Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 5, pp. 1323-1332

Title:
Some topologies on the space of quasi-multipliers
Author(s):
M. Adib

Published by the Iranian Mathematical Society http://bims.ims.ir

SOME TOPOLOGIES ON THE SPACE OF QUASI-MULTIPLIERS

M. ADIB
(Communicated by Hamid Reza Ebrahimi Vishki)

Abstract

Assume that A is a Banach algebra. We define the β-topology and the γ-topology on the space $Q M_{e l}\left(A^{*}\right)$ of all bounded extended left quasi-multipliers of A^{*}. We establish further properties of $\left(Q M_{e l}\left(A^{*}\right), \gamma\right)$ when A is a C^{*}-algebra. In particular, we characterize the γ-dual of $Q M_{e l}\left(A^{*}\right)$ and prove that $\left(Q M_{e l}\left(A^{*}\right), \gamma\right)^{*}$, under the topology of bounded convergence, is isomorphic to $A^{* * *}$. Keywords: Quasi-multiplier, multiplier, Banach algebra, Arens regularity, strict topology. MSC(2010): Primary: 47B48; Secondary: 46H25.

1. Introduction

The notion of a quasi-multiplier is a generalization of the notion of a multiplier on a Banach algebra and was introduced by Akemann and Pedersen [3] for C^{*}-algebras. McKennon [13] extended the definition to a general complex Banach algebra A with a bounded approximate identity (b.a.i., for brevity) as follows. A bilinear mapping $m: A \times A \rightarrow A$ is a quasi-multiplier on A if

$$
m(a b, c d)=a m(b, c) d \quad(a, b, c, d \in A)
$$

Let $Q M(A)$ denote the set of all bounded quasi-multipliers on A. It is showed in [13] that $Q M(A)$ is a Banach space for the norm

$$
\|m\|=\sup \{\|m(a, b)\| ; a, b \in A,\|a\|=\|b\|=1\}
$$

For some classical Banach algebras, the Banach space of quasi-multipliers may be identified with some other known spaces or algebras. For instance, by [13, Corollary of Theorem 22], one can identify $Q M\left(L^{1}(G)\right)$, where G is a locally compact Hausdorff group, with the measure algebra $M(G)$.

In [1] we extended the notion of quasi-multipliers to the dual of a Banach algebra A whose second dual has a mixed identity. We considered algebras

[^0]satisfying a weaker condition than Arens regularity. Among others we proved that for an Arens regular Banach algebra A with a b.a.i., $Q M_{r}\left(A^{*}\right)$ (see the definition below) is isometrically isomorphic to $A^{* *}$. We also proved some results concerning Arens regularity of the Banach algebra $Q M_{r}\left(A^{*}\right)$ of all bilinear and bounded right quasi-multipliers of A^{*}. In this paper, we define extended left (right) quasi-multipliers on the dual of a Banach algebra. We establish some properties of $Q M_{e l}\left(A^{*}\right)$ of all bounded extended left quasi-multipliers of A^{*}. In particular, we characterize the $\gamma-$ dual of $Q M_{e l}\left(A^{*}\right)$ and prove that $\left(Q M_{e l}\left(A^{*}\right), \gamma\right)^{*}$, under the topology of bounded convergence, is isomorphic to $A^{* * *}$.

Before we state our main results the basic notation is introduced. We mainly adopt the notation from the monograph [6]. The reader is referred to this book for some results used in this paper, as well.

For a Banach space X, let X^{*} be its topological dual. The pairing between X and X^{*} is denoted by $\langle\cdot, \cdot\rangle$. We always consider X naturally embedded into $X^{* *}$ through the mapping π, which is given by $\langle\pi(x), \xi\rangle=\langle\xi, x\rangle\left(x \in X, \xi \in X^{*}\right)$. Let A be a Banach algebra. It is well known that on the second dual $A^{* *}$ there are two algebra multiplications called the first and the second Arens product, respectively. Since in the paper we use mainly the first Arens product, we recall its definition. Let $a \in A, \xi \in A^{*}$, and $F, G \in A^{* *}$ be arbitrary. Then one defines $\xi \cdot a$ and $G \cdot \xi$ by $\langle\xi \cdot a, b\rangle=\langle\xi, a b\rangle$ and $\langle G \cdot \xi, b\rangle=\langle G, \xi \cdot b\rangle$, where $b \in A$ is arbitrary. Now, the first Arens product of F and G is an element $F \triangleleft G$ in $A^{* *}$ which is given by $\langle F \triangleleft G, \xi\rangle=\langle F, G \cdot \xi\rangle$, where $\xi \in A^{*}$ is arbitrary. The second Arens product, which we denote by \triangleright, is defined in a similar way.

