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Abstract. In this paper, the numerical solutions of linear and nonlinear

Volterra integral equations with nonvanishing delay are considered by two
methods. The methods are developed by means of the sinc approximation
with the single exponential (SE) and double exponential (DE) transfor-

mations. The existence and uniqueness of sinc-collocation solutions for
these equations are provided. These methods improve conventional re-
sults and achieve exponential convergence. Numerical results are included
to confirm the efficiency and accuracy of the methods.
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1. Introduction

Delay Volterra integral equations arise widely in scientific fields such as
physics, biology, ecology, control theory, etc. Due to the practical application
of these equations, they must be solved successfully with efficient numerical
approaches. In recent years, there have been extensive studies in convergence
properties and stability analyses of numerical methods for them. Some numer-
ical methods for the delay Volterra integral equation of vanishing and nonva-
nishing types have been studied. Piecewise collocation methods for VIE with
vanishing delay is investigated in [8–10,18] and also for the case of non-vanishing
delay, the papers [6, 7] investigate the piecewise collocation and Runge-Kutta
methods.

Sinc methods for approximating the solutions of Volterra integral equations
have received considerable attention mainly due to their high accuracy. These
approximations converge rapidly to the exact solutions as the number sinc
points increases. Systematic introduction of these methods can be found in
[15]. In [17] sinc-collocation method is emplyed to solve Hammerstein Volterra
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integral equations. The analytical and numerical techniques used in this work
can be extended to linear and nonlinear delay integral equations.

The main objective of the current study is to implement the sinc-collocation
method for linear and nonlinear Volterra integral equation of the form

y(t) = g(t) +

∫ t

0

K1(t, s)y(s)ds+

∫ θ(t)

0

K2(t, s)y(s)ds,(1.1)

y(t) = g(t) +

∫ t

0

K1(t, s, y(s))ds+

∫ θ(t)

0

K2(t, s, y(s))ds,(1.2)

where the functions g, K1 and K2 are countiuous on their domains. The delay
function θ is subject to the following conditions:

(1) (D1) θ(t) = t− τ(t), and τ ∈ Cd(I := [0, T ]) for some d ⩾ 0;
(2) (D2) τ(t) ⩾ τ0 > 0 for t ∈ I;
(3) (D3) θ is strictly increasing on I.

In the above equation, θ(t) is a continuous delay function, such that θ(t) < t
for all t ∈ (0, T ). It is called vanishing delay if t − θ(t) vanishes at t = 0,
otherwise it is called non-vanishing. θ(t) = t−τ , τ > 0 is an important example
of non-vanishing delay. In this paper we consider non-vanishing delays that it
is more general than constant delay. Existence and uniqueness results for (1.2)
can be found in [4].

The layout of this paper is as follows. Section 2 outlines some of the main
properties of sinc function that is necessary for the formulation of the delay
integral equation. Sinc-collocation method for linear delay integral equation is
considered in Section 3. In Section 4, we analyze the existence and uniqueness
of numerical solutions for nonlinear delay integral equations. Also, in Sections 3
and 4, the orders of scheme convergence using the new approach are described.
Finally, Section 5 contains the numerical experiments.

2. Review of the sinc approximation

In this section, we will review the sinc function properties, sinc quadrature
rule, and the sinc method. These are discussed thoroughly in [15]. The sinc
basis functions are given by

S(j, h)(z) = sinc(
z − jh

h
), j = 0,±1,±2, . . . ,(2.1)

where

sinc(z) =

{
sin(πz)

πz , z ̸= 0,
1, z = 0,

and h is a step size appropriately chosen depending on a given positive integer
N , and j is an integer.
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Originally, the sinc approximation for a function u is expressed as

u(t) ≈
N∑

j=−N

u(jh)S(j, h)(t), t ∈ R.(2.2)

The above approximation is valid on R, whereas equations (1.1) and (1.2) are
defined on finite interval [0, T ]. Equation (2.2) can be adapted to approxi-
mate on general intervals with the aid of appropriate variable transformations
t = ϕ(x). The transformation function ϕ(x) appropriate single exponential
(SE) and double exponential (DE) transformations are applied. The single
exponential transformation and its inverse can be introduced, respectively, as
below

ψSE(x) =
Tex

1 + ex
,

ϕSE(t) = ln(
t

T − t
).

In order to define a convenient function space, the strip domain Dd = {z ∈ C :
|Imz| < d} for some d > 0 is introduced.

The following definitions and theorems are considered for further details of
the procedure.

Definition 2.1. Let D be a simply connected domain which satisfies (0, T ) ⊂
D and α and c1 be a positive constant. Then Lα(D) denotes the family of all
functions u ∈ Hol(D) which satisfy

|u(z)| ⩽ c1|Q(z)|α,(2.3)

for all z in D where Q(z) = z(T − z).

In what follow, D is ψSE(Dd), where

ψSE(Dd) =
{
z ∈ C : |arg( z

T − z
)| < d

}
.

The next theorem shows the exponential convergence of the SE-sinc approxi-
mation, the proof of this theorem was first given by Stenger [15], and then it
was improved by Okayama et al. [14].

Theorem 2.2. Let u ∈ Lα(D), N be a positive integer, and h be selected by

the formula h =
√

πd
αN . Then there exists a positive constant c2, independent

of N , such that

sup
t∈(a,b)

∣∣u(t)− N∑
j=−N

u(ψSE(jh))S(j, h)(ϕSE(t))
∣∣ ⩽ c2(b− a)2α

√
Ne−

√
πdαN .

