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Abstract. Assume thatA is a Banach algebra. We define the β−topology
and the γ−topology on the space QMel(A

∗) of all bounded extended left

quasi-multipliers of A∗. We establish further properties of (QMel(A
∗), γ)

when A is a C∗−algebra. In particular, we characterize the γ−dual of
QMel(A

∗) and prove that (QMel(A
∗), γ)∗, under the topology of bounded

convergence, is isomorphic to A∗∗∗.
Keywords: Quasi-multiplier, multiplier, Banach algebra, Arens regular-
ity, strict topology.
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1. Introduction

The notion of a quasi-multiplier is a generalization of the notion of a mul-
tiplier on a Banach algebra and was introduced by Akemann and Pedersen [3]
for C∗-algebras. McKennon [13] extended the definition to a general complex
Banach algebra A with a bounded approximate identity (b.a.i., for brevity) as
follows. A bilinear mapping m : A×A→ A is a quasi-multiplier on A if

m(ab, cd) = am(b, c) d (a, b, c, d ∈ A).

Let QM(A) denote the set of all bounded quasi-multipliers on A. It is showed
in [13] that QM(A) is a Banach space for the norm

∥m∥ = sup{∥m(a, b)∥; a, b ∈ A, ∥a∥ = ∥b∥ = 1}.
For some classical Banach algebras, the Banach space of quasi-multipliers may
be identified with some other known spaces or algebras. For instance, by [13,
Corollary of Theorem 22], one can identify QM(L1(G)), where G is a locally
compact Hausdorff group, with the measure algebra M(G).

In [1] we extended the notion of quasi-multipliers to the dual of a Banach
algebra A whose second dual has a mixed identity. We considered algebras
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satisfying a weaker condition than Arens regularity. Among others we proved
that for an Arens regular Banach algebra A with a b.a.i., QMr(A

∗) (see the
definition below) is isometrically isomorphic to A∗∗. We also proved some re-
sults concerning Arens regularity of the Banach algebra QMr(A

∗) of all bilinear
and bounded right quasi-multipliers of A∗. In this paper, we define extended
left (right) quasi-multipliers on the dual of a Banach algebra. We establish
some properties of QMel(A

∗) of all bounded extended left quasi-multipliers
of A∗. In particular, we characterize the γ−dual of QMel(A

∗) and prove that
(QMel(A

∗), γ)∗, under the topology of bounded convergence, is isomorphic to
A∗∗∗.

Before we state our main results the basic notation is introduced. We mainly
adopt the notation from the monograph [6]. The reader is referred to this book
for some results used in this paper, as well.

For a Banach spaceX, letX∗ be its topological dual. The pairing betweenX
andX∗ is denoted by ⟨·, ·⟩. We always considerX naturally embedded intoX∗∗

through the mapping π, which is given by ⟨π(x), ξ⟩ = ⟨ξ, x⟩ (x ∈ X, ξ ∈ X∗).
Let A be a Banach algebra. It is well known that on the second dual A∗∗ there
are two algebra multiplications called the first and the second Arens product,
respectively. Since in the paper we use mainly the first Arens product, we recall
its definition. Let a ∈ A, ξ ∈ A∗, and F, G ∈ A∗∗ be arbitrary. Then one
defines ξ ·a and G · ξ by ⟨ξ ·a, b⟩ = ⟨ξ, ab⟩ and ⟨G · ξ, b⟩ = ⟨G, ξ · b⟩, where b ∈ A
is arbitrary. Now, the first Arens product of F and G is an element F ◁ G in
A∗∗ which is given by ⟨F ◁ G, ξ⟩ = ⟨F,G · ξ⟩, where ξ ∈ A∗ is arbitrary. The
second Arens product, which we denote by ▷, is defined in a similar way.

The space A∗∗ equipped with the first (or second) Arens product is a Banach
algebra. When A∗∗ is endowed with ◁ we denote the algebra by A∗∗

◁ . Similarly,
A∗∗

▷ is the algebra obtained with A∗∗ endowed with the second Arens product
▷. Since F ◁ a = F ▷ a and a ◁ F = a ▷ F hold for all a ∈ A and F ∈ A∗∗ the
algebra A is a subalgebra of A∗∗

◁ and A∗∗
▷ . It is said that A is Arens regular if

the equality F ◁G = F ▷G holds for all F, G ∈ A∗∗, i.e., when A∗∗
◁ = A∗∗

▷ . For
example, every C∗-algebra is Arens regular, see [5].

