any f ∈ H,

S′f =
∑
λ∈Λ

⟨f, Lψλ⟩Lψλ = L(
∑
λ∈Λ

⟨f, Lψλ⟩ψλ) = L(
∑
λ∈Λ

⟨Lf, ψλ⟩ψλ) = LSLf

that means S′ = LSL (for more information we refer to [3, 5]).
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3. Chebyshev method

In this section, we verify how to use the frames for solving an operator
equation with given boundary conditions by applying the Chebyshev method.
Moreover, by using the bounds of the frame, we present a stop criteria.

One way to numerically approach the solution of the equation (1.1) with
given boundary conditions is the Richardson iterative method . First of all,
rewrite (1.1) as

u = (I − L)u+ f.

Now, for a given u0 ∈ H and k ≥ 0 define:

(3.1) uk+1 = (I − L)uk + f.

In this case, since Lu− f = 0 then
uk+1−u = (I−L)uk+f−u−(f−Lu) = (I−L)uk−u+Lu = (I−L)(uk−u).
Therefore,

∥uk+1 − u∥H ≤ ∥I − L∥H→H∥uk − u∥
that means uk converges to u, if

∥I − L∥H→H < 1.

In general, the non-stationary Richardson iteration is

(3.2) uk+1 = uk + ak(f − Luk), k = 0, 1, 2, . . . ,

where u0 is an initial guess and ak > 0 are parameters to be chosen. This
equation easily induces that the residual rk = f − Luk and the error vector
u− uk can be written as

rk = Qk(L)r0, u− uk = Qk(L)(u− u0),

where Qk(x) =
∏k−1

i=0 (1− aix), Qk(0) = 1. By a suitable choice of the param-

eters {ai}k−1
i=0 in (3.2), it may be possible to improve the rate of convergence of

the iteration (3.2). Such process is called polynomial acceleration. The Cheby-
shev polynomials have the important minimax property that makes them useful
for convergence acceleration [18].

The following theorem represents an iterative scheme based on the Richard-
son iterative method and the knowledge of some frame bounds to give an ap-
proximated solution for (1.1).

Theorem 3.1. Let Ψ = (ψλ)λ∈Λ ⊂ H be a frame for H with frame operator
S, and let L be as in (1.1). Suppose that A and B are the frame bounds of the
frame (Lψλ)λ∈Λ. Let uk = uk−1 +

2
A+BLS(f − Luk−1) for k ≥ 1.

Then

(3.3) ∥I − 2

A+B
LSL∥H→H ≤ B −A

B +A
.
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Proof. For every v ∈ H we have⟨(
I − 2

A+BLSL
)
v, v

⟩
= ∥v∥2H − 2

A+B ⟨LSLv, v⟩

= ∥v∥2H − 2
A+B ⟨S′v, v⟩

= ∥v∥2H − 2
A+B

∑
λ |⟨v, ϕλ⟩|2

≤ ∥v∥2H − 2A
A+B ∥v∥2H

=
(

B−A
B+A

)
∥v∥2H .

(3.4)

The inequality given in (3.4) is obtained by the frame property of Φ = (Lψλ)λ∈Λ.
Similarly, we have

−
(
B −A

B +A

)
∥v∥2H ≤

⟨(
I − 2

A+B
LSL

)
v, v

⟩
.

So, we conclude that

(3.5)

∥∥∥∥I − 2

A+B
LSL

∥∥∥∥
H→H

≤ B −A

B +A
.

□

Note that by definition of uk, in Theorem 3.1 we obtain

u− uk = u− uk−1 −
2

A+B
LSL(u− uk−1)

=

(
I − 2

A+B
LSL

)
(u− uk−1)

=

(
I − 2

A+B
LSL

)2

(u− uk−2) = ...

=

(
I − 2

A+B
LSL

)k

(u− u0).

Thus

(3.6) ∥u− uk∥H ≤ ∥I − 2

A+B
LSL∥kH→H∥u∥H ,

that means the iterative method proposed in Theorem 3.1 is convergent for
each initial guess u0. Now, let hn =

∑n
k=1 ank

uk, where
∑n

k=1 ank
= 1 and uk

is given as in Theorem 3.1.



