ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 5, pp. 1323-1332

Title:

Some topologies on the space of quasi-multipliers

Author(s):

M. Adib

Published by the Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 43 (2017), No. 5, pp. 1323–1332 Online ISSN: 1735-8515

SOME TOPOLOGIES ON THE SPACE OF QUASI-MULTIPLIERS

M. ADIB

(Communicated by Hamid Reza Ebrahimi Vishki)

ABSTRACT. Assume that A is a Banach algebra. We define the β -topology and the γ -topology on the space $QM_{el}(A^*)$ of all bounded extended left quasi-multipliers of A^* . We establish further properties of $(QM_{el}(A^*), \gamma)$ when A is a C^* -algebra. In particular, we characterize the γ -dual of $QM_{el}(A^*)$ and prove that $(QM_{el}(A^*), \gamma)^*$, under the topology of bounded convergence, is isomorphic to A^{***} .

Keywords: Quasi-multiplier, multiplier, Banach algebra, Arens regularity, strict topology.

MSC(2010): Primary: 47B48; Secondary: 46H25.

1. Introduction

The notion of a quasi-multiplier is a generalization of the notion of a multiplier on a Banach algebra and was introduced by Akemann and Pedersen [3] for C^* -algebras. McKennon [13] extended the definition to a general complex Banach algebra A with a bounded approximate identity (b.a.i., for brevity) as follows. A bilinear mapping $m : A \times A \to A$ is a quasi-multiplier on A if

$$m(ab, cd) = a m(b, c) d \qquad (a, b, c, d \in A).$$

Let QM(A) denote the set of all bounded quasi-multipliers on A. It is showed in [13] that QM(A) is a Banach space for the norm

$$||m|| = \sup\{||m(a,b)||; a, b \in A, ||a|| = ||b|| = 1\}.$$

For some classical Banach algebras, the Banach space of quasi-multipliers may be identified with some other known spaces or algebras. For instance, by [13, Corollary of Theorem 22], one can identify $QM(L^1(G))$, where G is a locally compact Hausdorff group, with the measure algebra M(G).

In [1] we extended the notion of quasi-multipliers to the dual of a Banach algebra A whose second dual has a mixed identity. We considered algebras

1323

O2017 Iranian Mathematical Society

Article electronically published on 31 October, 2017.

Received: 26 February 2016, Accepted: 31 May 2016.

satisfying a weaker condition than Arens regularity. Among others we proved that for an Arens regular Banach algebra A with a b.a.i., $QM_r(A^*)$ (see the definition below) is isometrically isomorphic to A^{**} . We also proved some results concerning Arens regularity of the Banach algebra $QM_r(A^*)$ of all bilinear and bounded right quasi-multipliers of A^* . In this paper, we define extended left (right) quasi-multipliers on the dual of a Banach algebra. We establish some properties of $QM_{el}(A^*)$ of all bounded extended left quasi-multipliers of A^* . In particular, we characterize the γ -dual of $QM_{el}(A^*)$ and prove that $(QM_{el}(A^*), \gamma)^*$, under the topology of bounded convergence, is isomorphic to A^{***} .

Before we state our main results the basic notation is introduced. We mainly adopt the notation from the monograph [6]. The reader is referred to this book for some results used in this paper, as well.

For a Banach space X, let X^* be its topological dual. The pairing between X and X^* is denoted by $\langle \cdot, \cdot \rangle$. We always consider X naturally embedded into X^{**} through the mapping π , which is given by $\langle \pi(x), \xi \rangle = \langle \xi, x \rangle$ $(x \in X, \xi \in X^*)$. Let A be a Banach algebra. It is well known that on the second dual A^{**} there are two algebra multiplications called the first and the second Arens product, respectively. Since in the paper we use mainly the first Arens product, we recall its definition. Let $a \in A, \xi \in A^*$, and F, $G \in A^{**}$ be arbitrary. Then one defines $\xi \cdot a$ and $G \cdot \xi$ by $\langle \xi \cdot a, b \rangle = \langle \xi, ab \rangle$ and $\langle G \cdot \xi, b \rangle = \langle G, \xi \cdot b \rangle$, where $b \in A$ is arbitrary. Now, the first Arens product of F and G is an element $F \triangleleft G$ in A^{**} which is given by $\langle F \triangleleft G, \xi \rangle = \langle F, G \cdot \xi \rangle$, where $\xi \in A^*$ is arbitrary. The second Arens product, which we denote by \triangleright , is defined in a similar way.