An element E in the second dual A∗∗ is said to be a mixed identity if it is a
right identity for the first and a left identity for the second Arens product. Note
that A∗∗ has a mixed identity if and only if A has a b.a.i. By [6, Proposition
2.6.21], an element E ∈ A∗∗ is a mixed identity if and only if E · ξ = ξ = ξ ·E,
for every ξ ∈ A∗. If the equality A∗A = A∗, (AA∗ = A∗) holds, then we say
A∗ factors on the left (right). If both equalities A∗A = AA∗ = A∗ hold, then
we say that A∗ factors.
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2. Main results

Let A be a complex Banach algebra. Note that A∗ is a Banach A∗∗
◁ -A-

bimodule and a Banach A-A∗∗
▷ -bimodule. But in general it is not a Banach

A∗∗
◁ -A∗∗

▷ -bimodule.

Definition 2.1. Let A be a complex Banach algebra. Consider A∗ as a Banach
A∗∗

◁ -A-bimodule. A bilinear map

m : A∗∗ ×A∗ → A∗

is a left quasi-multiplier of A∗ if

(2.1) m(F ◁ G, ξ) = F ·m(G, ξ) and m(F, ξ · a) = m(F, ξ) · a

hold for all a ∈ A, ξ ∈ A∗ and F,G ∈ A∗∗.
Consider A∗ as a Banach A-A∗∗

▷ -bimodule. A bilinear map

m : A∗ ×A∗∗ → A∗

is a right quasi-multiplier of A∗ if

(2.2) m(ξ, F ▷ G) = m(ξ, F ) ·G and m(a · ξ, F ) = a ·m(ξ, F )

hold for all a ∈ A, ξ ∈ A∗ and F,G ∈ A∗∗.

Let QMr(A
∗) (respectively, QMl(A

∗)) be the set of all bounded right (re-
spectively, left) quasi-multipliers of A∗.

Although in our investigation we do not assume Arens regularity of A, we
usually have to assume that A satisfies the following weaker condition.

Definition 2.2. A Banach algebra A is weakly Arens regular if

(F · ξ) ·G = F · (ξ ·G) (F, G ∈ A∗∗, ξ ∈ A∗).

Of course, every Arens regular Banach algebra is weakly Arens regular.
However, the class of weakly Arens regular Banach algebras is larger. It con-
tains, for instance, every Banach algebra A which is an ideal in its second dual.
Namely, in this case, we have

⟨(F · ξ) ·G, a⟩ = ⟨π(a), (F · ξ) ·G⟩ = ⟨G ▷ π(a), F · ξ⟩ = ⟨(G ▷ π(a)) ◁ F, ξ⟩
= ⟨G ▷ (π(a) ◁ F ), ξ⟩ = ⟨π(a) ◁ F, ξ ·G⟩ = ⟨F · (ξ ·G), a⟩ (a ∈ A),

for arbitrary F, G ∈ A∗∗ and ξ ∈ A∗. Note that a unital Banach algebra is
weakly Arens regular if and only if it is Arens regular.

It is not hard to see that A∗ is a Banach A∗∗
◁ -A∗∗

▷ -bimodule if and only if A
is weakly Arens regular.

Definition 2.3. Let A be a weakly Arens regular Banach algebra. Consider
A∗ as a Banach A∗∗

◁ -A∗∗
▷ -bimodule. A bilinear map

m : A∗∗ ×A∗ → A∗
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is an extended left quasi-multiplier of A∗ if

(2.3) m(F ◁ G, ξ) = F ·m(G, ξ) and m(F, ξ ·G) = m(F, ξ) ·G

hold for all ξ ∈ A∗ and F,G ∈ A∗∗.
Similarly, a bilinear map

m : A∗ ×A∗∗ → A∗

is an extended right quasi-multiplier of A∗ if

(2.4) m(ξ, F ▷ G) = m(ξ, F ) ·G and m(G · ξ, F ) = G ·m(ξ, F )

hold for all ξ ∈ A∗ and F,G ∈ A∗∗.

Let QMer(A
∗) (respectively, QMel(A

∗)) denote the set of all bounded ex-
tended right (respectively, left) quasi-multipliers of A∗.

Proposition 2.4. If A is a weakly Arens regular Banach algebra, then a map
m : A∗∗ × A∗ → A∗ is an extended left quasi-multiplier of A∗ if and only if it
is a left quasi-multiplier of A∗.

