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Abstract. Some improvements of Young inequality and its reverse for

positive numbers with Kantorovich constant K(t, 2) =
(1+t)2

4t
are given.

Using these inequalities some operator inequalities and Hilbert-Schmidt
norm versions for matrices are proved. In particular, it is shown that if
a, b are positive numbers and 0 ⩽ ν ⩽ 1, then for all integers k ⩾ 1 :

K(h
1
2n , 2)rna♯νb ⩽ a∇νb−

n−1∑
k=0

rk

(
(a♯mk

2k
b)

1
2 − (a♯mk+1

2k

b)
1
2

)2

⩽ K(h
1
2n , 2)Rna♯νb,

where mk = [2kν] is the largest integer not greater than 2kν, r0 =
min{ν, 1− ν}, rk = min{2rk−1, 1− 2rk−1} and Rk = 1− rk.
Keywords: Heinz mean, Hilbert-Schmidt norm, Kantorovich constant,

Young inequality.
MSC(2010): Primary: 47A63; Secondary: 47A64, 15A42.

1. Introduction

Let a and b be positive numbers. The famous Young inequality states that

a1−νbν ⩽ (1− ν)a+ νb,

for every 0 ⩽ ν ⩽ 1. By defining weighted arithmetic and geometric means as

a∇b = (1− ν)a+ νb, a♯νb = a1−νbν ,

we can consider the Young inequality as weighted arithmetic-geometric means
inequality. This inequality has received an increasing attention in the literature.
An improvement of Young inequality, obtained by F. Kittaneh and Y. Manasrah
[7], is as follows:

a♯νb+ r(
√
a−

√
b)2 ⩽ a∇νb,
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Improvements of Young inequality 1302

where r = min{ν, 1− ν}.
The authors of [6] obtained another refinement of the Young inequality as

(a♯νb)
2 + r2(a− b)2 ⩽ (a∇νb)

2,

where r = min{ν, 1− ν}.
In [12], the authors obtained another improvement of the Young inequality

and its reverse as follows:

(1.1) K(
√
h, 2)r

′
a♯νb ⩽ a∇νb− r(

√
a−

√
b)2,

and

(1.2) a∇νb−R(
√
a−

√
b)2 ⩽ K(

√
h, 2)−r′a♯νb,

where h = b
a and K(t, 2) = (1+t)2

4t is the Kantorovich constant, r = min{ν, 1−
ν}, R = max{ν, 1− ν} and r′ = min{2r, 1− 2r}.

In addition, with the same notation as above, another type of the reverse of
Young inequality, using Kantorovich constant, is presented in [10]

(1.3) a∇νb− r(
√
a−

√
b)2 ⩽ K(

√
h, 2)R

′
a♯νb,

where R′ = max{2r, 1− 2r}.
Note that the K(t, 2) ≥ 1 for all t > 0 and attains its minimum at t = 1.

Also K(t, 2) = K( 1t , 2).
Recently, Liao and Wu [9] obtained the following refinement of inequalities

(1.1) and (1.2):

a∇νb ⩾ν(
√
a−

√
b)2 + r((ab)

1
4 −

√
a)2 +K(h

1
4 , 2)r1a♯νb,(1.4)

a∇νb ⩽(1− ν)(
√
a−

√
b)2 − r((ab)

1
4 −

√
b)2 +K(h

1
4 , 2)−r1a♯νb,

for 0 < ν ⩽ 1
2 , and

a∇νb ⩾(1− ν)(
√
a−

√
b)2 + r((ab)

1
4 −

√
b)2 +K(h

1
4 , 2)r1a♯νb,(1.5)

a∇νb ⩽ν(
√
a−

√
b)2 − r((ab)

1
4 −

√
a)2 +K(h

1
4 , 2)−r1a♯νb,

for 1
2 < ν < 1, where r = min{2(1− ν), 1− 2(1− ν)} and r1 = min{2r, 1− 2r}.
For more related inequalities see [1, 11,13].
Numerical inequality (1.5), leads to similar operator inequalities. See also [2].

For this purpose, let B(H ) stand for the C∗-algebra of all bounded linear
operators on a complex Hilbert space H . An operator A ∈ B(H ) is called
positive (denoted by A ⩾ 0) if A is self-adjoint with non-negative spectrum,
and strictly positive (denoted by A > 0) if A is an invertible positive operator.
The partial order A ⩽ B, on the class of self-adjoint operators, means that
B −A is a positive operator.

If H is a Hilbert space, of dimension n, then we identify B(H ) with Mn

consisting of all n×n complex matrices and the positive operators and strictly
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positive operators are the same as the positive semidefinite matrices and posi-
tive (definite) matrices, respectively.

