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ABSTRACT. In this paper, the numerical solutions of linear and nonlinear
Volterra integral equations with nonvanishing delay are considered by two
methods. The methods are developed by means of the sinc approximation
with the single exponential (SE) and double exponential (DE) transfor-
mations. The existence and uniqueness of sinc-collocation solutions for
these equations are provided. These methods improve conventional re-
sults and achieve exponential convergence. Numerical results are included

to confirm the efficiency and accuracy of the methods.
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1. Introduction

Delay Volterra integral equations arise widely in scientific fields such as
physics, biology, ecology, control theory, etc. Due to the practical application
of these equations, they must be solved successfully with efficient numerical
approaches. In recent years, there have been extensive studies in convergence
properties and stability analyses of numerical methods for them. Some numer-
ical methods for the delay Volterra integral equation of vanishing and nonva-
nishing types have been studied. Piecewise collocation methods for VIE with

vanishing delay is investigated in [8—10,18] and also for the case of non-vanishing
delay, the papers [0, 7] investigate the piecewise collocation and Runge-Kutta
methods.

Sinc methods for approximating the solutions of Volterra integral equations
have received considerable attention mainly due to their high accuracy. These
approximations converge rapidly to the exact solutions as the number sinc
points increases. Systematic introduction of these methods can be found in
[15]. In [17] sinc-collocation method is emplyed to solve Hammerstein Volterra
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integral equations. The analytical and numerical techniques used in this work
can be extended to linear and nonlinear delay integral equations.
The main objective of the current study is to implement the sinc-collocation
method for linear and nonlinear Volterra integral equation of the form
t o0(t)
() w0 =90+ [ Katsois+ [ Katt sl
t 0(t)
(12 0 =g+ [ Kaltsa)is+ [ Kaltsas)is

where the functions g, K1 and Ks are countiuous on their domains. The delay
function 6 is subject to the following conditions:

(1) (D1) (t) =t —7(t), and 7 € C4(I := [0, T]) for some d > 0;
(2) (D2) 7(t) =70 >0for t € I;
(3) (D3) 0 is strictly increasing on I.

t
t

In the above equation, 6(t) is a continuous delay function, such that 0(¢) < ¢
for all t € (0,7). It is called vanishing delay if ¢t — 6(¢) vanishes at ¢ = 0,
otherwise it is called non-vanishing. 6(t) = t—7, 7 > 0 is an important example
of non-vanishing delay. In this paper we consider non-vanishing delays that it
is more general than constant delay. Existence and uniqueness results for (1.2)
can be found in [4].

The layout of this paper is as follows. Section 2 outlines some of the main
properties of sinc function that is necessary for the formulation of the delay
integral equation. Sinc-collocation method for linear delay integral equation is
considered in Section 3. In Section 4, we analyze the existence and uniqueness
of numerical solutions for nonlinear delay integral equations. Also, in Sections 3
and 4, the orders of scheme convergence using the new approach are described.
Finally, Section 5 contains the numerical experiments.

2. Review of the sinc approximation

In this section, we will review the sinc function properties, sinc quadrature
rule, and the sinc method. These are discussed thoroughly in [15]. The sinc
basis functions are given by

—ih
(2.1) S(j, h)(z) = sinc(Z h] ), j=0,+1,42, ...
where
sin(mz)
sinc(z) = { Tz 1: z 7:8:

and h is a step size appropriately chosen depending on a given positive integer
N, and j is an integer.
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Originally, the sinc approximation for a function u is expressed as
N
(2.2) u(t) = Y u(jh)S(,h)(t),  teR.
j=—N

The above approximation is valid on R, whereas equations (1.1) and (1.2) are
defined on finite interval [0,7]. Equation (2.2) can be adapted to approxi-
mate on general intervals with the aid of appropriate variable transformations
t = ¢(xz). The transformation function ¢(x) appropriate single exponential
(SE) and double exponential (DE) transformations are applied. The single
exponential transformation and its inverse can be introduced, respectively, as
below

T T
bsp() = 1o
¢sE(t) :ln(Tt—t)'

In order to define a convenient function space, the strip domain Dy = {z € C :
[Imz| < d} for some d > 0 is introduced.

The following definitions and theorems are considered for further details of
the procedure.