The space $A^{* *}$ equipped with the first (or second) Arens product is a Banach algebra. When $A^{* *}$ is endowed with \triangleleft we denote the algebra by $A_{\triangleleft}^{* *}$. Similarly, $A_{\triangleright}^{* *}$ is the algebra obtained with $A^{* *}$ endowed with the second Arens product \triangleright. Since $F \triangleleft a=F \triangleright a$ and $a \triangleleft F=a \triangleright F$ hold for all $a \in A$ and $F \in A^{* *}$ the algebra A is a subalgebra of $A_{\triangleleft}^{* *}$ and $A_{\triangleright}^{* *}$. It is said that A is Arens regular if the equality $F \triangleleft G=F \triangleright G$ holds for all $F, G \in A^{* *}$, i.e., when $A_{\triangleleft}^{* *}=A_{\triangleright}^{* *}$. For example, every C^{*}-algebra is Arens regular, see [5].

An element E in the second dual $A^{* *}$ is said to be a mixed identity if it is a right identity for the first and a left identity for the second Arens product. Note that $A^{* *}$ has a mixed identity if and only if A has a b.a.i. By $[6$, Proposition 2.6.21], an element $E \in A^{* *}$ is a mixed identity if and only if $E \cdot \xi=\xi=\xi \cdot E$, for every $\xi \in A^{*}$. If the equality $A^{*} A=A^{*},\left(A A^{*}=A^{*}\right)$ holds, then we say A^{*} factors on the left (right). If both equalities $A^{*} A=A A^{*}=A^{*}$ hold, then we say that A^{*} factors.

2. Main results

Let A be a complex Banach algebra. Note that A^{*} is a Banach $A_{\triangleleft}^{* *}-A$ bimodule and a Banach $A-A_{\triangleright}^{* *}$-bimodule. But in general it is not a Banach $A_{\triangleleft}^{* *}-A_{\triangleright}^{* *}$-bimodule.
Definition 2.1. Let A be a complex Banach algebra. Consider A^{*} as a Banach $A_{\triangleleft}^{* *}-A$-bimodule. A bilinear map

$$
m: A^{* *} \times A^{*} \rightarrow A^{*}
$$

is a left quasi-multiplier of A^{*} if

$$
\begin{equation*}
m(F \triangleleft G, \xi)=F \cdot m(G, \xi) \quad \text { and } \quad m(F, \xi \cdot a)=m(F, \xi) \cdot a \tag{2.1}
\end{equation*}
$$

hold for all $a \in A, \xi \in A^{*}$ and $F, G \in A^{* *}$.
Consider A^{*} as a Banach $A-A_{\triangleright}^{* *}$-bimodule. A bilinear map

$$
m: A^{*} \times A^{* *} \rightarrow A^{*}
$$

is a right quasi-multiplier of A^{*} if

$$
\begin{equation*}
m(\xi, F \triangleright G)=m(\xi, F) \cdot G \quad \text { and } \quad m(a \cdot \xi, F)=a \cdot m(\xi, F) \tag{2.2}
\end{equation*}
$$

hold for all $a \in A, \xi \in A^{*}$ and $F, G \in A^{* *}$.
Let $Q M_{r}\left(A^{*}\right)$ (respectively, $Q M_{l}\left(A^{*}\right)$) be the set of all bounded right (respectively, left) quasi-multipliers of A^{*}.

Although in our investigation we do not assume Arens regularity of A, we usually have to assume that A satisfies the following weaker condition.
Definition 2.2. A Banach algebra A is weakly Arens regular if

$$
(F \cdot \xi) \cdot G=F \cdot(\xi \cdot G) \quad\left(F, G \in A^{* *}, \xi \in A^{*}\right)
$$

Of course, every Arens regular Banach algebra is weakly Arens regular. However, the class of weakly Arens regular Banach algebras is larger. It contains, for instance, every Banach algebra A which is an ideal in its second dual. Namely, in this case, we have

$$
\begin{aligned}
& \langle(F \cdot \xi) \cdot G, a\rangle=\langle\pi(a),(F \cdot \xi) \cdot G\rangle=\langle G \triangleright \pi(a), F \cdot \xi\rangle=\langle(G \triangleright \pi(a)) \triangleleft F, \xi\rangle \\
& =\langle G \triangleright(\pi(a) \triangleleft F), \xi\rangle=\langle\pi(a) \triangleleft F, \xi \cdot G\rangle=\langle F \cdot(\xi \cdot G), a\rangle \quad(a \in A)
\end{aligned}
$$

for arbitrary $F, G \in A^{* *}$ and $\xi \in A^{*}$. Note that a unital Banach algebra is weakly Arens regular if and only if it is Arens regular.

It is not hard to see that A^{*} is a Banach $A_{\triangleleft}^{* *}-A_{\triangleright}^{* *}$-bimodule if and only if A is weakly Arens regular.