The weighted arithmetic and geometric mean for strictly positive operators
A,B, is defined by

A∇νB = (1− ν)A+ νB, A♯νB = A
1
2 (A− 1

2BA− 1
2 )νA

1
2 .

In addition, the Heinz mean of A and B is defined by

Hν(A,B) =
A♯νB +A♯1−νB

2
.

See [3, 4] for more information about these means.
Using the above notations, the operator versions of Young inequality, its

refinements and its reverses are proved. For instance, we have the following
refinement of (1.4) and (1.5) established in [9]. The other inequalities can be
stated in a similar way.

Theorem 1.1 ([9]). Let A,B ∈ B(H ) be strictly positive operators and positive
real numbers m,m′,M,M ′ satisfy either 0 < m′I ⩽ A ⩽ mI ⩽ MI ⩽ B ⩽ M ′I
or 0 < m′I ⩽ B ⩽ mI ⩽ MI ⩽ A ⩽ M ′I.

(I) If 0 < ν ⩽ 1
2 , then

A∇νB ⩾ 2ν(A∇B −A♯B) + r(A♯B − 2A♯ 1
4
B +A) +K(h

1
4 , 2)r1A♯νB,

and

A∇νB ⩽ 2(1− ν)(A∇B −A♯B)− r(A♯B − 2A♯ 3
4
B +B) +K(h

1
4 , 2)−r1A♯νB,

(II) If 1
2 < ν < 1, then

A∇νB ⩾ 2(1− ν)(A∇B −A♯B) + r(A♯B − 2A♯ 3
4
B +B) +K(h

1
4 , 2)r1A♯νB,

and

A∇νB ⩽ 2ν(A∇B −A♯B)− r(A♯B − 2A♯ 1
4
B +A) +K(h

1
4 , 2)−r1A♯νB,

where h = M
m , r = min{ν, 1− ν} and r1 = min{2r, 1− 2r}.

The main aim of this paper is to present a generalization of these inequalities.
First, we present some generalizations of numerical inequalities. Employing
them we then prove some refined operator versions of Young inequality and
its reverse. Also some inequalities for Hilbert-Schmidt norm of matrices are
obtained.

Throughout the paper, for 0 ⩽ ν ⩽ 1 and integer k ⩾ 1, the notation mk =
[2kν] stands for the largest integer not greater than 2kν, r0 = min{ν, 1 − ν},
rk = min{2rk−1, 1− 2rk−1} and Rk = 1− rk.
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2. Numerical results

Our first theorem gives a refined version of Young inequality and its reverse.

Theorem 2.1. Let a, b be positive real numbers and ν ∈ [0, 1]. Then

K(h
1
2n , 2)rna♯νb ⩽ a∇νb−

n−1∑
k=0

rk

(
(a♯mk

2k
b)

1
2 − (a♯mk+1

2k
b)

1
2

)2

(2.1)

⩽ K(h
1
2n , 2)Rna♯νb,

where h = b
a .

In addition, if ν = p
2t for some p, t ∈ N with t > 1, then

K(h
1

2t−1 , 2)rt−1a♯νb = a∇νb−
t−2∑
k=0

rk

(
(a♯mk

2k
b)

1
2 − (a♯mk+1

2k
b)

1
2

)2

= K(h
1

2t−1 , 2)Rt−1a♯νb.

Proof. First, we prove the left hand side of inequality (2.1), by using induction.
For n = 1, we reach inequality (1.1). Let inequality (2.1) holds for n.

For 0 < ν ⩽ 1
2 , we have

a∇νb− r0(
√
a−

√
b)2 = a∇νb− ν(

√
a−

√
b)2

= (1− ν)a+ νb− ν(a− 2
√
ab+ b)

= 2ν
√
ab+ (1− 2ν)a

= a∇2ν

√
ab.

Applying inequality (2.1) for positive numbers a and
√
ab and 2ν ∈ (0, 1], we

get

a∇νb− r0(
√
a−

√
b)2

= a∇2ν

√
ab

⩾ K(
√
h

1
2n , 2)rn+1a♯2ν

√
ab

+
n−1∑
k=0

rk+1

(
(a♯mk+1

2k

√
ab)

1
2 − (a♯mk+1+1

2k

√
ab)

1
2

)2

= K(h
1

2n+1 , 2)rn+1a♯νb+
n∑

k=1

rk

(
(a♯mk

2k
b)

1
2 − (a♯mk+1

2k
b)

1
2

)2

.