The space A^{**} equipped with the first (or second) Arens product is a Banach algebra. When A^{**} is endowed with \triangleleft we denote the algebra by A_{\triangleleft}^{**} . Similarly, A_{\triangleright}^{**} is the algebra obtained with A^{**} endowed with the second Arens product \triangleright . Since $F \triangleleft a = F \triangleright a$ and $a \triangleleft F = a \triangleright F$ hold for all $a \in A$ and $F \in A^{**}$ the algebra A is a subalgebra of A_{\triangleleft}^{**} and A_{\triangleright}^{**} . It is said that A is Arens regular if the equality $F \triangleleft G = F \triangleright G$ holds for all $F, G \in A^{**}$, i.e., when $A_{\triangleleft}^{**} = A_{\triangleright}^{**}$. For example, every C^* -algebra is Arens regular, see [5].

An element E in the second dual A^{**} is said to be a mixed identity if it is a right identity for the first and a left identity for the second Arens product. Note that A^{**} has a mixed identity if and only if A has a b.a.i. By [6, Proposition 2.6.21], an element $E \in A^{**}$ is a mixed identity if and only if $E \cdot \xi = \xi = \xi \cdot E$, for every $\xi \in A^*$. If the equality $A^*A = A^*$, $(AA^* = A^*)$ holds, then we say A^* factors on the left (right). If both equalities $A^*A = AA^* = A^*$ hold, then we say that A^* factors.

2. Main results

Let A be a complex Banach algebra. Note that A^* is a Banach A_{\triangleleft}^{**} -Abimodule and a Banach A- A_{\triangleright}^{**} -bimodule. But in general it is not a Banach A_{\triangleleft}^{**} - A_{\triangleright}^{**} -bimodule.

Definition 2.1. Let A be a complex Banach algebra. Consider A^* as a Banach A^{**}_{\triangleleft} -A-bimodule. A bilinear map

$$n: A^{**} \times A^* \to A^*$$

is a left quasi-multiplier of A^* if

(2.1)
$$m(F \triangleleft G, \xi) = F \cdot m(G, \xi)$$
 and $m(F, \xi \cdot a) = m(F, \xi) \cdot a$

hold for all $a \in A$, $\xi \in A^*$ and $F, G \in A^{**}$.

Consider A^* as a Banach $A - A_{\triangleright}^{**}$ -bimodule. A bilinear map

1

1

$$n: A^* \times A^{**} \to A^*$$

is a right quasi-multiplier of A^* if

(2.2)
$$m(\xi, F \triangleright G) = m(\xi, F) \cdot G$$
 and $m(a \cdot \xi, F) = a \cdot m(\xi, F)$

hold for all $a \in A$, $\xi \in A^*$ and $F, G \in A^{**}$.

Let $QM_r(A^*)$ (respectively, $QM_l(A^*)$) be the set of all bounded right (respectively, left) quasi-multipliers of A^* .

Although in our investigation we do not assume Arens regularity of A, we usually have to assume that A satisfies the following weaker condition.

Definition 2.2. A Banach algebra A is weakly Arens regular if

$$(F \cdot \xi) \cdot G = F \cdot (\xi \cdot G) \qquad (F, \ G \in A^{**}, \ \xi \in A^*).$$

Of course, every Arens regular Banach algebra is weakly Arens regular. However, the class of weakly Arens regular Banach algebras is larger. It contains, for instance, every Banach algebra A which is an ideal in its second dual. Namely, in this case, we have

$$\langle (F \cdot \xi) \cdot G, a \rangle = \langle \pi(a), (F \cdot \xi) \cdot G \rangle = \langle G \triangleright \pi(a), F \cdot \xi \rangle = \langle (G \triangleright \pi(a)) \triangleleft F, \xi \rangle$$
$$= \langle G \triangleright (\pi(a) \triangleleft F), \xi \rangle = \langle \pi(a) \triangleleft F, \xi \cdot G \rangle = \langle F \cdot (\xi \cdot G), a \rangle \qquad (a \in A),$$

for arbitrary $F, G \in A^{**}$ and $\xi \in A^*$. Note that a unital Banach algebra is weakly Arens regular if and only if it is Arens regular.