Definition 2.3. Let A be a weakly Arens regular Banach algebra. Consider A^{*} as a Banach $A_{\triangleleft}^{* *}-A_{\triangleright}^{* *}$-bimodule. A bilinear map

$$
m: A^{* *} \times A^{*} \rightarrow A^{*}
$$

is an extended left quasi-multiplier of A^{*} if

$$
\begin{equation*}
m(F \triangleleft G, \xi)=F \cdot m(G, \xi) \quad \text { and } \quad m(F, \xi \cdot G)=m(F, \xi) \cdot G \tag{2.3}
\end{equation*}
$$

hold for all $\xi \in A^{*}$ and $F, G \in A^{* *}$.
Similarly, a bilinear map

$$
m: A^{*} \times A^{* *} \rightarrow A^{*}
$$

is an extended right quasi-multiplier of A^{*} if

$$
\begin{equation*}
m(\xi, F \triangleright G)=m(\xi, F) \cdot G \quad \text { and } \quad m(G \cdot \xi, F)=G \cdot m(\xi, F) \tag{2.4}
\end{equation*}
$$

hold for all $\xi \in A^{*}$ and $F, G \in A^{* *}$.
Let $Q M_{e r}\left(A^{*}\right)$ (respectively, $Q M_{e l}\left(A^{*}\right)$) denote the set of all bounded extended right (respectively, left) quasi-multipliers of A^{*}.

Proposition 2.4. If A is a weakly Arens regular Banach algebra, then a map $m: A^{* *} \times A^{*} \rightarrow A^{*}$ is an extended left quasi-multiplier of A^{*} if and only if it is a left quasi-multiplier of A^{*}.

Proof. It is obvious that every extended left quasi-multiplier is a left quasimultiplier. For the converse observe that for all $G \in A^{* *}$ and $\xi \in A^{*}$ the mapping $G \rightarrow \xi \cdot G$ is weak*-weak* continuous. Indeed, assume that a net $\left\{b_{\alpha}\right\}_{\alpha \in I} \subseteq A$ converges to G in the weak* topology. Then for each $x \in A$,

$$
\begin{aligned}
\lim _{\alpha}\left\langle\xi \cdot b_{\alpha}, x\right\rangle & =\lim _{\alpha}\left\langle\xi, b_{\alpha} \cdot x\right\rangle=\left\langle\xi, \lim _{\alpha} b_{\alpha} x\right\rangle=\langle\xi, G \cdot x\rangle \\
& =\langle G \cdot x, \xi\rangle=\langle x, \xi \cdot G\rangle=\langle\xi \cdot G, x\rangle .
\end{aligned}
$$

It follows that for each $F \in A^{* *}$ we have

$$
\begin{aligned}
m(F, \xi \cdot G) & =m\left(F, \lim _{\alpha}\left(\xi \cdot b_{\alpha}\right)\right)=\lim _{\alpha} m\left(F, \xi \cdot b_{\alpha}\right)=\lim _{\alpha}\left(m(F, \xi) \cdot b_{\alpha}\right) \\
& =m(F, \xi) \cdot \lim _{\alpha} b_{\alpha}=m(F, \xi) \cdot G
\end{aligned}
$$

which means that m is an extended left quasi-multiplier of A^{*}.
A simple computation shows that if A is a weakly Arens regular Banach algebra, then the products

$$
\begin{gathered}
H * m(G, \xi)=m(G, H \cdot \xi), \quad m * H(G, \xi)=m(G \triangleleft H, \xi) \\
\left(m \in Q M_{l}\left(A^{*}\right), H \in A^{* *}, \xi \in A^{*}, G \in A^{* *}\right)
\end{gathered}
$$

make $Q M_{e l}\left(A^{*}\right)$ a two-sided $A_{\triangleleft}^{* *}$-bimodule. Moreover, it is a Banach space with respect to the norm

$$
\|m\|=\sup \left\{\|m(\xi, F)\| ; \quad \xi \in A^{*}, F \in A^{* *},\|\xi\| \leq 1,\|F\| \leq 1\right\}
$$

Beside the norm topology, there are two other useful topologies on $Q M_{e l}\left(A^{*}\right)$.

Definition 2.5. Let A be a weakly Arens regular Banach algebra. The strict topology β on $Q M_{e l}\left(A^{*}\right)$ is defined as the locally convex topology which is given by the seminorms

$$
m \rightarrow\|m * F\| \quad\left(F \in A^{* *}, m \in Q M_{e l}\left(A^{*}\right)\right)
$$

The quasi-strict topology γ on $Q M_{e l}\left(A^{*}\right)$ is defined as the locally convex topology which is given by the seminorms

$$
m \rightarrow\|m(F, \xi)\| \quad\left(\xi \in A^{*}, F \in A^{* *}, m \in Q M_{e l}\left(A^{*}\right)\right)
$$

Let τ denote the topology on $Q M_{e l}\left(A^{*}\right)$ generated by the norm.
Proposition 2.6. If A is a weakly Arens regular Banach algebra such that $A_{\triangleleft}^{* *}=\left(A_{\triangleleft}^{* *}\right)^{2}$, then $\gamma \subseteq \beta \subseteq \tau$.