Definition 2.1. Let D be a simply connected domain which satisfies (0,7") C
D and « and ¢; be a positive constant. Then L, (D) denotes the family of all
functions u € Hol(D) which satisfy

(2.3) lu(2)] < e1|@(2)],
for all z in D where Q(z) = z(T — 2).

In what follow, D is ¢¥sg(Dg), where
z
Ysp(Da) = {z€C: |al"g(T7_Z)| <d}.
The next theorem shows the exponential convergence of the SE-sinc approxi-
mation, the proof of this theorem was first given by Stenger [15], and then it
was improved by Okayama et al. [14].

Theorem 2.2. Let u € L,(D), N be a positive integer, and h be selected by

the formula h = \/%. Then there exists a positive constant co, independent
of N, such that
N

sup fu(t) = Y w(sp(ih))S(, h)(bse(t))] < ca(b - a)**VNe Vel
te(a,b) J=—N

Stenger [15] had given the error analysis of the sinc indefinite integration,
and after that Okayama et al. [14] gave error estimate with explicit constant
for this approximation.



Convergence of the sinc method applied to delay Volterra 1360

Theorem 2.3. Let u@ € L,(D) for d with 0 < d < w. Let also h = 1/%.

Then there exists a constant c3, which is independent of N, such that

(24) SUPye oy [ 0()ds — BT u(sm R ()T G, ) (Gsm(1)] <
(2.5) cs(b— a)QO‘_le_\/m

where

. 1 579 gin(nt

The double exponential transformation can be used instead of the single
exponential transformation. DE-transformation and its inverse are

Ypr(z) = %(tanh(gsinh(x)) + 1),
2
¢pr(t) = In 71r1n(Tt—t)+\/1+{7lrln<Tt_t>}

This transformation maps Dy onto the domain

1 t 1 t 2
The following theorem describes the extreme accuracy of DE-sinc approxima-
tion when u € L, (Ypr(Dg)).

arg

wDE(Dd) = {Z eC:

Theorem 2.4. Let u € Lo(Ypr(Da)) for d with 0 < d < 5, N be a positive

In(2dN/a)
— N -

integer and h be selected by the formula h = Then there exists a

constant ¢y which is independent of N, such that

N

sup |u(t) — Z uw(pe(jh)S3j, h) (épe(t))| < C4(b_a)QOéefﬂ'dN/ln(QdN/a).
te(a,b) J=—N

If we use the DE transformation instead of the SE transformation, the DE-
sinc quadrature is achieved. The rate of convergence is accelerated as the next
theorem states.

Theorem 2.5 ([14]). Let uQ € Lo(¢¥pr(Da)) for d with 0 < d < 3. Let also
o =a—e€for0<e<a, N bea positive integer with N > o'/(2d), and h be
selected by the formula

b= In(2dN /o)
=——
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Then there exists a constant c5 which is independent of N, such that

sup / dsfhz (UoE () Wps(ih)1G. ) (és ()

t€(a,b)

<es (b _ 0,)20‘71677“”\7/ 1n(2dN/o/)'

3. Linear delay integral equation

In the present section, we apply the sinc-collocation method to solve (1.1)
which we state again for the convenience of the reader:

(1)
/ Ky (t,s)y(s)ds + Ks(t,s)y(s)ds, t e (0,77
Notice that for ¢ that 6(t) < 0 we have
6(t)
/ Kq(t,8)y(s)ds + Ks(t,s)p(s)ds, t€(0,67(0)].
This is a Volterra integral equatlon.

If t = 0, we have y(0) = ¢(0). For ease of calculation, we employ the
transformation
Tt
u(t) = y(6) ~ L (0).

In this case ©(0) = 0. Then the above problem becomes

()
(3.1) u(t / Ky (t,s)u(s)ds + Ky(t, s)u(s)ds,
where

F) = g(t) = (T = 1)e(0)

¢ o(t)
0){/0 Kl(t,s)(T—s)ds+/O Kg(t,s)(T—s)ds}.

Equation (3.1) may be written in the form

(3.2) u = f+Vu+Vyu,

where
t
/ K (t,s)u(s)ds
0

()
Vou(t) = /0 Ks(t, s)u(s)ds.