It is not hard to see that A^* is a Banach $A^{**}_{\triangleleft} - A^{**}_{\triangleright}$ -bimodule if and only if A is weakly Arens regular.

Definition 2.3. Let A be a weakly Arens regular Banach algebra. Consider A^* as a Banach $A^{**}_{\triangleleft} - A^{**}_{\triangleright}$ -bimodule. A bilinear map

$$m: A^{**} \times A^* \to A^*$$

is an extended left quasi-multiplier of A^* if

(2.3) $m(F \triangleleft G, \xi) = F \cdot m(G, \xi)$ and $m(F, \xi \cdot G) = m(F, \xi) \cdot G$

hold for all $\xi \in A^*$ and $F, G \in A^{**}$.

Similarly, a bilinear map

$$m: A^* \times A^{**} \to A^*$$

is an extended right quasi-multiplier of A^* if

(2.4)
$$m(\xi, F \triangleright G) = m(\xi, F) \cdot G$$
 and $m(G \cdot \xi, F) = G \cdot m(\xi, F)$

hold for all $\xi \in A^*$ and $F, G \in A^{**}$.

Let $QM_{er}(A^*)$ (respectively, $QM_{el}(A^*)$) denote the set of all bounded extended right (respectively, left) quasi-multipliers of A^* .

Proposition 2.4. If A is a weakly Arens regular Banach algebra, then a map $m: A^{**} \times A^* \to A^*$ is an extended left quasi-multiplier of A^* if and only if it is a left quasi-multiplier of A^* .

Proof. It is obvious that every extended left quasi-multiplier is a left quasimultiplier. For the converse observe that for all $G \in A^{**}$ and $\xi \in A^*$ the mapping $G \to \xi \cdot G$ is weak*-weak* continuous. Indeed, assume that a net $\{b_{\alpha}\}_{\alpha \in I} \subseteq A$ converges to G in the weak* topology. Then for each $x \in A$,

$$\begin{split} \lim_{\alpha} \langle \xi \cdot b_{\alpha}, x \rangle &= \lim_{\alpha} \langle \xi, b_{\alpha} \cdot x \rangle = \langle \xi, \lim_{\alpha} b_{\alpha} x \rangle = \langle \xi, G \cdot x \rangle \\ &= \langle G \cdot x, \xi \rangle = \langle x, \xi \cdot G \rangle = \langle \xi \cdot G, x \rangle. \end{split}$$

It follows that for each $F \in A^{**}$ we have

$$m(F,\xi \cdot G) = m(F,\lim_{\alpha} (\xi \cdot b_{\alpha})) = \lim_{\alpha} m(F,\xi \cdot b_{\alpha}) = \lim_{\alpha} (m(F,\xi) \cdot b_{\alpha})$$
$$= m(F,\xi) \cdot \lim_{\alpha} b_{\alpha} = m(F,\xi) \cdot G,$$

which means that m is an extended left quasi-multiplier of A^* .

A simple computation shows that if A is a weakly Arens regular Banach algebra, then the products

$$H * m(G, \xi) = m(G, H \cdot \xi), \qquad m * H(G, \xi) = m(G \triangleleft H, \xi)$$
$$(m \in QM_l(A^*), \ H \in A^{**}, \ \xi \in A^*, \ G \in A^{**})$$

make $QM_{el}(A^*)$ a two-sided $A_{\triangleleft}^{**}\text{-bimodule}.$ Moreover, it is a Banach space with respect to the norm

$$||m|| = \sup\{||m(\xi,F)||; \quad \xi \in A^*, \ F \in A^{**}, \ ||\xi|| \le 1, \ ||F|| \le 1\}.$$

Beside the norm topology, there are two other useful topologies on $QM_{el}(A^*)$.