Proof. It is obvious that every extended left quasi-multiplier is a left quasi-
multiplier. For the converse observe that for all G ∈ A∗∗ and ξ ∈ A∗ the
mapping G → ξ · G is weak*-weak* continuous. Indeed, assume that a net
{bα}α∈I ⊆ A converges to G in the weak* topology. Then for each x ∈ A,

lim
α
⟨ξ · bα, x⟩ = lim

α
⟨ξ, bα · x⟩ = ⟨ξ, lim

α
bαx⟩ = ⟨ξ,G · x⟩

= ⟨G · x, ξ⟩ = ⟨x, ξ ·G⟩ = ⟨ξ ·G, x⟩.

It follows that for each F ∈ A∗∗ we have

m(F, ξ ·G) = m(F, lim
α
(ξ · bα)) = lim

α
m(F, ξ · bα) = lim

α
(m(F, ξ) · bα)

= m(F, ξ) · lim
α
bα = m(F, ξ) ·G,

which means that m is an extended left quasi-multiplier of A∗. □

A simple computation shows that if A is a weakly Arens regular Banach
algebra, then the products

H ∗m(G, ξ) = m(G,H · ξ), m ∗H(G, ξ) = m(G ◁ H, ξ)

(m ∈ QMl(A
∗), H ∈ A∗∗, ξ ∈ A∗, G ∈ A∗∗)

make QMel(A
∗) a two-sided A∗∗

◁ -bimodule. Moreover, it is a Banach space
with respect to the norm

||m|| = sup{||m(ξ, F )||; ξ ∈ A∗, F ∈ A∗∗, ||ξ|| ≤ 1, ||F || ≤ 1}.

Beside the norm topology, there are two other useful topologies onQMel(A
∗).
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Definition 2.5. Let A be a weakly Arens regular Banach algebra. The strict
topology β on QMel(A

∗) is defined as the locally convex topology which is
given by the seminorms

m→ ∥m ∗ F∥ (F ∈ A∗∗, m ∈ QMel(A
∗)).

The quasi-strict topology γ on QMel(A
∗) is defined as the locally convex topol-

ogy which is given by the seminorms

m→ ∥m(F, ξ)∥ (ξ ∈ A∗, F ∈ A∗∗, m ∈ QMel(A
∗)).

Let τ denote the topology on QMel(A
∗) generated by the norm.

Proposition 2.6. If A is a weakly Arens regular Banach algebra such that
A∗∗

◁ = (A∗∗
◁ )2, then γ ⊆ β ⊆ τ.

Proof. Let a net {mα}α∈I ⊆ QMel(A
∗) converge to m ∈ QMel(A

∗) in the
topology β and let ξ ∈ A∗ be arbitrary. Since A∗∗

◁ = (A∗∗
◁ )2, for arbitrary

F ∈ A∗∗, there exist G,H ∈ A∗∗ such that F = G ◁ H. It follows, by the
definition of the topology β, that ||mα ∗H −m ∗H|| → 0. Thus

||mα(F, ξ)−m(F, ξ)|| = ||mα(G ◁ H, ξ)−m(G ◁ H, ξ)||
= ||(mα ∗H)(G, ξ)− (m ∗H)(G, ξ)|| → 0,

which means that {mα}α∈I converges to m in the topology γ. It is obvious
that β ⊆ τ. □
Corollary 2.7. If A is a weakly Arens regular Banach algebra such that A∗∗

has a mixed identity, then γ ⊆ β ⊆ τ.

Proof. Since A∗∗ has a mixed identity we have A∗∗
◁ = (A∗∗

◁ )2. □
Recall that a map T : A∗ → A∗ is a left multiplier of A∗ if

T (ξ · F ) = T (ξ) · F,
for all ξ ∈ A∗, F ∈ A∗∗.WithMl(A

∗) we denote the space of all bounded linear
left multipliers of A∗.

Theorem 2.8. Let A be a weakly Arens regular Banach algebra. Then

(i) the space (QMel(A
∗), γ) is complete;

(ii) if A∗∗ has a mixed identity of norm one, then (QMel(A
∗), β) is complete.