Application of frames in Chebyshev 1270

The condition
∑n

k=1 ank
= 1 guarantees that if u1 = u2 = .... = un = u, then

hn = u. Therefore,

u− hn =
∑n

k=1 ank
u−

∑n
k=1 ank

uk =
∑n

k=1 ank
(u− uk)

=
∑n

k=1 ank

(
I − 2

A+BLSL
)k

(u− u0).

Putting R = I − 2
A+BLSL and Qn(x) =

∑n
k=1 ank

xk, we obtain

(3.7) u− hn = Qn(R)(u− u0)

that is, the error is a polynomial in R applied to the initial error u− u0.

Remark 3.2. Since

−B −A

B +A
∥f∥2H ≤ ⟨(I − 2

A+B
LSL)f, f⟩ ≤ B −A

B +A
∥f∥2H ,

the spectrum of R is obtained in [−α0, α0] with α0 = B−A
B+A .

Since LSL is a positive operator, the spectral theorem applies and yields

(3.8) ∥u− hn∥H ≤ ∥Qn(R)∥∥u− u0∥H ≤ max
|x|≤α0

|Qn(x)|∥u− u0∥H .

Now, in order to minimize this error we try to find

(3.9) min
Qn(1)=1

max
|x|≤α0

|Qn(x)|,

where the min is taken over all polynomials of degree less than or equal to n,
with Qn(1) =

∑n
k=1 ank

= 1. Having the answer of this, our request can be
given in terms of the Chebyshev polynomials that are defined by

C0(x) = 1, C1(x) = x

and for n ≥ 2,

(3.10) Cn(x) = 2xCn−1(x)− Cn−2(x).

It is readily seen that
(3.11)

Cn(x) =

{
cos(n cos−1(x)), |x| ≤ 1

cosh(n cosh−1(x)) = 1
2

(
(x+

√
x2 − 1)n + (x+

√
x2 − 1)−n

)
, |x| ≥ 1.

The following lemma has been established in [4].

Lemma 3.3. For given a < b < 1 let Pn(x) =
Cn( 2x−a−b

b−a )
Cn( 2−a−b

b−a )
. Then

max
a≤x≤b

|Pn(x)| ≤ max
a≤x≤b

|Qn(x)|,

for all polynomials Qn of degree n satisfying Qn(1) = 1. Furthermore,

max
a≤x≤b

|Pn(x)| =
1

Cn

(
2−a−b
b−a

) .
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Theorem 3.4. The polynomial
Cn(

x
α0

)

Cn(
1

α0
)
minimizes the error ∥u− hn∥ given in

the inequality (3.8).

Proof. It is enough to apply Lemma 3.3 with a = −α0 and b = α0.
In this case,

(3.12) Pn(x) =
Cn(

2x+α0−α0

α0+α0
)

Cn(
2+α0−α0

α0+α0
)

=
Cn(

x
α0

)

Cn(
1
α0

)
.

□

Proposition 3.5. The approximated solution hn with the error ∥u− hn∥ sat-
isfies the recurrence relation

hn = βn

(
hn−1 − hn−2 +

2

A+B
LSL(u− hn−1)

)
+ hn−2,

where βn =
2

α0
Cn−1(

1
α0

)

Cn(
1

α0
)

.

Proof. By Theorem 3.4 we obtain a recurrence relation for

Pn(x) =
Cn(

x
α0

)

Cn(
1
α0

)
,

or equivalently Cn(
1
α0

)Pn(x) = Cn(
x
α0

). Combining this formula with the re-

currence relation (3.10) for Cn gives

Cn(
1

α0
)Pn(x) =

2x

α0
Cn−1(

x

α0
)− Cn−2(

x

α0
) =

2x

α0
Cn−1(

1

α0
)Pn−1(x)− Cn−2(

1

α0
)Pn−2(x).

Now, replacing x by R induces the operator identity

Cn(
1

α0
)Pn(R) =

2R

α0
Cn−1(

1

α0
)Pn−1(R)− Cn−2(

1

α0
)Pn−2(R).

Multiplying this operator identity by u− u0 gives

Cn(
1

α0
)Pn(R)(u−u0) = (

2R

α0
Cn−1(

1

α0
)Pn−1(R)−Cn−2(

1

α0
)Pn−2(R))(u−u0),

and by (3.7) we obtain

Cn(
1

α0
)(u− hn) =

2

α0
Cn−1(

1

α0
)R(u− hn−1)− Cn−2(

1

α0
)(u− hn−2).