For 1
2 < ν < 1, we can apply the first part for 1 − ν and replace a and b.

Note that [2k(1− ν)] = 2k − [2kν]− 1, if 2kν is not integer. Thus, if 2kν is not
integer for any k, the inequality holds.
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Now, let ν = p
2q for some q > 1 and odd number p. Since for each i < q,

the coefficient ri ≤ 1
2 is of the form pi

2q−i , for some odd number qi, it can be

concluded that rq−1 = 1
2 = Rq−1. Hence the desired equality follows. A similar

argument yields the second inequality. □

Changing the elements a and b in inequality (2.1), we can state the following
result for Heinz mean.

Corollary 2.2. Let a, b be positive real numbers and ν ∈ (0, 1). Then

K(h
1
2n , 2)rnHν(a, b) ⩽ a∇b−

n−1∑
k=0

rk

(
Hmk

2k
(a, b)− 2H 2mk+1

2k+1

(a, b) +Hmk+1

2k

(a, b)

)
⩽ K(h

1
2n , 2)RnHν(a, b),

where h = b
a
.

In the following theorem, we state another version of the reversed Young
inequality.

Theorem 2.3. Let a, b be positive real numbers and ν ∈ (0, 1). Then
(2.2)

a∇νb ⩽ K(h
1
2n , 2)−rna♯νb+ (

√
a−

√
b)2 −

n−1∑
k=0

rk

(
(a♯1−mk

2k
b)

1
2 − (a♯

1−mk+1

2k

b)
1
2

)2

,

where h = b
a
.

Proof. Applying the arithmetic-geometric mean inequality, we have

K(h
1
2n , 2)−rna♯νb+K(h

1
2n , 2)rnb♯νa ≥ 2

√
ab.

Using this inequality and employing inequality (2.1), we get

(
√
a−

√
b)2 − a∇νb

= b∇νa− 2
√
ab−K(h

1
2n , 2)−rna♯νb+

n−1∑
k=0

rk

(
(a♯1−mk

2k
b)

1
2 − (a♯

1−mk+1

2k

b)
1
2

)2

.

Thus we get the result. □

Corollary 2.4. Let a, b be positive real numbers and ν ∈ (0, 1). Then

a∇b ⩽ K(h
1
2n , 2)−rnHν(a, b)

+ (
√
a−

√
b)2 −

n−1∑
k=0

rk

(
Hmk

2k
(a, b)− 2H 2mk+1

2k+1
(a, b) +Hmk+1

2k
(a, b)

)
,

where h = b
a .
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Remark 2.5. Replacing a and b by their squares in (2.1) and (2.2), respectively,
we obtain

K(h
1

2n−1 , 2)rna2♯νb
2 ⩽ a2∇νb

2 −
n−1∑
k=0

rk

(
a♯mk

2k
b− a♯mk+1

2k
b

)2

(2.3)

⩽ K(h
1

2n−1 , 2)Rna2♯νb
2,

and

(2.4)

a2∇νb
2 ⩽ K(h

1

2n−1 , 2)−rna2♯νb
2+(a− b)2−

n−1∑
k=0

rk

(
a♯1−mk

2k
b− a♯

1−mk+1

2k
b

)2

,

where h = b
a .

The following two theorems are useful to prove a version of these inequalities
for the Hilbert-Schmidt norm of matrices and we apply them in Section 4.

Theorem 2.6. Let a, b be positive real numbers and ν ∈ (0, 1). Then

K(h
1

2n−1 , 2)rn(a♯νb)
2 ⩽ (a∇νb)

2 − r20(a− b)2 −
n−1∑
k=1

rk

(
a♯mk

2k
b− a♯mk+1

2k
b

)2

⩽ K(h
1

2n−1 , 2)Rn(a♯νb)
2,

where h = b
a .

Proof. By a simple calculation, we have (a∇νb)
2−r20(a−b)2 = a2∇νb

2−r0(a−
b)2. Using (2.3), we have

K(h
1

2n−1 , 2)rn(a♯νb)
2 ⩽ a2∇νb

2 −
n−1∑
k=0

rk

(
a♯mk

2k
b− a♯mk+1

2k
b

)2

= (a∇νb)
2 − r20(a− b)2 −

n−1∑
k=1

rk

(
a♯mk

2k
b− a♯mk+1

2k
b

)2

⩽ K(h
1

2n−1 , 2)Rn(a♯νb)
2.