Vu(t)
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3.1. SE-sinc scheme. A Sinc approximation UF to the solution u of equa-
tion. (3.1) is described in this part. Let us define the operator Py as follows

(3.3) Z uFFS (i, h) (¢sm(t) + uRwse(t),

in which uj 9B — u(th) We choose wsg(t) so that PF interpolate the function

u at the points

2fSE: wSE(jh), ]ZfNaaNa
it T, j=N+1.

Then
wsp(t) : Z t5ES(j, 1) (¢sE(t))

PJ%E is called the collocation operator. The approximate solution UJ‘(\’;E is con-
sidered that has the form

(3.4) Z u? P S, ) (pse(t) + uifiwse(t).

Applying the operator Py to both sides of (3.2) at t = t7F, k= —N,..., N+
1 and using the sinc quadrature formula give us the following approximate
equation in operator form

(3.5) ZRP = PREVERE + PRV 2" + PRV S

So the collocation method for solving (3.1) amounts to solving (3.5) for N
sufficiently large. We are interested in approximating the integral operator in
(3.5) by the quadrature formula presented in (2.4). So the following discrete
SE operators can be defined

N
VIPut) = h Y Wep(ih)Ki(t,t57)I(j, h)(bse(t))u;”,
jsz
Vivu(t) = h Z PYop(Th) Ka(t,t57)T (5, h) (6se(0(t)))uf ™.

Je—N
This numerical procedure leads us to replace (55) by
B =PREVREURT + PREVIRURE + P T.

By substituting &/ J%E into (3.1) and approximating the integral by means of the
sinc quadrature formula and considering its collocation on 2NN + 2 sampling
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points at t = 7 | for k = —N,...,N,N + 1, the following linear system of
equations is obtained

N
WE = Y ng(jh){Kl(th,th)J(%h)(¢SE(th))
j=—N

FR (5 455) G, ) (655) Jus® + f(t55),
in which ¢ := ¢(0(t3F)). From definition of #7¥ we can write

J(j,m(qss,;(th)):{ J(j,h)(kh), k= —N,...,N;

1, k=N+1.
For ), that 0(t;) < 0 we set
K2(t£E7th) = Oa j:_Na"'va

and
t3F
FUE) = g05) = (T = 59)0) + 700) [ K105, 9)(T = s)as

0ty ")
[ Kl )1
0

Linear system (3.6) of equations is equivalent to (3.1). By solving this system,
SE

the unknown coefficients u; ™ are determined. We rewrite the linear system in
matrix form
(3.6) [I — ASETURE = F5F)
where
USE =R, FSE = (R, )
and for k,j=—N,... N,
ART = Wil p(Gh) { KA (87, 677)T (G, h) (kh) + K67, £77).J (G, h) (67 ) }
By solving equation (3.6) we obtain u5%,, ..., u3¥ and then by using (3.6) u3%,
is determained.

3.2. DE-sinc scheme. In this subsection we apply the DE-sinc method for
solving (1.2). The approximate solution ULF and the operator PL¥ can be
defined similar to the SE-sinc method,

N

37 PRPult) = > uPPS(h)(bpet) + untiwpe(t).
j=—N

The discrete DE operators are introduced

N
(3.8) VWFu(t) :=h Y ¢pp(ih)Ki(t,tPP) I, h)(épe(t)ul”,
j=—N
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N
VRFu(t) = h S Ui Ea(t, tPP)I (G, ) (p(0(1))uP”.
j=—N
By applying (3.7)-(3.9) and setting its collocation on 2N + 2 sampling points
at t =tPF for k= —N,...,N +1, in equation (3.1), the linear system

N
WP = b Y UppG { KR ) TG, 6ot ))
J=—N

R (R PP P) (5, 0 (00 ) JuPE + F(ERP),
is achieved. This linear system can be stated in matrix form as follows
(3.9) [I — APPIURE = FPF.
By solving this system, the unknown coeflicients in UgE are found.
3.3. Existence and uniqueness of the sinc-collocation solution. We now
use the computational forms of the collocation equation derived in Section 4.2

to show that the existence of a unique sinc-collocation solutions of (3.6) and
Lemma 3.1 ([15]). For z € R, the function J(j, h)(x) is bounded by

|J(3; k) ()| < L.1.
Theorem 3.2. Assume that K1, Ko and f in the Volterra integral equation
(3.1) are continuous on their respective domains D, Dy and I. Then there

exists a h > 0 so that for any h € (0,h) the linear algebraic systems (3.6) and
(3.9) have a unique solution Uy .