Definition 2.5. Let A be a weakly Arens regular Banach algebra. The strict topology β on $QM_{el}(A^*)$ is defined as the locally convex topology which is given by the seminorms

$$m \to ||m * F|| \qquad (F \in A^{**}, \ m \in QM_{el}(A^*)).$$

The quasi-strict topology γ on $QM_{el}(A^*)$ is defined as the locally convex topology which is given by the seminorms

 $m \to ||m(F,\xi)||$ $(\xi \in A^*, F \in A^{**}, m \in QM_{el}(A^*)).$

Let τ denote the topology on $QM_{el}(A^*)$ generated by the norm.

Proposition 2.6. If A is a weakly Arens regular Banach algebra such that $A_{\triangleleft}^{**} = (A_{\triangleleft}^{**})^2$, then $\gamma \subseteq \beta \subseteq \tau$.

Proof. Let a net $\{m_{\alpha}\}_{\alpha \in I} \subseteq QM_{el}(A^*)$ converge to $m \in QM_{el}(A^*)$ in the topology β and let $\xi \in A^*$ be arbitrary. Since $A_{\triangleleft}^{**} = (A_{\triangleleft}^{**})^2$, for arbitrary $F \in A^{**}$, there exist $G, H \in A^{**}$ such that $F = G \triangleleft H$. It follows, by the definition of the topology β , that $||m_{\alpha} * H - m * H|| \to 0$. Thus

$$\begin{split} ||m_{\alpha}(F,\xi) - m(F,\xi)|| &= ||m_{\alpha}(G \triangleleft H,\xi) - m(G \triangleleft H,\xi)|| \\ &= ||(m_{\alpha} * H)(G,\xi) - (m * H)(G,\xi)|| \to 0, \end{split}$$

which means that $\{m_{\alpha}\}_{\alpha \in I}$ converges to m in the topology γ . It is obvious that $\beta \subseteq \tau$.

Corollary 2.7. If A is a weakly Arens regular Banach algebra such that A^{**} has a mixed identity, then $\gamma \subseteq \beta \subseteq \tau$.

Proof. Since A^{**} has a mixed identity we have $A_{\triangleleft}^{**} = (A_{\triangleleft}^{**})^2$.

Recall that a map $T: A^* \to A^*$ is a left multiplier of A^* if

$$T(\xi \cdot F) = T(\xi) \cdot F,$$

for all $\xi \in A^*, F \in A^{**}$. With $M_l(A^*)$ we denote the space of all bounded linear left multipliers of A^* .

Theorem 2.8. Let A be a weakly Arens regular Banach algebra. Then

- (i) the space $(QM_{el}(A^*), \gamma)$ is complete;
- (ii) if A^{**} has a mixed identity of norm one, then $(QM_{el}(A^*), \beta)$ is complete.

Proof. (i) Let $\{m_{\alpha}\}_{\alpha\in I}$ be a γ -Cauchy net in $QM_{el}(A^*)$. Then, for arbitrary $\xi \in A^*$ and $F \in A^{**}$, we have a Cauchy net $\{m_{\alpha}(F,\xi)\}_{\alpha\in I}$ in the norm topology of A^* . Let $m(F,\xi) = \lim_{\alpha} m_{\alpha}(F,\xi)$. It is obvious that in this way we have defined a bilinear mapping m on $A^* \times A^{**}$ satisfying condition (2.3). Also by uniform boundedness principle ([11, p. 172] and [7, p. 489]), m is bounded and therefore $m \in QM_{el}(A^*)$.

(ii) Let $\{m_{\alpha}\}_{\alpha \in I}$ be a β -Cauchy net in $QM_{el}(A^*)$. For each $F \in A^{**}$, the mapping $T_F^{\alpha} : A^* \to A^*$ which is given by $T_F^{\alpha}(\xi) = m_{\alpha}(F,\xi)$ defines elements in