Proof. Let a net $\left\{m_{\alpha}\right\}_{\alpha \in I} \subseteq Q M_{e l}\left(A^{*}\right)$ converge to $m \in Q M_{e l}\left(A^{*}\right)$ in the topology β and let $\xi \in A^{*}$ be arbitrary. Since $A_{\triangleleft}^{* *}=\left(A_{\triangleleft}^{* *}\right)^{2}$, for arbitrary $F \in A^{* *}$, there exist $G, H \in A^{* *}$ such that $F=G \triangleleft H$. It follows, by the definition of the topology β, that $\left\|m_{\alpha} * H-m * H\right\| \rightarrow 0$. Thus

$$
\begin{aligned}
\left\|m_{\alpha}(F, \xi)-m(F, \xi)\right\| & =\left\|m_{\alpha}(G \triangleleft H, \xi)-m(G \triangleleft H, \xi)\right\| \\
& =\left\|\left(m_{\alpha} * H\right)(G, \xi)-(m * H)(G, \xi)\right\| \rightarrow 0
\end{aligned}
$$

which means that $\left\{m_{\alpha}\right\}_{\alpha \in I}$ converges to m in the topology γ. It is obvious that $\beta \subseteq \tau$.

Corollary 2.7. If A is a weakly Arens regular Banach algebra such that $A^{* *}$ has a mixed identity, then $\gamma \subseteq \beta \subseteq \tau$.
Proof. Since $A^{* *}$ has a mixed identity we have $A_{\triangleleft}^{* *}=\left(A_{\triangleleft}^{* *}\right)^{2}$.
Recall that a map $T: A^{*} \rightarrow A^{*}$ is a left multiplier of A^{*} if

$$
T(\xi \cdot F)=T(\xi) \cdot F
$$

for all $\xi \in A^{*}, F \in A^{* *}$. With $M_{l}\left(A^{*}\right)$ we denote the space of all bounded linear left multipliers of A^{*}.
Theorem 2.8. Let A be a weakly Arens regular Banach algebra. Then
(i) the space $\left(Q M_{e l}\left(A^{*}\right), \gamma\right)$ is complete;
(ii) if $A^{* *}$ has a mixed identity of norm one, then $\left(Q M_{e l}\left(A^{*}\right), \beta\right)$ is complete.

Proof. (i) Let $\left\{m_{\alpha}\right\}_{\alpha \in I}$ be a γ-Cauchy net in $Q M_{e l}\left(A^{*}\right)$. Then, for arbitrary $\xi \in A^{*}$ and $F \in A^{* *}$, we have a Cauchy net $\left\{m_{\alpha}(F, \xi)\right\}_{\alpha \in I}$ in the norm topology of A^{*}. Let $m(F, \xi)=\lim _{\alpha} m_{\alpha}(F, \xi)$. It is obvious that in this way we have defined a bilinear mapping m on $A^{*} \times A^{* *}$ satisfying condition (2.3). Also by uniform boundedness principle ([11, p. 172] and [7, p. 489]), m is bounded and therefore $m \in Q M_{e l}\left(A^{*}\right)$.
(ii) Let $\left\{m_{\alpha}\right\}_{\alpha \in I}$ be a β-Cauchy net in $Q M_{e l}\left(A^{*}\right)$. For each $F \in A^{* *}$, the mapping $T_{F}^{\alpha}: A^{*} \rightarrow A^{*}$ which is given by $T_{F}^{\alpha}(\xi)=m_{\alpha}(F, \xi)$ defines elements in
$M_{l}\left(A^{*}\right)$. Define a mapping $\rho: M_{l}\left(A^{*}\right) \rightarrow Q M_{e l}\left(A^{*}\right)$ by $\rho_{T}(F, \xi)=F \cdot T \xi$. It is easy to show that $\rho_{T_{F}^{\alpha}}=m_{\alpha} * F$. It follows from the definition of the β-topology that $\left\{\rho_{T_{F}^{\alpha}}\right\}_{\alpha \in I}$ is a Cauchy net in the norm of $Q M_{e l}\left(A^{*}\right)$. By [1, Theorem 2.3], ρ is an isometry and therefore $\left\{T_{F}^{\alpha}\right\}$ is a Cauchy net in the norm of $M_{l}\left(A^{*}\right)$. By the completeness of $M_{l}\left(A^{*}\right)$, there exists $T_{F} \in M_{l}\left(A^{*}\right)$ such that $\left\|T_{F}^{\alpha}-T_{F}\right\| \rightarrow 0$. Since $\gamma \subseteq \beta$ the net $\left\{m_{\alpha}\right\}_{\alpha \in I}$ is a Cauchy net in γ topology. By the first part of this theorem, $\left(Q M_{e l}\left(A^{*}\right), \gamma\right)$ is complete. Hence there exists $m \in Q M_{e l}\left(A^{*}\right)$ such that

$$
\lim _{\alpha} m_{\alpha}(F, \xi)=m(F, \xi) \quad \text { for all } \quad \xi \in A^{*} \quad \text { and } \quad F \in A^{* *}
$$