Proof. Using Lemma 3.1, Theorem 2.3, Theorem 2.5 and continuty of K; and
K, there exists ¢ > 0 so that | Ay ;| < chfor k,j = —N,...N. Then ||Al|» <1
whenever h is sufficiently small. In other words, there is a A > 0 so that for
any h < h the matrix (I — .A) has a uniformly bounded inverse. The assertion
of Theorem 3.2 now follows. O

4. Nonlinear delay integral equation

In the present section, the solution of the functional equation (1.2) will be
approximated by the sinc-collocation sloution. Equation (1.2) is stated again
for the convenience of the reader:

6(t)
/ Ki(t,s,u(s)) + Ks(t,s,y(s))ds, tel:=(0,T].

If t = 0 we have y(0) = ¢(0). Like Sectlon 3, we use the following transforma-
tion
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In this case u(0) = 0. Then the above problem can be rewritten as

¢ ()
(A1) ult) =)+ / K (t, 5, u(s)) + / Ka(t, 5, u(s))ds

with
£(8) = g(6) ~ T p(0).
Kaltss,u(s)) 1= Ka, s, u(s) + - 0(0)),
Kalt, ,u(s)) = Koalt, 5, u(s) + - (0)).

Now, let u(t) be the exact solution of equation (4.1).

4.1. SE-sinc scheme. We replace the approximate solution (3.4) in (4.1).
Substituting ¢ = th, k=—N,...,N + 1 we can obtain

t3F N
42) uF = f5F) + / K58 s, S uSES (G, h) (dsi(s)) + ulEwss(s))ds +
0

j=-N

0" s s s
/ K255, 5, 3 uSPS(,h)(dsr(s)) + uiErwse(s))ds.
0 =N
We approximate the integral in above equation by the quadrature formula
presented in (2.4)

Tl N

/0 Ka(t55 s, 37 uSPS (i) (6s(s)) +uf yws(s))ds

j=—N

N
=h Z waE(lh)J(l’ h)(asSE(th))ICl(thvthvung)a
I=—N

0t N
/ Ka(t55,5, 3 uSES(j, ) (bsm(s)) + uSE wsn(s))ds
0

j=—N

N
=h Z w./SE(lh)J(lvh)( fE)K2(t£Evth’u?E)7
l=—N

where

RC = osp(0(R"))-
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Thus (4.2) is written as

N

(43) Wi =FEE) +h Y Ve T 0 (6sp D) 45, uf®)
I=—N

RGPV 47, uf ) |,

where up® = u(t{F). This nonlinear system of equations is equivalent to (4.1).

By solving this system, the unknown coefficients ufE are determined. We

rewrite the nonlinear system (4.3) in matrix form

(4.4) ASE(URF) = URF,
where
ASEUR g o= SE5) + hls () { T 1) (BRI (455, 65, uf )
+J(, R)( fE)/cg(th,th,ufE)}, k,l=—-N,...,N,
U = WK, uRE)

4.2. DE-sinc scheme. The main consideration of this subsection is on DE-
sinc case. The approximate solution UL¥, analogous to the SE-sinc method,
can be presented in the following form

N
(4.5) URP(t) = > uPPS3,h)(¢pr(t) +uRfiwpp(D).

j=—N

By applying (4.5) and setting collocation points ¢t = t2?F  for k= N,...,N+1,
in equation (4.1), the following nonlinear system

(4.6) APE(UR") = UR",
is achieved. By solving this system, the unknown coeflicients in UZE are found.

4.3. Existence and uniqueness of the sinc-collocation solution. In this
section, we study the existence and uniqueness of the solution to (4.4) and
(4.6).

Theorem 4.1. Assume that K1, Ko and f in the nonlinear Volterra equation
(4.1) are continuous and

K1t 5,u(t)) = Ka(t, s, 0())] < Lafult) = v(1)],
KCa(t, s,ul(t)) — Ka(t, s,v(t))| < Lalu(t) — v(t)].