 $M_l(A^*)$. Define a mapping $\rho: M_l(A^*) \to QM_{el}(A^*)$ by $\rho_T(F,\xi) = F \cdot T\xi$. It is easy to show that $\rho_{T_F^{\alpha}} = m_{\alpha} * F$. It follows from the definition of the β -topology that $\{\rho_{T_F^{\alpha}}\}_{\alpha \in I}$ is a Cauchy net in the norm of $QM_{el}(A^*)$. By [1, Theorem 2.3], ρ is an isometry and therefore $\{T_F^{\alpha}\}$ is a Cauchy net in the norm of $M_l(A^*)$. By the completeness of $M_l(A^*)$, there exists $T_F \in M_l(A^*)$ such that $||T_F^{\alpha} - T_F|| \to 0$. Since $\gamma \subseteq \beta$ the net $\{m_{\alpha}\}_{\alpha \in I}$ is a Cauchy net in γ topology. By the first part of this theorem, $(QM_{el}(A^*), \gamma)$ is complete. Hence there exists $m \in QM_{el}(A^*)$ such that

$$\lim_{\alpha} m_{\alpha}(F,\xi) = m(F,\xi) \quad \text{for all} \quad \xi \in A^* \quad \text{and} \quad F \in A^{**}.$$

For each $G \in A^{**}$,

$$\begin{split} \rho_{T_F}(G,\xi) &= \lim_{\alpha} \rho_{T_F^{\alpha}}(G,\xi) = \lim_{\alpha} (m_{\alpha} * F)(G,\xi) = \lim_{\alpha} m_{\alpha}(G \triangleleft F,\xi) \\ &= m(G \triangleleft F,\xi) = (m * F)(G,\xi). \end{split}$$

It follows that

$$||m_{\alpha} * F - m * F|| = ||\rho_{T_{F}^{\alpha}} - \rho_{T_{F}}|| = ||T_{F}^{\alpha} - T_{F}|| \to 0,$$

which implies that m is the β -limit of the net $\{m_{\alpha}\}_{\alpha \in I}$, i.e., $QM_{el}(A^*)$ is complete in β topology. \Box

Theorem 2.9. Let A be a weakly Arens regular Banach algebra.

- (i) $(QM_{el}(A^*), \tau)$ and $(QM_{el}(A^*), \gamma)$ have the same bounded sets.
- (ii) If A^{**} has a mixed identity, then $(QM_{el}(A^*), \gamma)$, $(QM_{el}(A^*), \tau)$ and $(QM_{el}(A^*), \beta)$ have the same bounded sets.

Proof. (i) Since $\gamma \subseteq \tau$, each τ -bounded set is γ -bounded. On the other hand, let H be a γ -bounded subset of $QM_{el}(A^*)$. Then for each $\xi \in A^*$ and $F \in A^{**}$, there exists a real number $r = r(F, \xi) > 0$ such that

$$(2.5) ||m(F,\xi)|| \le r$$

for all $m \in H$. For each $\xi \in A^*$ and $m \in H$, define $M_{\xi} : A^{**} \to A^*$ by

$$M_{\xi}(F) := m(F,\xi) \ (F \in A^{**})$$

Consider the family $\mathcal{H} = \{M_{\xi} : m \in H\}$. By (2.5), for each $G \in A^{**}$,

$$||M_{\xi}(G)|| = ||m(G,\xi)|| \le r(G,\xi) \ (m \in H).$$

Hence, \mathcal{H} is pointwise bounded. By the principle of uniform boundedness, there exists a constant c = c(F) > 0 such that

$$(2.6) ||M_f|| \le c \ (m \in H).$$

Consider the family $P = \{p_m : m \in H\}$ of semi-norms on A^* defined by

$$p_m(\xi) = ||M_{\xi}|| = \sup_{||\xi|| \le 1} ||M_{\xi}(F)|| = \sup_{||\xi|| \le 1} ||m(F,\xi)|| \quad (\xi \in A^*).$$

In the following we prove that p_m is continuous on A^* for each m. Let $\{\xi_n\} \subseteq A^*$ be a sequence in A^* converging to $\xi_0 \in A^*$, then

$$|p_m(\xi_n) - p_m(\xi_0)| \le p_m(\xi_n - \xi_0) = \sup_{\substack{||F|| \le 1}} ||M_{\xi_n - \xi_0}(F)||$$
$$= \sup_{\substack{||F|| \le 1}} ||m(F, \xi_n - \xi_0)|| \to 0.$$

which implies that p_m is continuous. It follows from (2.6) that the family P is pointwise bounded. Hence, by [8, p. 142], there exist a closed $B(\xi_0, r) = \{\xi \in A^* : ||\xi - \xi_0|| \le r\}$ and a constant K_0 such that $p_m(\xi) \le K_0$ for all $f \in B(\xi_0, r)$. For $\xi \in A^*$ with $||\xi|| \le 1$, we have

$$p_m(\xi) = \frac{p_m(r\xi + \xi_0 - \xi_0)}{r} \le \frac{1}{r}(p_m(r\xi + \xi_0) + p_m(\xi_0)) \le \frac{2K_0}{r}.$$