Proof. (i) Let {mα}α∈I be a γ-Cauchy net in QMel(A
∗). Then, for arbitrary

ξ ∈ A∗ and F ∈ A∗∗, we have a Cauchy net {mα(F, ξ)}α∈I in the norm topology
of A∗. Let m(F, ξ) = limαmα(F, ξ). It is obvious that in this way we have
defined a bilinear mapping m on A∗ × A∗∗ satisfying condition (2.3). Also by
uniform boundedness principle ([11, p. 172] and [7, p. 489]), m is bounded and
therefore m ∈ QMel(A

∗).
(ii) Let {mα}α∈I be a β−Cauchy net in QMel(A

∗). For each F ∈ A∗∗, the
mapping Tα

F : A∗ → A∗ which is given by Tα
F (ξ) = mα(F, ξ) defines elements in
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Ml(A
∗). Define a mapping ρ :Ml(A

∗) → QMel(A
∗) by ρT (F, ξ) = F · Tξ. It is

easy to show that ρTα
F
= mα∗F. It follows from the definition of the β−topology

that {ρTα
F
}α∈I is a Cauchy net in the norm of QMel(A

∗). By [1, Theorem 2.3], ρ
is an isometry and therefore {Tα

F } is a Cauchy net in the norm ofMl(A
∗). By the

completeness of Ml(A
∗), there exists TF ∈ Ml(A

∗) such that ||Tα
F − TF || → 0.

Since γ ⊆ β the net {mα}α∈I is a Cauchy net in γ topology. By the first part
of this theorem, (QMel(A

∗), γ) is complete. Hence there exists m ∈ QMel(A
∗)

such that

lim
α
mα(F, ξ) = m(F, ξ) for all ξ ∈ A∗ and F ∈ A∗∗.

For each G ∈ A∗∗,

ρTF (G, ξ) = lim
α
ρTα

F
(G, ξ) = lim

α
(mα ∗ F )(G, ξ) = lim

α
mα(G ◁ F, ξ)

= m(G ◁ F, ξ) = (m ∗ F )(G, ξ).

It follows that

||mα ∗ F −m ∗ F || = ||ρTα
F
− ρTF

|| = ||Tα
F − TF || → 0,

which implies that m is the β−limit of the net {mα}α∈I , i.e., QMel(A
∗) is

complete in β topology. □

Theorem 2.9. Let A be a weakly Arens regular Banach algebra.

(i) (QMel(A
∗), τ) and (QMel(A

∗), γ) have the same bounded sets.
(ii) If A∗∗ has a mixed identity, then (QMel(A

∗), γ), (QMel(A
∗), τ) and

(QMel(A
∗), β) have the same bounded sets.

Proof. (i) Since γ ⊆ τ, each τ−bounded set is γ−bounded. On the other hand,
let H be a γ−bounded subset of QMel(A

∗). Then for each ξ ∈ A∗ and F ∈ A∗∗,
there exists a real number r = r(F, ξ) > 0 such that

(2.5) ||m(F, ξ)|| ≤ r

for all m ∈ H. For each ξ ∈ A∗ and m ∈ H, define Mξ : A∗∗ → A∗ by

Mξ(F ) := m(F, ξ) (F ∈ A∗∗).

Consider the family H = {Mξ : m ∈ H}. By (2.5), for each G ∈ A∗∗,

||Mξ(G)|| = ||m(G, ξ)|| ≤ r(G, ξ) (m ∈ H).

Hence, H is pointwise bounded. By the principle of uniform boundedness, there
exists a constant c = c(F ) > 0 such that

(2.6) ||Mf || ≤ c (m ∈ H).

Consider the family P = {pm : m ∈ H} of semi-norms on A∗ defined by

pm(ξ) = ||Mξ|| = sup
||ξ||≤1

||Mξ(F )|| = sup
||ξ||≤1

||m(F, ξ)|| (ξ ∈ A∗).
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In the following we prove that pm is continuous on A∗ for each m. Let {ξn} ⊆
A∗ be a sequence in A∗ converging to ξ0 ∈ A∗, then

|pm(ξn)− pm(ξ0)| ≤ pm(ξn − ξ0) = sup
||F ||≤1

||Mξn−ξ0(F )||

= sup
||F ||≤1

||m(F, ξn − ξ0)|| → 0,

which implies that pm is continuous. It follows from (2.6) that the family P is
pointwise bounded. Hence, by [8, p. 142], there exist a closed B(ξ0, r) = {ξ ∈
A∗ : ||ξ−ξ0|| ≤ r} and a constant K0 such that pm(ξ) ≤ K0 for all f ∈ B(ξ0, r).
For ξ ∈ A∗ with ||ξ|| ≤ 1, we have

pm(ξ) =
pm(rξ + ξ0 − ξ0)

r
≤ 1

r
(pm(rξ + ξ0) + pm(ξ0)) ≤

2K0

r
.