Then the nonlinear algebraic systems (4.4) and (4.6) have a unique solution.
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Proof. Using Lemma 3.1 and continuity of Ky and Ky we have

N
A% (UR") = F*¥ |l = max ’h Y Werh)[JI( R (¢ (™)K (7, 077, ')
I=—N

+J (LR (PR (817 407w )]

N
<Lihsup ¢ ()] D )Kl(tf’f,th7ufE)+iCz(t£E,th,ufE)
® I=—N

N
<L1he ™™ S KI5 8077w ®) | + (827,477 ul )|
l=—N

< 1.1he V(2N 4+ 1)M,

where M is an upper bound of |Ki(t,s,u(t))] + |[Kz(t, s, u(t))| and FSF =
[f(#5K), ..., F(t3F)]!. By using the fixed point theorem, this proves that the
nonlinear system has a solution in the closed ball with center |
1.IhT(2N + 1)M.

It may be shown that, if K£; and Ky are Lipschitz with respect to u(t), the

solution is unique. Suppose that U]SVE and V]SVE are two possible solutions.
Then

and radius

IUSE — VPl = [|4SE(USE) — ASE(VRF)|
N
= max|h > whp()ILR)GET) [Ku(EE 57, w) — Ka (5 477, w)]
I=—N
FUsp ()T ) (Gsm (D)) (a5, 57, w) = Ka (47, 55, )] |

N
Lihe™ N max 3 Ulcl(th,th,ul) — K655, 657 vy)]

<
I=—N
+ Ko (65, 157 ) — Kg(th,th,vl)”
< Llhe NP i Ly |ug — v 4 Lo |ug — vy
< l.lhe mgxlz?N 1

< 2.2he VRN + 1)L URE — VIF &

< U = VP,

because limy _, oo he V(2N 41) = 0, we can write the last inequality for some
N. It follows that |USF — V3F||o vanishes and there is thus uniqueness.
The similar conclusions are achieved for DE case. |
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5. Convergence analysis

The convergence of the sinc-collocation method which was introduced in the
previous subsections is discussed in the present subsection. It is assumed that
u is the exact solution of equation (3.1) and U ]%E and U Jf,’ E are the approxima-
tions of the sinc method. Firstly, we state the following lemma which is used
subsequently.

Lemma 5.1. Assume that the equation (1.2) has a unique solution. Then for
all sufficiently large N , N > n, the operator (T —Pn(Vn +Von)) ! exists and
it is uniformly bounded:

(5.1) ;tip Z —Pn(VN + VeN))_1|| < 00.

Proof. From Theorem 2.2 we can write

Vn — P3EVN| < C1VNe VXN,
Vo = PiVon || < CoV/NeVrdel,
S0
Vv = PREVn| = 0, Van — PR Von | — 0, as N — oo.
From [I, Theorem 4.1.2] there exists the inverse of (Z — Vi — Vyn) for all

sufficiently large N, so we can pick n such that

1
en = sup ||Vy + Von — PR (Vv + Von )| < :
SR VYo = PRS0 Yol < 5=

Then the inverse of [Z+ (Z —Vy —Van) *(Vn + Von — 'PJ%E (VN +Von))] exists
and uniformly bounded by the geometric series theorem

1
L—enll(Z=Vn —Von) M|

IZHT=Vn = Von) " (Vv + Van—PREVn+ Von))] lI<
On the other hand,
I —PP(Wn +Von) = (T —Vn = Von) + (Vn + Van — PRE(VN + Ven))
= (T -V —Von)|Z+ (T —Vn —Von) ' (Vn + Von — PYEVN + Von)) |
Using above equation, (Z — P3F(Vn 4+ Von)) ™! exists, and
(Z—PYEWVN +Von)) !
- [z+ (Z -V —Von) ' (Vn + Vo — PSE(Vn + VQN))} T = Vn = Ven) !

_ I—VN—VQN)71||
T —PREWn 4V, g .
”( N ( N 9N)) ” l_ﬁnH(I_VN_VGN)_l”

This shows (5.1). Also it is true for PLE. O
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Lemma 5.2 ([16]). Let h > 0. Then it holds that

N
sup > |S(j,h)(x)] <
weRj:—N

(3+InN).

BRI

Based on this lemma, it has been concluded ||PRFP|| < CgpIn(N) and
PNl < CsgIn(N) where Csg and Cpg are constants independent of N.
In the following theorem, we will find an upper bound for the error.