For each $G \in A^{* *}$,

$$
\begin{aligned}
\rho_{T_{F}}(G, \xi) & =\lim _{\alpha} \rho_{T_{F}^{\alpha}}(G, \xi)=\lim _{\alpha}\left(m_{\alpha} * F\right)(G, \xi)=\lim _{\alpha} m_{\alpha}(G \triangleleft F, \xi) \\
& =m(G \triangleleft F, \xi)=(m * F)(G, \xi)
\end{aligned}
$$

It follows that

$$
\left\|m_{\alpha} * F-m * F\right\|=\left\|\rho_{T_{F}^{\alpha}}-\rho_{T_{F}}\right\|=\left\|T_{F}^{\alpha}-T_{F}\right\| \rightarrow 0
$$

which implies that m is the β-limit of the net $\left\{m_{\alpha}\right\}_{\alpha \in I}$, i.e., $Q M_{e l}\left(A^{*}\right)$ is complete in β topology.

Theorem 2.9. Let A be a weakly Arens regular Banach algebra.
(i) $\left(Q M_{e l}\left(A^{*}\right), \tau\right)$ and $\left(Q M_{e l}\left(A^{*}\right), \gamma\right)$ have the same bounded sets.
(ii) If $A^{* *}$ has a mixed identity, then $\left(Q M_{e l}\left(A^{*}\right), \gamma\right),\left(Q M_{e l}\left(A^{*}\right), \tau\right)$ and $\left(Q M_{e l}\left(A^{*}\right), \beta\right)$ have the same bounded sets.

Proof. (i) Since $\gamma \subseteq \tau$, each τ-bounded set is γ-bounded. On the other hand, let H be a γ-bounded subset of $Q M_{e l}\left(A^{*}\right)$. Then for each $\xi \in A^{*}$ and $F \in A^{* *}$, there exists a real number $r=r(F, \xi)>0$ such that

$$
\begin{equation*}
\|m(F, \xi)\| \leq r \tag{2.5}
\end{equation*}
$$

for all $m \in H$. For each $\xi \in A^{*}$ and $m \in H$, define $M_{\xi}: A^{* *} \rightarrow A^{*}$ by

$$
M_{\xi}(F):=m(F, \xi) \quad\left(F \in A^{* *}\right)
$$

Consider the family $\mathcal{H}=\left\{M_{\xi}: m \in H\right\}$. By (2.5), for each $G \in A^{* *}$,

$$
\left\|M_{\xi}(G)\right\|=\|m(G, \xi)\| \leq r(G, \xi) \quad(m \in H)
$$

Hence, \mathcal{H} is pointwise bounded. By the principle of uniform boundedness, there exists a constant $c=c(F)>0$ such that

$$
\begin{equation*}
\left\|M_{f}\right\| \leq c \quad(m \in H) \tag{2.6}
\end{equation*}
$$

Consider the family $P=\left\{p_{m}: m \in H\right\}$ of semi-norms on A^{*} defined by

$$
p_{m}(\xi)=\left\|M_{\xi}\right\|=\sup _{\|\xi\| \leq 1}\left\|M_{\xi}(F)\right\|=\sup _{\|\xi\| \leq 1}\|m(F, \xi)\|\left(\xi \in A^{*}\right)
$$

In the following we prove that p_{m} is continuous on A^{*} for each m. Let $\left\{\xi_{n}\right\} \subseteq$ A^{*} be a sequence in A^{*} converging to $\xi_{0} \in A^{*}$, then

$$
\begin{aligned}
\left|p_{m}\left(\xi_{n}\right)-p_{m}\left(\xi_{0}\right)\right| \leq p_{m}\left(\xi_{n}-\xi_{0}\right) & =\sup _{\|F\| \leq 1}\left\|M_{\xi_{n}-\xi_{0}}(F)\right\| \\
& =\sup _{\|F\| \leq 1}\left\|m\left(F, \xi_{n}-\xi_{0}\right)\right\| \rightarrow 0
\end{aligned}
$$

which implies that p_{m} is continuous. It follows from (2.6) that the family P is pointwise bounded. Hence, by [8, p. 142], there exist a closed $B\left(\xi_{0}, r\right)=\{\xi \in$ $\left.A^{*}:\left\|\xi-\xi_{0}\right\| \leq r\right\}$ and a constant K_{0} such that $p_{m}(\xi) \leq K_{0}$ for all $f \in B\left(\xi_{0}, r\right)$. For $\xi \in A^{*}$ with $\|\xi\| \leq 1$, we have

$$
p_{m}(\xi)=\frac{p_{m}\left(r \xi+\xi_{0}-\xi_{0}\right)}{r} \leq \frac{1}{r}\left(p_{m}\left(r \xi+\xi_{0}\right)+p_{m}\left(\xi_{0}\right)\right) \leq \frac{2 K_{0}}{r}
$$