This implies that

||m|| = sup
||ξ||≤1,||F ||≤1

||m(F, ξ)|| = sup
||ξ||≤1

pm(ξ) ≤ 2K0

r

and so the set H is τ−bounded, as required.
(ii) Since, γ ⊆ β ⊆ τ, by (i), (QMel(A

∗), γ), (QMel(A
∗), τ) and (QMel(A

∗), β)
have the same bounded sets. □

For the remainder of this section we assume that A is a C∗−algebra. We
characterize the γ−dual of QMel(A

∗).

Theorem 2.10. Let A be a C∗−algebra. Then

(QMel(A
∗), γ)∗ = {f · F : f ∈ (QMel(A

∗), τ)∗, F ∈ A∗∗},
where

(f · F )(m) := ⟨f,m ∗ F ⟩ (m ∈ QMel(A
∗)).

Proof. Let f ∈ (QMel(A
∗), τ)∗. It is obvious that for each F ∈ A∗∗ the mapping

f · F is a linear functional. Let us prove that f · F is γ−continuous. Assume
that m ∈ QMel(A

∗) is arbitrary. Since f is τ−continuous, given ϵ > 0, there is
δ > 0 such that |⟨f,m⟩| < ϵ whenever ||m|| < δ. Consider the γ−neighborhood
of 0 in QMel(A

∗) given by

N(F, δ) = {m ∈ QMel(A
∗) : ||m ∗ F || < δ}.

Let m ∈ N(F, δ). Now,

|(f · F )(m)| = |⟨f,m ∗ F ⟩| < ϵ.

Hence f · F is γ−continuous.
Conversely, suppose that g ∈ (QMel(A

∗), γ)∗. Since γ ⊆ τ we have g ∈
(QMel(A

∗), τ)∗. Every C∗-algebra A is (weakly) Arens regular and its second
dual A∗∗ is a unital von Neumann algebra, hence Arens regular, as well. By
[1, Theorem (2.6)], QMel(A

∗) is Arens regular and so (QMel(A
∗), τ)∗ factors
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(see [14]). Also by [1, Theorem (2.5)], QMel(A
∗) is isomorphic toA∗∗. Therefore

there exist f ∈ (QMel(A
∗), τ)∗ and F ∈ A∗∗ such that g = f · F. □

For each H ∈ A∗∗, define φ(H) ∈ QMel(A
∗) by

[φ(H)](F, ξ) = (F ◁ H) · ξ for all ξ ∈ A∗, F ∈ A∗∗.

Lemma 2.11. If A is an Arens regular Banach algebra with a bounded approx-
imate identity, then φ : A∗∗ → QMel(A

∗) is an isomorphism.

Proof. Let m ∈ QMel(A
∗). In order to prove that φ is onto, we show that for

all F,H,G ∈ A∗∗ one has

m∗(H ◁ F,G) = H ◁m∗(F,G)

where m∗ : A∗∗ ×A∗∗ → A∗∗ is an extension of m. Let ξ ∈ A∗. Then

⟨m∗(H ◁ F,G), ξ⟩ = ⟨H ◁ F,m(G, ξ)⟩ = ⟨F,m(G, ξ) ·H⟩ = ⟨F,m(G, ξ ·H)⟩
= ⟨m∗(F,G), ξ ·H⟩ = ⟨H ◁m∗(F,G), ξ⟩.

Let E be the mixed identity in A∗∗ and suppose that ξ ∈ A∗, F ∈ A∗∗ and
x ∈ A are arbitrary. Then

⟨φ(m∗(E,E))(F, ξ), x⟩ = ⟨(F ◁ m∗(E,E)) · ξ, x⟩ = ⟨F ◁ m∗(E,E), ξ · x⟩
= ⟨m∗(F,E), ξ · x⟩ = ⟨F,m(E, ξ · x)⟩
= ⟨F,m(E, ξ) · x⟩ = ⟨x ◁ F,m(E, ξ)⟩
= ⟨x, F ·m(E, ξ)⟩ = ⟨x,m(F, ξ)⟩.

Now, let us prove that φ is one to one. Assume that φ(H) = 0. Then for each
ξ ∈ A∗, one has

H · ξ = (E ·H) · ξ = 0.