Writing R = I − 2
A+BLSL induces

Cn(
1

α0
)(u− hn) =

2

α0
Cn−1(

1

α0
)(I − 2

A+B
LSL)(u− hn−1)−Cn−2(

1

α0
)(u− hn−2),
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or equivalently

Cn(
1

α0
)u− Cn(

1

α0
)hn

=
2

α0
Cn−1(

1

α0
)u+

2

α0
Cn−1(

1

α0
)

(
−hn−1 −

2

A+B
LSL(u− hn−1)

)
− Cn−2(

1

α0
)u+ Cn−2(

1

α0
)hn−2,

and finally by (3.10),

Cn(
1

α0
)hn =

2

α0
Cn−1(

1

α0
)

(
hn−1 +

2

A+B
LSL(u− hn−1)

)
− Cn−2(

1

α0
)hn−2.

Therefore,

(3.13) hn =
2

α0

Cn−1(
1
α0

)

Cn(
1
α0

)
(hn−1 +

2

A+B
LSL(u− hn−1))−

Cn−2(
1
α0

)

Cn(
1
α0

)
hn−2.

Now, by using (3.10), we have

1− βn = 1− 2

α0

Cn−1(
1
α0

)

Cn(
1
α0

)
= −

Cn−2(
1
α0

)

Cn(
1
α0

)
.

In this case, we can rewrite (3.13) as

hn = βn

(
hn−1 +

2

A+B
LSL(u− hn−1)

)
+ (1− βn)hn−2

or equivalently

hn = βn

(
hn−1 − hn−2 +

2

A+B
LSL(u− hn−1)

)
+ hn−2.

□

Proposition 3.6. If βn =
2

α0
Cn−1(

1
α0

)

Cn(
1

α0
)

, then the following recurrence holds

βn = (1− α2
0

4
βn−1)

−1.

Proof. By the assumption and the recursive formula, we have

βn =

(
α0Cn(

1
α0

)

2Cn−1(
1
α0

)

)−1

=

(
α0

2

2
α0

Cn−1(
1
α0

)− Cn−2(
1
α0

)

Cn−1(
1
α0

)

)−1

=

(
1− α2

0

4
βn−1

)−1

.

□

Now, based on the above argument, we design the following algorithm in
order to give an iterative method for solving the equation (1.1). First we
note that since L is a positive definite operator, there exists m > 0 such that
m∥f∥H ≤ ∥Lf∥H for all f ∈ H.
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Suppose that (ψλ)λ∈Λ is a frame with frame operator S with A and B
as the bounds of the frame (Lψλ)λ∈Λ. The following algorithm solves the
operator equation Lu = f with given boundary conditions on the frame space
by Chebyshev method. The tolerance value ϵ is chosen such that ∥u − ū∥ ≤ ϵ
in which ū is the approximated value of u.

Algorithm 1 [L, ϵ, f, A,B,m] → uϵ

(i) Let α0 = B−A
B+A , σ =

√
B−

√
A√

B+
√
A

(ii) Put h0 := 0, h1 := 2
A+BLSf , β1 = 2, n = 1

(iii) While 2σn

1+σ2n

∥f∥H

m > ϵ do

(1) n := n+ 1

(2) βn = (1− α2
0

4 βn−1)
−1

(3) hn = βn(hn−1 − hn−2 +
2

A+BLS(f − Lhn−1)) + hn−2, n ≥ 2
end do
(iv) uϵ = hn−1.

Theorem 3.7. The approximated solution hn in Algorithm 1 satisfies

∥u− hn∥H ≤ 2σn

1 + σ2n

∥f∥H
m

.

Also the output uϵ satisfies ∥u− uϵ∥H ≤ ϵ.

Proof. Combining (3.8) and Lemma 3.3 with u0 = h0 = 0, we obtain

(3.14) ∥u− hn∥H ≤ 1

Cn(
1
α0

)
∥u− u0∥H =

1

Cn(
1
α0

)
∥u∥H ≤ 1

Cn(
1
α0

)

∥f∥H
m

.