Theorem 5.3. Let UﬁE(m) be the approximate solution of integral equation
(3.1). Then there exists a constant cg independent of N such that

(5.2) sup |u(x) — UNE(z)] < cgV/NIn Ne~VrdaN,
z€(0,T)

Proof. The estimation (5.2) is obtained as follows:

u—UNE = f—=PEf+Vu—PIEVNURE + Vou — PREVoNURE
= (f=PRES)+ (Vu—PEVU) + (PREVU — PREVNu)
H(PIEVNU — PREVNURE) + Vou — PREVou)
+(PYEVou — PYEVonu) + (PREVanu — PREVaNURE)
= (f=PrES)+ WVu—PIEVU) + PYE(Vu — Vyu)
+PYE (Vnu — VNURE) + Vou — PREVou)
+PNE (Vou — Vonu) + PrF Vonu — VonUNE),

then we can write

(Z — PYEVN — PEVon ) (u — USF)
= (f=PIES) + Vu—PIEVu) + PSF (Vu — Vyu)
+(Vou — PyEVou) + PrE (Vou — Vonu).

By using Lemma 5.1 we have

(u—UR®) = (Z—PFVn—PFVon)! [(f —PRE) + (Vu—PRPVu)
+PIE(Vu — Vyu) + Vou — PREVou) + PRE(Vou — VgNu)} )

This leads to

lu = URPII<I(Z = PRPVN = PR Von) !l [Ilf = PRESI A+ Vu = PRE V|

HIPRE NV = Vavull +[Vou = PFEVoull + IIPRE | [Vou — Vonull]-
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We can apply Theorem 2.2 and get
If = PREFI < Cov/Nem Ve,
[Vu — PYEVu|| < Cov/NeVrdaN,
IVou = PRFVoul| < Cav/Ne V4N,
By using Theorem 2.3, the following result is concluded

||Vu — VNUH < 046_ TrdaN,

Vou — Vonul|| < Cse™ mdaN

)

and finally | PP || is estimated by conclusion of Lemma 3.1. So
lu = USE|| < CI(T = PYFVN — PP Von) Y|V Ne VN,
O

It is clear that the arguments employed in the above proof can be used to
DE-sinc method.

Theorem 5.4. Let Z/I]{,)E(x) be the approzimate solution of integral equation
(3.1). Then there exists a constant c¢; independent of N such that

sup |u(z) — URE ()| < cye~ ™/ In(2dN/a)

z€(0,T)
In the following we try to discuss the conditions under which Newtons
method is convergent for the nonlinear equation. For this reason we will state
and prove the following theorem.

Theorem 5.5. Assume that U,SVE is the exact solution of the nonlinear system
(4.3), and hypotheses of Theorem 5.3 are satisfied. Also, suppose that Ky 4nd

- ou
% are Lipschitz with respect to u. Then there exist 6 > 0 and h > 0 such that

if || U}QVIE:O) — URF|| < 6, the Newton’s sequence {U}gv?m)} for any h € (0,h) is
well-defined and convergence to U%E. Furthermore, for some constant | with
16 < 1, we have the error bounds

(162"
L

S S
1UR Gy — ORIl <
Proof. We must solve the nonlinear system
URF — ASE(URF) =o0.

The Newton method reads as follow. Choose an initial guess U%P(JO); for m =
0,1,..., compute

(5.3) U}qv]?mﬂ) = U]SV?m)
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We know that
oK,

(ASPURP) ke = ') [T, ) (k) 5 (P 17 )
+ (1, h)( SE){ZC?(t A5, SE)], k,l=—N,...,N.

Using Lemma 3.1 and differentiability of IC; and K, there exists ¢ > 0 so
that |[(ASE(URF)) kil < ch and then [(ASE(UF))| < 1 whenever h is
sufficiently small. In other words, there is a A > 0 so that for any h < h the
matrix (I — (ASF(URF))) has a uniformaly bounded inverse.

The conclusion is straightforwardly achievable by applying [2, Theorem
5.4.1] and the above discussion. O

In the following theorem, we summarize the conclusions of theorems proved
in this section.