This implies that

$$
\|m\|=\sup _{\|\xi\| \leq 1,\|F\| \leq 1}\|m(F, \xi)\|=\sup _{\|\xi\| \leq 1} p_{m}(\xi) \leq \frac{2 K_{0}}{r}
$$

and so the set H is τ-bounded, as required.
(ii) Since, $\gamma \subseteq \beta \subseteq \tau$, by $(i),\left(Q M_{e l}\left(A^{*}\right), \gamma\right),\left(Q M_{e l}\left(A^{*}\right), \tau\right)$ and $\left(Q M_{e l}\left(A^{*}\right), \beta\right)$ have the same bounded sets.

For the remainder of this section we assume that A is a C^{*}-algebra. We characterize the γ-dual of $Q M_{e l}\left(A^{*}\right)$.
Theorem 2.10. Let A be a C^{*}-algebra. Then

$$
\left(Q M_{e l}\left(A^{*}\right), \gamma\right)^{*}=\left\{f \cdot F: f \in\left(Q M_{e l}\left(A^{*}\right), \tau\right)^{*}, F \in A^{* *}\right\}
$$

where

$$
(f \cdot F)(m):=\langle f, m * F\rangle \quad\left(m \in Q M_{e l}\left(A^{*}\right)\right)
$$

Proof. Let $f \in\left(Q M_{e l}\left(A^{*}\right), \tau\right)^{*}$. It is obvious that for each $F \in A^{* *}$ the mapping $f \cdot F$ is a linear functional. Let us prove that $f \cdot F$ is γ-continuous. Assume that $m \in Q M_{e l}\left(A^{*}\right)$ is arbitrary. Since f is τ-continuous, given $\epsilon>0$, there is $\delta>0$ such that $|\langle f, m\rangle|<\epsilon$ whenever $\|m\|<\delta$. Consider the $\gamma-$ neighborhood of 0 in $Q M_{e l}\left(A^{*}\right)$ given by

$$
N(F, \delta)=\left\{m \in Q M_{e l}\left(A^{*}\right):\|m * F\|<\delta\right\}
$$

Let $m \in N(F, \delta)$. Now,

$$
|(f \cdot F)(m)|=|\langle f, m * F\rangle|<\epsilon
$$

Hence $f \cdot F$ is γ-continuous.
Conversely, suppose that $g \in\left(Q M_{e l}\left(A^{*}\right), \gamma\right)^{*}$. Since $\gamma \subseteq \tau$ we have $g \in$ $\left(Q M_{e l}\left(A^{*}\right), \tau\right)^{*}$. Every C^{*}-algebra A is (weakly) Arens regular and its second dual $A^{* *}$ is a unital von Neumann algebra, hence Arens regular, as well. By [1, Theorem (2.6)], $Q M_{e l}\left(A^{*}\right)$ is Arens regular and so $\left(Q M_{e l}\left(A^{*}\right), \tau\right)^{*}$ factors
(see [14]). Also by [1, Theorem (2.5)], $Q M_{e l}\left(A^{*}\right)$ is isomorphic to $A^{* *}$. Therefore there exist $f \in\left(Q M_{e l}\left(A^{*}\right), \tau\right)^{*}$ and $F \in A^{* *}$ such that $g=f \cdot F$.

For each $H \in A^{* *}$, define $\varphi(H) \in Q M_{e l}\left(A^{*}\right)$ by

$$
[\varphi(H)](F, \xi)=(F \triangleleft H) \cdot \xi \quad \text { for all } \xi \in A^{*}, F \in A^{* *}
$$

Lemma 2.11. If A is an Arens regular Banach algebra with a bounded approximate identity, then $\varphi: A^{* *} \rightarrow Q M_{e l}\left(A^{*}\right)$ is an isomorphism.
Proof. Let $m \in Q M_{e l}\left(A^{*}\right)$. In order to prove that φ is onto, we show that for all $F, H, G \in A^{* *}$ one has

$$
m^{*}(H \triangleleft F, G)=H \triangleleft m^{*}(F, G)
$$

where $m^{*}: A^{* *} \times A^{* *} \rightarrow A^{* *}$ is an extension of m. Let $\xi \in A^{*}$. Then

$$
\begin{aligned}
\left\langle m^{*}(H \triangleleft F, G), \xi\right\rangle & =\langle H \triangleleft F, m(G, \xi)\rangle=\langle F, m(G, \xi) \cdot H\rangle=\langle F, m(G, \xi \cdot H)\rangle \\
& =\left\langle m^{*}(F, G), \xi \cdot H\right\rangle=\left\langle H \triangleleft m^{*}(F, G), \xi\right\rangle
\end{aligned}
$$