On the order hand, by (3.11) we have

Cn

(
1
α0

)
= Cn

(
B+A
B−A

)

= 1
2

(B+A
B−A

+

√
(B+A)2

(B−A)2
− 1

)n

+ 1(
B+A
B−A

+

√
(B+A)2

(B−A)2
−1

)n



= 1
2

((
B+A
B−A

+
√
4BA

B−A

)n
+ 1(

B+A
B−A

+
√

4BA
B−A

)n

)

= 1
2

( (
√

B+
√
A)2

B−A

)n
+ 1(

(
√

B+
√

A)2

B−A

)n

 = 1
2

(√
B+

√
A√

B−
√

A

)n
+ 1(√

B+
√

A√
B−

√
A

)n


= 1

2
( 1
σn + σn) = 1+σ2n

2σn .

This equality with (3.14) yields that ∥u− uϵ∥H ≤ ϵ. □
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4. Conjugate gradient method

In this section, we verify how to use the frames for solving an operator
equation with given boundary conditions by applying the conjugate gradient
method. Moreover, by using the bounds of the frame, we present a stop criteria.

For Chebyshev method to be effective, a knowledge of an interval [a, b] en-
closing the spectrum of L is required. If this interval is too crude, the process
loses efficiency. An important advantage of conjugate gradient method is that
no a priori information about the location of the spectrum is required. Also
in contrast to Chebyshev method, the conjugate gradient method is adaptive.
The hidden polynomials Qn in (3.7) depend nonlinearly on u and arise from a
minimization problem.

Suppose that S is the frame operator of the frame (ψλ)λ∈Λ. Since LSL is
positive definite then we can define the LSL norm for the space H by

∥f∥LSL = ⟨f, LSLf⟩ 1
2 , ∀f ∈ H,

corresponding to the inner product

⟨f, g⟩LSL = ⟨f, LSLg⟩, ∀f, g ∈ H.

In this case if u is the solution of the equation (1.1) then by (2.2) we have

(4.1) ∥u∥2LSL = ⟨u, LSLu⟩ = ⟨Lu, SLu⟩ = ⟨f, Sf⟩ ≤ B∥f∥2H .

Considering the problem (1.1), define v−1 = 0, v0 = LSf and

(4.2) vn+1 = LSLvn − ⟨LSLvn, LSLvn⟩
⟨vn, LSLvn⟩

vn − ⟨LSLvn, LSLvn−1⟩
⟨vn−1, LSLvn−1⟩

vn−1.

Assume that u is the solution of the problem (1.1), then the following lemma
holds.

Lemma 4.1. Let Hn = span{(LSL)ju : j = 1, 2, 3, . . . , n}, then

{v0, v1, . . . , vn−1} ⊆ Hn.

Proof. We verify this claim by induction .Clearly it is true for n = 1. Now
assume that, it is true for all k ≤ n. For n+ 1 we have

vn = LSLvn−1 −
⟨LSLvn−1, LSLvn−1⟩

⟨vn−1, LSLvn−1⟩
vn−1 −

⟨LSLvn−1, LSLvn−2⟩
⟨vn−2, LSLvn−2⟩

vn−2 ⊆ Hn+1

as we desired. □

Lemma 4.2. The system {v0, v1, . . . , vn−1} forms an orthogonal basis for Hn

with respect to the LSL inner product

⟨f, g⟩LSL = ⟨f, LSLg⟩ ∀f, g ∈ H.
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Proof. Since dim Hn ≤ n and span{v0, v1, . . . , vn−1} is a subspace of Hn, then
it is enough to show that {v0, v1, . . . , vn−1} is an orthogonal system. Since,
v−1 = 0 and v0 = LSf , then the claim is obvious for n = 1. Also, for n = 2,
we have

v1 = LSLv0 −
⟨LSLv0, LSLv0⟩

⟨v0, LSLv0⟩
v0,

and so,

⟨v1, v0⟩LSL=⟨v1, LSLv0⟩=⟨LSLv0, LSLv0⟩ −
⟨LSLv0, LSLv0⟩

⟨v0, LSLv0⟩
⟨v0, LSLv0⟩=0.