Theorem 5.6. Assume that u is an isolated solution of (4.1). Furthermore,
URE and L{N (m) are the solutions of (4.3) and (5.3), respectively. Suppose that
hypotheses of Theorems 5.3 and 5.5 are satisfied. Then there exists a positive
constant C'(m) independent of N and dependant on m such that

le = U | < Cm) VN In Nem VN

Proof. The conclusion is obtained by using the triangular inequality and con-
clusions of Theorems 5.3 and 5.5. ]

Theorem 5.7. Assume that u is an isolated solution of (4.1). Furthermore,
URF and L[ﬁfm) are the solutions of (4.6) and (5.3), respectively. Suppose that
hypotheses of Theorems 5.4 and 5.5 are satisfied. Then there exists a positive
constant C'(m) independent of N and dependant on m such that

Hu N( ” ( ) —Tl'dN/ln(QdN/a).
Proof. The proof of this theorem goes almost in the same way as in the SE
case. (]

6. Illustrative examples

In this section, we illustrate the theoretical results of the previous sections
by the following three exampls with 7 = 1. The numerical experiments are
implemented in MATLAB.

It is assumed that o = 1. The d values are § and 7 for the SE-sinc and
DE-sinc methods, respectively. The errors of the two methods for different
N are reported. These tables show that increasing IV the error significantly is
reduced. As expected, the tables show that the convergence rate of the DE-sinc
method is faster than the SE-sinc scheme.
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Example 6.1. Consider the delay integral equation (see [3, Example 4.1])
g(t) + / Ki(t,s)y(s)ds + TKg(t,s)y(s)ds, t € (0,5],
()—Sl() € [-1,0],

with Ki(t,s) = e*7¢, Kg(t,S) = tsin(s) and ¢ is chosen so that its exact
solution is y(t) = sin(¢) + 1. Table 1 shows the absolute error of sinc method
and the numerical results of [3] for this example.

TABLE 1. Values of ||E|| for Example 6.1.

N 30 50 60 75

SE 1.16E-4 1.85E-6 1.38E-7 1.84E-9

DE 5.68E-7 5.19E-12 1.74E-13 1.54E-13
Result in [3] 1E-3 1.41E-5 1.65E-6 1.39E-7

20 30 40 50 60 70

FIGURE 1. Results for Example 6.1.

Example 6.2. Consider the following equation (see [3, Example 4.2])

/ Ki(t,s)y(s)ds + Ks(t,s)y(s)ds, te(0,5],

1+t
pt) = —. tel-1,0]

with K (t,s) = sin(s +¢), Ka(t,s) = {7 and g is chosen so that the exact
1+t

solution y(t) = ~%*. Table 2 shows the absolute error of DE-sinc method for
N = 50 and the numerical results of [3] for this example.
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TABLE 2. Comparison of results in [3] to sinc method

t Result in [3] SE DE

1 3.5E-5 3.20E-9 1.13E-15
2 1.43E-5 4.35E-9 3.33E-16
3 2.83E-5 3.24E-9 0

4 1.18E-4 1.92E-9 1.15E-15
5 9.3E-5 1.42E-8 4.99E-16

Example 6.3. We consider the following nonvanishing delay Volterra integral
equation

)=o)+ | (st Dly(s)Pds, te (03],
0
@(t):tv te [—1,0],

g(t) chosen so that its exact solution is y(t) = t*> —t. The absolute error of
SE-sinc and DE-sinc methods for different values of N are reported in Table
3. In this example, Newton’s method is iterated until the accuracy 1078 is
obtained.

TABLE 3. Values of ||E|| for Example 6.3.

N 20 30 40 50 60
SE | 3.6794E-3 | 8.3369E-4 | 3.3180E-5 | 4.7941E-7 | 1.5158E-7
DE | 4.4596E-5 | 1.8916E-8 | 2.2818E-10 | 3.2987E-11 | 2.9460E-12

20 30 40 50 60 70
N

FI1GURE 2. Results for Example 6.3.
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7. Conclusion

We propose two numerical methods based on the sinc function, the SE-sinc
and DE-sinc, in order to solve the linear and nonlinear delay integral equations
(1.1) and (1.2), where 6 is a general function. Our methods have been shown
theoretically and numerically that they are extremely accurate and achieve
exponential convergence with respect to IN. These two methods have some
strengths and weaknesses. In comparison with each other, as the theorems
show, it is understood that the SE-sinc formulas are applicable to larger classes
of functions than the DE-sinc formulas, whereas the DE-sinc formulas are more
efficient for well-behaved functions.
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