□

Theorem 2.7. Let a, b be positive real numbers and ν ∈ (0, 1). Then

(a∇νb)
2 ⩽ K(h

1

2n−1 , 2)−rn(a♯νb)
2 +R2

0(a− b)2 −
n−1∑
k=1

rk

(
a♯mk

2k
b− a♯mk+1

2k
b

)2

,

where h = b
a .
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Proof. We have

(a∇νb)
2 − (1− r0)

2(a− b)2

= a2∇νb
2 − (1− r0)(a− b)2

⩽ K(h
1

2n−1 , 2)−rn(a♯νb)
2 + r0(a− b)2 −

n−1∑
k=0

rk

(
a♯mk

2k
b− a♯mk+1

2k
b

)2

by inequality (2.4)

= K(h
1

2n−1 , 2)−rn(a♯νb)
2 −

∞∑
k=1

rk

(
a♯mk

2k
b− a♯mk+1

2k
b

)2

.

□

3. Related operator inequalities

To reach the operator versions of the inequalities obtained in Section 2, we
use the continuous functional calculus for self-adjoint operators.

Let X be a strictly positive operator. Then σ(X) is a compact subset of
(0,+∞). We denote by m(X) and M(X) the minimum and the maximum
values of σ(X).

Now, we give the first result in this section which is based on Theorem 2.1
and is a refinement of [9, Theorem 3].

Theorem 3.1. Let A,B ∈ B(H ) be strictly positive operators with M(A) ⩽
m(B) and ν ∈ (0, 1). Then

K(h
1
2n , 2)rnA♯νB ⩽ A∇νB −

n−1∑
k=0

rk

(
A♯mk

2k
B − 2A♯ 2mk+1

2k+1
B +A♯mk+1

2k
B

)(3.1)

⩽ K(h
1
2n , 2)RnA♯νB,

where h = m(B)
M(A) .

Proof. Choosing a = 1 in Theorem 2.1, we have

1− ν + νb ⩾ K(b
1
2n , 2)rnbν +

n−1∑
k=0

rk

(
(b

mk
2k )

1
2 − (b

mk+1

2k )
1
2

)2

,

for any b > 0.
If X = A− 1

2BA− 1
2 , then σ(X) ⊆ [h,+∞). Due to the Kantorovich constant
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is increasing on [1,+∞), it follows that for all b ≥ h,

1− ν + νb ⩾ K(b
1
2n , 2)rnbν +

n−1∑
k=0

rk

(
(b

mk
2k )

1
2 − (b

mk+1

2k )
1
2

)2

⩾ K(h
1
2n , 2)rnbν +

n−1∑
k=0

rk

(
(b

mk
2k )

1
2 − (b

mk+1

2k )
1
2

)2

.

By the continuous functional calculus, we get

(1− ν)I + νX ⩾ K(h
1
2n , 2)rnXν +

n−1∑
k=0

rk

(
X

mk
2k − 2X

2mk+1

2k+1 +X
mk+1

2k

)
.

Multiplying both sides by A
1
2 , we obtain

A∇νB ⩾ K(h
1
2n , 2)rnA♯νB +

n−1∑
k=0

rk

(
A♯mk

2k
B − 2A♯ 2mk+1

2k+1
B +A♯mk+1

2k
B

)
.

This completes the proof of the first inequality of (3.1). In the same way, we
can prove the second one. □

The following theorem is an operator version of Theorem 2.3 and is a refine-
ment of [9, Theorem 4].

Theorem 3.2. Let A,B ∈ B(H ) be strictly positive operators with M(A) ⩽
m(B) and ν ∈ (0, 1). Then

A∇νB ⩽ K(h
1
2n , 2)−rnA♯νB + (A− 2A♯B +B)

−
n−1∑
k=0

rk

(
A♯mk

2k
B − 2A♯ 2mk+1

2k+1
B +A♯mk+1

2k
B

)
,

where h = m(B)
M(A) .

Proof. Utilizing Lemma 2.3, and employing the same ideas as used in the proof
of Theorem 3.1, we can get the desired double inequality. □

Corollary 3.3. Let A,B ∈ B(H ) be strictly positive operators with M(A) ⩽
m(B) and ν ∈ (0, 1). Then

K(h
1
2n , 2)rnHν(A,B) ⩽ A∇B

−
n−1∑
k=0

rk

(
Hmk

2k
(A,B)− 2H 2mk+1

2k+1

(A,B) +Hmk+1

2k

(A,B)

)
⩽ K(h

1
2n , 2)RnHν(A,B),
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and

A∇B ⩽ K(h
1
2n , 2)−rnHν(A,B) + (A− 2A♯B +B)

−
n−1∑
k=0

rk

(
Hmk

2k
(A,B)− 2H 2mk+1

2k+1

(A,B) +Hmk+1

2k

(A,B)

)
,

where h = m(B)
M(A)

.