Let E be the mixed identity in $A^{* *}$ and suppose that $\xi \in A^{*}, F \in A^{* *}$ and $x \in A$ are arbitrary. Then

$$
\begin{aligned}
\left\langle\varphi\left(m^{*}(E, E)\right)(F, \xi), x\right\rangle & =\left\langle\left(F \triangleleft m^{*}(E, E)\right) \cdot \xi, x\right\rangle=\left\langle F \triangleleft m^{*}(E, E), \xi \cdot x\right\rangle \\
& =\left\langle m^{*}(F, E), \xi \cdot x\right\rangle=\langle F, m(E, \xi \cdot x)\rangle \\
& =\langle F, m(E, \xi) \cdot x\rangle=\langle x \triangleleft F, m(E, \xi)\rangle \\
& =\langle x, F \cdot m(E, \xi)\rangle=\langle x, m(F, \xi)\rangle .
\end{aligned}
$$

Now, let us prove that φ is one to one. Assume that $\varphi(H)=0$. Then for each $\xi \in A^{*}$, one has

$$
H \cdot \xi=(E \cdot H) \cdot \xi=0
$$

Which implies that for each $x \in A$,

$$
\langle H, \xi \cdot x\rangle=\langle H \cdot \xi, x\rangle=0
$$

Since, A is Arens regular, A^{*} factors. Thus $H=0$.
Definition 2.12. Let A be a Banach algebra. The topology of bounded convergence u on $\left(Q M_{e l}\left(A^{*}\right), \gamma\right)^{*}$ is defined as the linear topology which has a base of neighborhoods of 0 consisting of all sets of the form

$$
M(D, G)=\left\{f \in\left(Q M_{e l}\left(A^{*}\right), \gamma\right)^{*}: f(D) \subseteq G\right\}
$$

where D is a γ-bounded subset of $\left(Q M_{e l}\left(A^{*}\right), \gamma\right)$ and G is a neighborhood of 0 .

The topology ν on $\left(Q M_{e l}\left(A^{*}\right), \gamma\right)^{*}$ is defined as the linear topology which has a base of neighborhoods of 0 consisting of all sets of the form

$$
N(D, G)=\left\{f \in\left(Q M_{e l}\left(A^{*}\right), \gamma\right)^{*}: f(D) \subseteq G\right\}
$$

where D is a norm-bounded subset of $\left(Q M_{e l}\left(A^{*}\right), \gamma\right)$ and G is a neighborhood of 0 .

Theorem 2.13. Let A be a C^{*}-algebra. Then $\left(\left(Q M_{e l}\left(A^{*}\right), \gamma\right)^{*}, u\right)$ is isomorphic to $A^{* * *}$.

Proof. Since $\gamma \subseteq \tau$ we have $\left(Q M_{e l}\left(A^{*}\right), \gamma\right)^{*} \subseteq\left(Q M_{e l}\left(A^{*}\right), \tau\right)^{*}$. By Theorem 2.9, γ and τ have the same bounded sets in $Q M_{e l}\left(A^{*}\right)$, it follows that the topology u coincides with the norm topology ν on $\left(Q M_{e l}\left(A^{*}\right), \gamma\right)^{*}$. Therefore $\left(\left(Q M_{e l}\left(A^{*}\right), \gamma\right)^{*}, u\right)$ is a normed subspace of $\left(\left(Q M_{e l}\left(A^{*}\right), \tau\right)^{*}, \nu\right)$. We will show that $\left(\left(Q M_{e l}\left(A^{*}\right), \gamma\right)^{*}, u\right)$ is isomorphic to the subspace $\left(\left(\varphi\left(A^{* *}\right), \tau\right)^{*}, \nu\right)$ of $\left(\left(Q M_{e l}\left(A^{*}\right), \tau\right)^{*}, \nu\right)$. Consider the map ψ which maps each element $g \in$ $\left(\left(Q M_{e l}\left(A^{*}\right), \gamma\right)^{*}, u\right)$ onto its restriction to $\varphi\left(A^{* *}\right)$, that is, $g \mid \varphi\left(A^{* *}\right)$. Since $\gamma \subseteq \tau$, for each $g \in\left(Q M_{e l}\left(A^{*}\right), \gamma\right)^{*}$, the map $\psi(g)$ is τ-continuous. It is clear that ψ is linear. Suppose that $\psi(g)=0$. Then $g(\varphi(H))=0$ for all $H \in A^{* *}$. By Lemma 2.11, the mapping φ is onto. Hence, $g(m)=0$ for all $m \in Q M_{e l}\left(A^{*}\right)$ which means that ψ is one to one. Assume that $f \in\left(\varphi\left(A^{* *}\right), \tau\right)^{*}$. It is easy to see that $\varphi\left(A^{* *}\right)$ is an Arens regular Banach algebra. Hence, by using the same arguments as those in the proof of Theorem 2.10, there exist $h \in\left(\varphi\left(A^{* *}\right), \tau\right)^{*}$ and $F \in A^{* *}$ such that $f=h \cdot F$. By Hahn-Banach theorem, h can be extended to an element $\bar{h} \in\left(Q M_{e l}\left(A^{*}\right), \tau\right)^{*}$. Then, by Theorem 2.10, the functional $\bar{h} \cdot F$ belongs to $\left(Q M_{e l}\left(A^{*}\right), \gamma\right)^{*}$. Also, for all $G \in A^{* *}$, we have