Which implies that for each x ∈ A,

⟨H, ξ · x⟩ = ⟨H · ξ, x⟩ = 0.

Since, A is Arens regular, A∗ factors. Thus H = 0. □
Definition 2.12. Let A be a Banach algebra. The topology of bounded con-
vergence u on (QMel(A

∗), γ)∗ is defined as the linear topology which has a base
of neighborhoods of 0 consisting of all sets of the form

M(D,G) = {f ∈ (QMel(A
∗), γ)∗ : f(D) ⊆ G},

where D is a γ−bounded subset of (QMel(A
∗), γ) and G is a neighborhood of

0.
The topology ν on (QMel(A

∗), γ)∗ is defined as the linear topology which
has a base of neighborhoods of 0 consisting of all sets of the form

N(D,G) = {f ∈ (QMel(A
∗), γ)∗ : f(D) ⊆ G},

where D is a norm-bounded subset of (QMel(A
∗), γ) and G is a neighborhood

of 0.
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Theorem 2.13. Let A be a C∗−algebra. Then ((QMel(A
∗), γ)∗, u) is isomor-

phic to A∗∗∗.

Proof. Since γ ⊆ τ we have (QMel(A
∗), γ)∗ ⊆ (QMel(A

∗), τ)∗. By Theorem
2.9, γ and τ have the same bounded sets in QMel(A

∗), it follows that the
topology u coincides with the norm topology ν on (QMel(A

∗), γ)∗. There-
fore ((QMel(A

∗), γ)∗, u) is a normed subspace of ((QMel(A
∗), τ)∗, ν). We will

show that ((QMel(A
∗), γ)∗, u) is isomorphic to the subspace ((φ(A∗∗), τ)∗, ν)

of ((QMel(A
∗), τ)∗, ν). Consider the map ψ which maps each element g ∈

((QMel(A
∗), γ)∗, u) onto its restriction to φ(A∗∗), that is, g|φ(A∗∗). Since

γ ⊆ τ, for each g ∈ (QMel(A
∗), γ)∗, the map ψ(g) is τ−continuous. It is clear

that ψ is linear. Suppose that ψ(g) = 0. Then g(φ(H)) = 0 for all H ∈ A∗∗. By
Lemma 2.11, the mapping φ is onto. Hence, g(m) = 0 for all m ∈ QMel(A

∗)
which means that ψ is one to one. Assume that f ∈ (φ(A∗∗), τ)∗. It is easy to
see that φ(A∗∗) is an Arens regular Banach algebra. Hence, by using the same
arguments as those in the proof of Theorem 2.10, there exist h ∈ (φ(A∗∗), τ)∗

and F ∈ A∗∗ such that f = h ·F. By Hahn-Banach theorem, h can be extended
to an element h̄ ∈ (QMel(A

∗), τ)∗. Then, by Theorem 2.10, the functional h̄ ·F
belongs to (QMel(A

∗), γ)∗. Also, for all G ∈ A∗∗, we have

ψ(h̄ · F )(φ(G)) = (h̄ · F )(φ(G)) = ⟨h̄, φ(G) ∗ F ⟩ = ⟨h̄, φ(F G)⟩
= ⟨h, φ(F ◁ G)⟩ = ⟨h, φ(G) ∗ F ⟩ = (h · F )(φ(G))
= f(φ(G)).

Therefore ψ(h̄ · F ) = f and so ψ is onto. □

Example 2.14. Let H be a Hilbert space and let A = K(H), the algebra of
all compact operators on H. The dual of the space of compact operators is the
space of trace-class operators, C1(H). The second dual of A is B(H). Since
K(H) is a C∗-algebra we have ((QMel(C1(H)), γ)∗, u) ∼= (B(H))∗.

Example 2.15. Let A = c0(N), the space of all complex sequences which
converge to 0. The dual of c0 is l1 and its second dual is l∞. Since c0 is a
C∗−algebra, by Theorem 2.13, ((QMel(l1), γ)

∗, u) ∼= ba(N, 2N, µ), the space of
all finitely additive finite signed measure which are absolutely continuous with
respect to the counting measure µ equipped with the total variation norm.
Since the space l∞ is isometrically isomorphic to C(βN), where βN is the
Stone-Čech compactification of N, one can identifies ((QMel(l1), γ)

∗, u) also
with the dual C(βN)∗.
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