This implies that

$$||m|| = \sup_{||\xi|| \le 1, ||F|| \le 1} ||m(F,\xi)|| = \sup_{||\xi|| \le 1} p_m(\xi) \le \frac{2K_0}{r}$$

and so the set H is τ -bounded, as required. (ii) Since, $\gamma \subseteq \beta \subseteq \tau$, by (i), $(QM_{el}(A^*), \gamma)$, $(QM_{el}(A^*), \tau)$ and $(QM_{el}(A^*), \beta)$ have the same bounded sets.

For the remainder of this section we assume that A is a C^* -algebra. We characterize the γ -dual of $QM_{el}(A^*)$.

Theorem 2.10. Let A be a C^* -algebra. Then

$$(QM_{el}(A^*),\gamma)^* = \{f \cdot F : f \in (QM_{el}(A^*),\tau)^*, F \in A^{**}\},\$$

where

$$(f \cdot F)(m) := \langle f, m * F \rangle \qquad (m \in QM_{el}(A^*)).$$

Proof. Let $f \in (QM_{el}(A^*), \tau)^*$. It is obvious that for each $F \in A^{**}$ the mapping $f \cdot F$ is a linear functional. Let us prove that $f \cdot F$ is γ -continuous. Assume that $m \in QM_{el}(A^*)$ is arbitrary. Since f is τ -continuous, given $\epsilon > 0$, there is $\delta > 0$ such that $|\langle f, m \rangle| < \epsilon$ whenever $||m|| < \delta$. Consider the γ -neighborhood of 0 in $QM_{el}(A^*)$ given by

$$N(F,\delta) = \{ m \in QM_{el}(A^*) : ||m * F|| < \delta \}.$$

Let $m \in N(F, \delta)$. Now,

$$|(f \cdot F)(m)| = |\langle f, m * F \rangle| < \epsilon.$$

Hence $f \cdot F$ is γ -continuous.

Conversely, suppose that $g \in (QM_{el}(A^*), \gamma)^*$. Since $\gamma \subseteq \tau$ we have $g \in (QM_{el}(A^*), \tau)^*$. Every C^* -algebra A is (weakly) Arens regular and its second dual A^{**} is a unital von Neumann algebra, hence Arens regular, as well. By [1, Theorem (2.6)], $QM_{el}(A^*)$ is Arens regular and so $(QM_{el}(A^*), \tau)^*$ factors

(see [14]). Also by [1, Theorem (2.5)], $QM_{el}(A^*)$ is isomorphic to A^{**} . Therefore there exist $f \in (QM_{el}(A^*), \tau)^*$ and $F \in A^{**}$ such that $g = f \cdot F$.

For each $H \in A^{**}$, define $\varphi(H) \in QM_{el}(A^*)$ by

 $[\varphi(H)](F,\xi) = (F \triangleleft H) \cdot \xi \quad \text{for all } \xi \in A^*, \ F \in A^{**}.$

Lemma 2.11. If A is an Arens regular Banach algebra with a bounded approximate identity, then $\varphi: A^{**} \to QM_{el}(A^*)$ is an isomorphism.

Proof. Let $m \in QM_{el}(A^*)$. In order to prove that φ is onto, we show that for all $F, H, G \in A^{**}$ one has

$$n^*(H \triangleleft F, G) = H \triangleleft m^*(F, G)$$

where $m^*: A^{**} \times A^{**} \to A^{**}$ is an extension of m. Let $\xi \in A^*$. Then

 $\langle m^*(H \triangleleft F, G), \xi \rangle = \langle H \triangleleft F, m(G, \xi) \rangle = \langle F, m(G, \xi) \cdot H \rangle = \langle F, m(G, \xi \cdot H) \rangle$ $= \langle m^*(F, G), \xi \cdot H \rangle = \langle H \triangleleft m^*(F, G), \xi \rangle.$