For n > 2, arguing by induction on j, we assume that ⟨vn, LSLvj⟩ = 0 for
j = 1, 2, . . . , n − 1 and {v0, v1, . . . , vn} is an LSL orthogonal basis for Hn+1.
Then we have to show that ⟨vn−1, LSLvj⟩ = 0 for j = 0, 1, 2, . . . , n. For j = n
we have

⟨vn+1, LSLvn⟩ =
⟨
LSLvn − ⟨LSLvn,LSLvn⟩

⟨vn,LSLvn⟩ vn − ⟨LSLvn,LSLvn−1⟩
⟨vn−1,LSLvn−1⟩

vn−1, LSLvn
⟩

= ⟨LSLvn, LSLvn⟩ − ⟨LSLvn,LSLvn⟩
⟨vn,LSLvn⟩ ⟨vn, LSLvn⟩

− ⟨LSLvn,LSLvn−1⟩
⟨vn−1,LSLvn−1⟩

⟨vn−1, LSLvn⟩ = 0.

A similar argument holds for j = n − 1. Now, for j < n − 1, we observe that
LSLvj ∈ LSL(Hn−1) ⊂ Hn. On the other hand, the induction hypothesis
implies that {v0, . . . , vn−1} is a basis for Hn, hence,

LSLvj =

n−1∑
i=0

civi.

Thus,

⟨vn+1, LSLvj⟩ = ⟨LSLvn −αvn − βvn−1, LSLvj⟩ = ⟨LSLvn, LSLvj⟩ −α⟨vn, LSLvj⟩

−β⟨vn−1, LSLvj⟩ = ⟨LSLvn,
n−1∑
i=0

civi⟩ =
n−1∑
i=0

ci⟨LSLvn, vi⟩ =
n−1∑
i=0

ci⟨vn, LSLvi⟩ = 0,

for every j < n− 1. □

Now, using the above argument, we can design the following algorithm based
on the conjugate gradient method in order to obtain an approximated solution
for the problem (1.1). Let (ψλ)λ∈Λ be a frame for a Hilbert space H with frame
operator S, and let A, B be the frame bounds of the frame (Lψλ)λ∈Λ. The
following algorithm solves the operator equation Lu = f with given boundary
conditions on the frame space by applying the conjugate gradient method. The
tolerance value ϵ is chosen such that ∥u−ū∥ ≤ ϵ in which ū is the approximated
value of u.

Algorithm 2 [L, f, ϵ, A,B] → uϵ
(i) Put h0 = 0, v−1 = 0, r0 = v0 = LSf, n = 0
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(ii) While 2σn

1+σ2n ∥f∥H
√
B > ϵ do

(1) λn = ⟨rn,vn⟩
⟨vn,LSLvn⟩

(2) hn+1 = hn + λnvn
(3) rn+1 = rn − λnLSLvn
(4) vn+1 = LSLvn − ⟨LSLvn,LSLvn⟩

⟨vn,LSLvn⟩ vn − ⟨LSLvn,LSLvn−1⟩
⟨vn−1,LSLvn−1⟩ vn−1

(5) n = n+ 1
end do
(iii)uϵ = hn−1.

Theorem 4.3. The approximated solution hn in Algorithm 2 is the orthogonal
projection of the solution u of the problem (1.1) onto Hn. That is

∥u− hn∥LSL ≤ ∥u− g∥LSL ∀g ∈ Hn.

Proof. It is enough to show that ⟨u− hn, hn⟩LSL = 0. To do this, we note that

by step (2) in Algorithm 2, hn =
∑n−1

j=0 λjvj ∈ Hn. Then, by Lemma 4.2,

(4.3) ⟨hn, vn⟩LSL = ⟨
n−1∑
j=0

λjvj , vn⟩LSL = 0.

Also by step (3) in Algorithm 2, we have

rn = rn−1 − λn−1LSLvn−1 = · · · = r0 −
n−1∑
j=0

λjLSLvj

= r0 − LSL(
n−1∑
j=0

λjvj) = LSLu− LSLhn = LSL(u− hn).

So, the step (1) in Algorithm 2 implies

λn =
⟨rn, vn⟩LSL

⟨vn, LSLvn⟩
=

⟨u− hn, vn⟩LSL

⟨vn, vn⟩LSL

and

⟨u− hn, hn⟩LSL = ⟨u−
∑n−1

j=0 λjvj ,
∑n−1

j=0 λjvj⟩LSL

=
∑n−1

j=0 λj (⟨u, vj⟩LSL − λj⟨vj , vj⟩LSL)