$$
\begin{aligned}
\psi(\bar{h} \cdot F)(\varphi(G)) & =(\bar{h} \cdot F)(\varphi(G))=\langle\bar{h}, \varphi(G) * F\rangle=\langle\bar{h}, \varphi(F G)\rangle \\
& =\langle h, \varphi(F \triangleleft G)\rangle=\langle h, \varphi(G) * F\rangle=(h \cdot F)(\varphi(G)) \\
& =f(\varphi(G))
\end{aligned}
$$

Therefore $\psi(\bar{h} \cdot F)=f$ and so ψ is onto.
Example 2.14. Let H be a Hilbert space and let $A=K(H)$, the algebra of all compact operators on H. The dual of the space of compact operators is the space of trace-class operators, $C_{1}(H)$. The second dual of A is $B(H)$. Since $K(H)$ is a C^{*}-algebra we have $\left(\left(Q M_{e l}\left(C_{1}(H)\right), \gamma\right)^{*}, u\right) \cong(B(H))^{*}$.

Example 2.15. Let $A=c_{0}(\mathbb{N})$, the space of all complex sequences which converge to 0 . The dual of c_{0} is l_{1} and its second dual is l_{∞}. Since c_{0} is a C^{*}-algebra, by Theorem 2.13, $\left(\left(Q M_{e l}\left(l_{1}\right), \gamma\right)^{*}, u\right) \cong b a\left(\mathbb{N}, 2^{\mathbb{N}}, \mu\right)$, the space of all finitely additive finite signed measure which are absolutely continuous with respect to the counting measure μ equipped with the total variation norm. Since the space l_{∞} is isometrically isomorphic to $C(\beta \mathbb{N})$, where $\beta \mathbb{N}$ is the Stone-Čech compactification of \mathbb{N}, one can identifies $\left(\left(Q M_{e l}\left(l_{1}\right), \gamma\right)^{*}, u\right)$ also with the dual $C(\beta \mathbb{N})^{*}$.

Acknowledgements

The author wishes to thank Professor Janko Bračič for reading the manuscript and making several useful suggestions.

References

[1] M. Adib, A. Riazi and J. Bračič, Quasi-multipliers of the dual of the dual of a Banach algebra, Banach J. Math. Anal. 5 (2011),no. 2, 6-14.
[2] M. Adib, A. Riazi and L.A. Khan, Quasi-multipliers on F-algebras, Abstr. Appl. Anal. 2011 (2011), Article ID 235273, 30 pages.
[3] C.A. Akemann and G.K. Pedersen, Complications of semicontinuity in C^{*}-algebra theory, Duke Math. J. 40 (1973) 785-795.
[4] Z. Argün and K. Rowlands, On quasi-multipliers, Studia Math. 108 (1994), no. 3, 217245.
[5] P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961) 847-870.
[6] H.G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. Ser. 24, Clarendon press, 2000.
[7] R.E. Edwards, Functional Analysis, Theory and Application, Holt, Rinehart and Winston, 1965.
[8] H.G. Heuser, Functional Analysis, John Wiley \& Sons, Chichester, 1982.
[9] M. Kaneda, Quasi-multipliers and algebrizations of an operator space, J. Funct. Anal. 251 (2007), no. 1, 346-359.
[10] M.S. Kassem and K. Rowlands, The quasi-strict topology on the space of quasimultipliers of a B^{*}-algebra, Math. Proc. Cambridge Philos. Soc. 101 (1987) 555-566.
[11] G. Köthe, Topological Vector Spaces I, Springer,Berlin Heidelberg, 1969.
[12] H. Lin, The structure of quasi-multipliers of C^{*}-algebras, Trans. Amer. Math. Soc. 315 (1987) 147-172.
[13] M. McKennon, Quasi-multipliers, Trans. Amer. Math. Soc. 233 (1977) 105-123.
[14] A. Ülger, Arens regularity sometimes implies the RNP, Pacific. J. Math. 143 (1990), no. 2, 377-399.
(Marjan Adib) Department of Mathematics, Payamenoor University (PNU), Tehran, IRAN.

E-mail address: m.adib.pnu@gmail.com

[^0]: Article electronically published on 31 October, 2017.
 Received: 26 February 2016, Accepted: 31 May 2016.