Let E be the mixed identity in A^{**} and suppose that $\xi \in A^*$, $F \in A^{**}$ and $x \in A$ are arbitrary. Then

$$\begin{aligned} \langle \varphi(m^*(E,E))(F,\xi),x \rangle &= \langle (F \triangleleft m^*(E,E)) \cdot \xi,x \rangle = \langle F \triangleleft m^*(E,E),\xi \cdot x \rangle \\ &= \langle m^*(F,E),\xi \cdot x \rangle = \langle F,m(E,\xi \cdot x) \rangle \\ &= \langle F,m(E,\xi) \cdot x \rangle = \langle x \triangleleft F,m(E,\xi) \rangle \\ &= \langle x,F \cdot m(E,\xi) \rangle = \langle x,m(F,\xi) \rangle. \end{aligned}$$

Now, let us prove that φ is one to one. Assume that $\varphi(H) = 0$. Then for each $\xi \in A^*$, one has

$$H \cdot \xi = (E \cdot H) \cdot \xi = 0.$$

Which implies that for each $x \in A$,

$$\langle H, \xi \cdot x \rangle = \langle H \cdot \xi, x \rangle = 0.$$

Since, A is Arens regular, A^* factors. Thus H = 0.

Definition 2.12. Let A be a Banach algebra. The topology of bounded convergence u on $(QM_{el}(A^*), \gamma)^*$ is defined as the linear topology which has a base of neighborhoods of 0 consisting of all sets of the form

$$M(D,G) = \{ f \in (QM_{el}(A^*), \gamma)^* : f(D) \subseteq G \},\$$

where D is a γ -bounded subset of $(QM_{el}(A^*), \gamma)$ and G is a neighborhood of 0.

The topology ν on $(QM_{el}(A^*), \gamma)^*$ is defined as the linear topology which has a base of neighborhoods of 0 consisting of all sets of the form

$$N(D,G) = \{ f \in (QM_{el}(A^*), \gamma)^* : f(D) \subseteq G \},\$$

where D is a norm-bounded subset of $(QM_{el}(A^*), \gamma)$ and G is a neighborhood of 0.

Theorem 2.13. Let A be a C^* -algebra. Then $((QM_{el}(A^*), \gamma)^*, u)$ is isomorphic to A^{***} .

Proof. Since $\gamma \subseteq \tau$ we have $(QM_{el}(A^*), \gamma)^* \subseteq (QM_{el}(A^*), \tau)^*$. By Theorem 2.9, γ and τ have the same bounded sets in $QM_{el}(A^*)$, it follows that the topology u coincides with the norm topology ν on $(QM_{el}(A^*), \gamma)^*$. Therefore $((QM_{el}(A^*), \gamma)^*, u)$ is a normed subspace of $((QM_{el}(A^*), \tau)^*, \nu)$. We will show that $((QM_{el}(A^*), \gamma)^*, u)$ is isomorphic to the subspace $((\varphi(A^{**}), \tau)^*, \nu)$ of $((QM_{el}(A^*), \tau)^*, \nu)$. Consider the map ψ which maps each element $g \in$ $((QM_{el}(A^*), \gamma)^*, u)$ onto its restriction to $\varphi(A^{**})$, that is, $g|\varphi(A^{**})$. Since $\gamma \subseteq \tau$, for each $g \in (QM_{el}(A^*), \gamma)^*$, the map $\psi(g)$ is τ -continuous. It is clear that ψ is linear. Suppose that $\psi(q) = 0$. Then $q(\varphi(H)) = 0$ for all $H \in A^{**}$. By Lemma 2.11, the mapping φ is onto. Hence, g(m) = 0 for all $m \in QM_{el}(A^*)$ which means that ψ is one to one. Assume that $f \in (\varphi(A^{**}), \tau)^*$. It is easy to see that $\varphi(A^{**})$ is an Arens regular Banach algebra. Hence, by using the same arguments as those in the proof of Theorem 2.10, there exist $h \in (\varphi(A^{**}), \tau)^*$ and $F \in A^{**}$ such that $f = h \cdot F$. By Hahn-Banach theorem, h can be extended to an element $\bar{h} \in (QM_{el}(A^*), \tau)^*$. Then, by Theorem 2.10, the functional $\bar{h} \cdot F$ belongs to $(QM_{el}(A^*), \gamma)^*$. Also, for all $G \in A^{**}$, we have