=
∑n−1

j=0 λj

(
⟨u, vj⟩LSL − ⟨u−hj ,vj⟩LSL

⟨vj ,vj⟩LSL
⟨vj , vj⟩LSL

)
=

∑n−1
j=0 λj⟨hj , vj⟩LSL = 0,

where the last equality results from (4.3). □
Theorem 4.4. Given an arbitrary accuracy ϵ > 0 in the Algorithm 2, the
output uϵ satisfies ∥u− uϵ∥LSL ≤ ϵ.
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Proof. The definition of hn implies that hn = qn−1(LSL)LSLu, where qn−1(x)
is a polynomial of degree n− 1. Then

u− hn = (I − qn−1(LSL)LSL)u = Φn(I − LSL)u,

where Φn(x) = 1−(1−x)qn−1(1−x) is a polynomial of degree n with Φn(1) = 1.
Thus

∥u− hn∥LSL = ∥Φn(I − LSL)u∥LSL ≤ ∥Pn(I − LSL)u∥LSL

for all polynomials Pn of degree n with Pn(1) = 1. Using Lemma 3.3, with
α0 = B−A

B+A , a = −α0 and b = α0, we can minimize this error. In fact

∥u− hn∥LSL ≤ ∥Pn(I − LSL)u∥LSL=∥(LSL)
1
2Pn(I − LSL)(LSL)

−1
2 (LSL)

1
2 u∥H

≤ ∥(LSL)
1
2Pn(I − LSL)(LSL)

−1
2 ∥H→H∥(LSL)

1
2 u∥H

= ∥Pn(I − LSL)∥H→H∥u∥LSL

≤ max−α0≤x≤α0 |Pn(x)|∥u∥LSL,

and by Lemma 3.3, Pn(x) =
Cn(

x
α0

)

Cn(
1

α0
)
minimizes this error. Specially, the

maximum value of this error is

max
−α0≤x≤α0

∣∣∣∣∣Cn(
x
α0

)

Cn(
1
α0

)

∣∣∣∣∣ = 1

Cn(
1
α0

)
=

2σn

1 + σ2n
,

where σ =
√
B−

√
A√

B+
√
A
. Therefore, by (4.1) we conclude that

∥u− hn∥LSL ≤ 2σn

1 + σ2n
∥u∥LSL =

2σn

1 + σ2n

√
B∥f∥H

that is, by step (ii) in Algorithm 2, ∥u− uϵ∥LSL ≤ ϵ as we desired. □

5. Numerical experiments

In this section, we present two examples to confirm the theoretical results
given in the previous sections.

Example 5.1. Consider the boundary value problem{
−u′′ = f in Ω = (0, 1),
u(0) = u(1) = 0,

on the spaceH = span{xi(1−x)i : i = 1, 1, 2, 2, 3, 3, . . . , 20, 20}. The functions
xi(1−x)i constitute a frame forH with lower and upper bounds 1 and 2, respec-
tively. The function f is chosen such that u(x) = 4x3(1−x)3−3x4(1−x)4 is the
exact solution. The value σ is derived

√
2−1√
2+1

≈ 0.1716 that enables the algorithm

to converge at limited iterations. Table 1 shows the error ∥u− ū∥L2([0,1]), where
ū denotes the approximated solution given by conjugate gradient method. As
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is seen, after 58 iterations in 65 seconds, the proposed method would be con-
verged.

Table 1. L2-norm of error between the exact and approxi-
mated solutions

n 2 15 30 58 CPU(sec.)
∥u− ū∥L2([0,1]) 1.39 0.87 0.017 0.001 65

Example 5.2. Consider the boundary value problem{
−u′′ + 2u = f in Ω = (0, 1),
u(0) = u(1) = 0,

on the space H = span{sin(iπx) : i = 1, 1, 1, 2, 2, 2, 3, 4, 5, . . . , 30}. The
functions sin(iπx) constitute a frame for H with lower and upper bounds 1
and 3, respectively. The function f is chosen such that u(x) = 3 sin(2πx) −
sin(8πx) is the exact solution. The value σ is derived

√
3−1√
3+1

≈ 0.2679 that

enables the algorithm to converge at limited iterations. Table 2 shows the error
∥u− ū∥L2([0,1]), where ū denotes the approximated solution given by conjugate
gradient method. As is seen, after 96 iterations in 137 seconds, the proposed
method would be converged.

Table 2. L2-norm of error between the exact and approxi-
mated solutions

n 2 20 40 96 CPU(sec.)
∥u− ū∥L2([0,1]) 1.28 0.967 0.021 0.001 137
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