4. Matrix Young and reverse inequalities for the Hilbert-Schmidt
norm

In this section, we present some inequalities for the Hilbert-Schmidt norm.
It is known that every positive semidefinite matrix is unitarily diagonaliz-
able. Thus for positive semidefinite n × n matrices A and B, there exist
unitary matrices U and V such that A = Udiag(λ1, . . . , λn)U

∗ and B =
V diag(µ1, . . . , µn)V

∗.
In what follows, we use the Hadamard product of two matrices, which is

defined as the entrywise product A ◦B = [aijbij ].
Applying Theorem 2.6, we get the following theorem that is a generalization

of the inequalities in [9, Theorem 5].

Theorem 4.1. Suppose A,B,X ∈ Mn such that A and B are positive matrices
and ν ∈ (0, 1). Let

Kt = min

{
K

(
(
µj

λi
)

1
2t−1 , 2

)rt

: i, j = 1, 2, . . . , n

}
,

and

Kt = max

{
K

(
(
µj

λi
)

1
2t−1 , 2

)Rt

: i, j = 1, 2, . . . , n

}
,

for all t ∈ N. Then

Kt∥A1−νXBν∥22 ⩽ ∥(1− ν)AX − νXB∥22 − r20∥AX −XB∥22

−
t−1∑
k=1

rk∥A1−mk
2k XB

mk
2k −A

1−mk+1

2k XB
mk+1

2k ∥22

⩽ Kt∥A1−νXBν∥22.(4.1)

Proof. Let Y = U∗XV = (yij). Then

(1− ν)AX − νXB = U((λi∇νµj) ◦ Y )V ∗,(4.2)

AX −XB = U((λi − µj) ◦ Y )V ∗,(4.3)

A1−νXBν = U((λi♯νµj) ◦ Y )V ∗,(4.4)
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and

A1−mk
2k XB

mk
2k −A1−mk+1

2k XB
mk+1

2k = U((λi♯mk
2k

µj − λi♯mk+1

2k
µj) ◦ Y )V ∗.

(4.5)

Utilizing the unitarily invariant property of ∥.∥2 and Theorem 2.6, we have

∥(1− ν)AX − νXB∥22 =

n∑
i,j=1

(λi∇νµj)
2|yij |2 (by inequality (4.2))

⩾
n∑

i,j=1

{
K

(
(
µj

λi
)

1
2t−1 , 2

)rt

(λi♯νµj)
2 + r20(λi − µj)

2

}
|yij |2

+

n∑
i,j=1

{
t−1∑
k=1

rk(λi♯mk
2k

µj − λi♯mk+1

2k

µj)
2

}
|yij |2 (by Theorem 2.6)

=

n∑
i,j=1

K

(
(
µj

λi
)

1
2t−1 , 2

)rt

(λi♯νµj)
2|yij |2 +

n∑
i,j=1

r20(λi − µj)
2|yij |2

+

n∑
i,j=1

{
t−1∑
k=1

rk(λi♯mk
2k

µj − λi♯mk+1

2k

µj)
2|yij |2

}

⩾ Kt

n∑
i,j=1

(λi♯νµj)
2|yij |2 +

n∑
i,j=1

r20(λi − µj)
2|yij |2

+

t−1∑
k=1

{
n∑

i,j=1

rk(λi♯mk
2k

µj − λi♯mk+1

2k

µj)
2|yij |2

}
= Kt∥A1−νXBν∥22 + r20∥AX −XB∥22 (by inequalities (4.3)-(4.5))

+

t−1∑
k=1

rk∥A1−mk
2k XB

mk
2k −A

1−mk+1

2k XB
mk+1

2k ∥22.

This completes the proof of the left hand side of (4.1). By the same ideas, we can
prove the right hand side. □

Theorem 4.2. Suppose A,B,X ∈ Mn such that A and B are positive matrices
and ν ∈ (0, 1) and

Kt = min

{
K

(
(
µj

λi
)

1
2t−1 , 2

)rt

: i, j = 1, 2, . . . , n

}
.

Then

∥(1− ν)AX − νXB∥22 ⩽ Kt
−1∥A1−νXBν∥22 +R2

0∥AX −XB∥22

−
∞∑

k=1

rk∥A1−mk
2k XB

mk
2k −A

1−mk+1

2k XB
mk+1

2k ∥22.

Proof. In view of Theorem 2.7, using the same ideas as in the proof of Theorem
4.1, we can obtain the desired result. □
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