$$\psi(\bar{h} \cdot F)(\varphi(G)) = (\bar{h} \cdot F)(\varphi(G)) = \langle \bar{h}, \varphi(G) * F \rangle = \langle \bar{h}, \varphi(F \ G) \rangle$$
$$= \langle h, \varphi(F \triangleleft G) \rangle = \langle h, \varphi(G) * F \rangle = (h \cdot F)(\varphi(G))$$
$$= f(\varphi(G)).$$

Therefore $\psi(\bar{h} \cdot F) = f$ and so ψ is onto.

Example 2.14. Let H be a Hilbert space and let A = K(H), the algebra of all compact operators on H. The dual of the space of compact operators is the space of trace-class operators, $C_1(H)$. The second dual of A is B(H). Since K(H) is a C^* -algebra we have $((QM_{el}(C_1(H)), \gamma)^*, u) \cong (B(H))^*$.

Example 2.15. Let $A = c_0(\mathbb{N})$, the space of all complex sequences which converge to 0. The dual of c_0 is l_1 and its second dual is l_{∞} . Since c_0 is a C^* -algebra, by Theorem 2.13, $((QM_{el}(l_1), \gamma)^*, u) \cong ba(\mathbb{N}, 2^{\mathbb{N}}, \mu)$, the space of all finitely additive finite signed measure which are absolutely continuous with respect to the counting measure μ equipped with the total variation norm. Since the space l_{∞} is isometrically isomorphic to $C(\beta\mathbb{N})$, where $\beta\mathbb{N}$ is the Stone-Čech compactification of \mathbb{N} , one can identifies $((QM_{el}(l_1), \gamma)^*, u)$ also with the dual $C(\beta\mathbb{N})^*$.

Acknowledgements

The author wishes to thank Professor Janko Bračič for reading the manuscript and making several useful suggestions.

Quasi-multipliers

References

- M. Adib, A. Riazi and J. Bračič, Quasi-multipliers of the dual of the dual of a Banach algebra, Banach J. Math. Anal. 5 (2011), no. 2, 6–14.
- [2] M. Adib, A. Riazi and L.A. Khan, Quasi-multipliers on F-algebras, Abstr. Appl. Anal. 2011 (2011), Article ID 235273, 30 pages.
- [3] C.A. Akemann and G.K. Pedersen, Complications of semicontinuity in C^{*}-algebra theory, Duke Math. J. 40 (1973) 785–795.
- [4] Z. Argün and K. Rowlands, On quasi-multipliers, Studia Math. 108 (1994), no. 3, 217– 245.
- [5] P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, *Pacific J. Math.* **11** (1961) 847–870.
- [6] H.G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. Ser. 24, Clarendon press, 2000.
- [7] R.E. Edwards, Functional Analysis, Theory and Application, Holt, Rinehart and Winston, 1965.
- [8] H.G. Heuser, Functional Analysis, John Wiley & Sons, Chichester, 1982.
- [9] M. Kaneda, Quasi-multipliers and algebrizations of an operator space, J. Funct. Anal. 251 (2007), no. 1, 346–359.
- [10] M.S. Kassem and K. Rowlands, The quasi-strict topology on the space of quasimultipliers of a B*-algebra, Math. Proc. Cambridge Philos. Soc. 101 (1987) 555–566.
- [11] G. Köthe, Topological Vector Spaces I, Springer, Berlin Heidelberg, 1969.
- [12] H. Lin, The structure of quasi-multipliers of C*-algebras, Trans. Amer. Math. Soc. 315 (1987) 147–172.
- [13] M. McKennon, Quasi-multipliers, Trans. Amer. Math. Soc. 233 (1977) 105–123.
- [14] A. Ülger, Arens regularity sometimes implies the RNP, Pacific. J. Math. 143 (1990), no. 2, 377–399.

(Marjan Adib) Department of Mathematics, Payamenoor University (PNU), Tehran, Iran.

E-mail address: m.adib.pnu@gmail.com