Stenger [15] had given the error analysis of the sinc indefinite integration,
and after that Okayama et al. [14] gave error estimate with explicit constant
for this approximation.
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Theorem 2.3. Let uQ ∈ Lα(D) for d with 0 < d < π. Let also h =
√

πd
αN .

Then there exists a constant c3, which is independent of N , such that

supt∈(a,b)

∣∣∣∫ t

a
u(s)ds− h

∑N
j=−N u(ψSE(jh))ψ

′
SE(jh)J(j, h)(ϕSE(t))

∣∣∣ ⩽(2.4)

c3(b− a)2α−1e−
√
πdαN(2.5)

where

J(j, h)(x) =
1

2
+

∫ x
h−j

0

sin(πt)

πt
dt.

The double exponential transformation can be used instead of the single
exponential transformation. DE-transformation and its inverse are

ψDE(x) =
T

2

(
tanh(

π

2
sinh(x)) + 1

)
,

ϕDE(t) = ln

 1

π
ln(

t

T − t
) +

√
1 +

{
1

π
ln

(
t

T − t

)}2
 .

This transformation maps Dd onto the domain

ψDE(Dd) =

z ∈ C :

∣∣∣∣∣∣arg
 1

π
ln(

t

T − t
) +

√
1 +

{
1

π
ln

(
t

T − t

)}2
∣∣∣∣∣∣ < d

 .

The following theorem describes the extreme accuracy of DE-sinc approxima-
tion when u ∈ Lα(ψDE(Dd)).

Theorem 2.4. Let u ∈ Lα(ψDE(Dd)) for d with 0 < d < π
2 , N be a positive

integer and h be selected by the formula h = ln(2dN/α)
N . Then there exists a

constant c4 which is independent of N , such that

sup
t∈(a,b)

∣∣∣∣∣∣u(t)−
N∑

j=−N

u(ψDE(jh))S(j, h)(ϕDE(t))

∣∣∣∣∣∣ ⩽ c4(b− a)2αe−πdN/ ln(2dN/α).

If we use the DE transformation instead of the SE transformation, the DE-
sinc quadrature is achieved. The rate of convergence is accelerated as the next
theorem states.

Theorem 2.5 ([14]). Let uQ ∈ Lα(ψDE(Dd)) for d with 0 < d < π
2 . Let also

α′ = α − ϵ for 0 < ϵ < α, N be a positive integer with N > α′/(2d), and h be
selected by the formula

h =
ln(2dN/α′)

N
.



1361 Shiri and Zarebnia

Then there exists a constant c5 which is independent of N , such that

sup
t∈(a,b)

∣∣∣∣∣∣
∫ t

a

u(s)ds− h
N∑

j=−N

u(ψDE(jh))ψ
′
DE(jh)J(j, h)(ϕDE(t))

∣∣∣∣∣∣
⩽ c5(b− a)2α−1e−πdN/ ln(2dN/α′).

3. Linear delay integral equation

In the present section, we apply the sinc-collocation method to solve (1.1)
which we state again for the convenience of the reader:

y(t) = g(t) +

∫ t

0

K1(t, s)y(s)ds+

∫ θ(t)

0

K2(t, s)y(s)ds, t ∈ (0, T ].

Notice that for t that θ(t) ⩽ 0 we have

y(t) = g(t) +

∫ t

0

K1(t, s)y(s)ds+

∫ θ(t)

0

K2(t, s)φ(s)ds, t ∈ (0, θ−1(0)].

This is a Volterra integral equation.

If t = 0, we have y(0) = φ(0). For ease of calculation, we employ the
transformation

u(t) = y(t)− T − t

T
φ(0).

In this case u(0) = 0. Then the above problem becomes

u(t) = f(t) +

∫ t

0

K1(t, s)u(s)ds+

∫ θ(t)

0

K2(t, s)u(s)ds,(3.1)

where

f(t) := g(t)− 1

T
(T − t)φ(0)

+
1

T
φ(0)

{∫ t

0

K1(t, s)(T − s)ds+

∫ θ(t)

0

K2(t, s)(T − s)ds

}
.

Equation (3.1) may be written in the form

u = f + Vu+ Vθu,(3.2)

where

Vu(t) =

∫ t

0

K1(t, s)u(s)ds,

Vθu(t) =

∫ θ(t)

0

K2(t, s)u(s)ds.
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3.1. SE-sinc scheme. A Sinc approximation USE
N to the solution u of equa-

tion. (3.1) is described in this part. Let us define the operator PSE
N as follows

PSE
N u(t) =

N∑
j=−N

uSE
j S(j, h)(ϕSE(t)) + uSE

N+1wSE(t),(3.3)

in which uSE
j = u(tSE

j ). We choose wSE(t) so that PSE
N interpolate the function

u at the points

tSE
j :=

{
ψSE(jh), j = −N, . . . , N ;

T, j = N + 1.

Then

wSE(t) :=
1

T

t− N∑
j=−N

tSE
j S(j, h)(ϕSE(t))

 .

PSE
N is called the collocation operator. The approximate solution USE

N is con-
sidered that has the form

USE
N (t) =

N∑
j=−N

uSE
j S(j, h)(ϕSE(t)) + uSE

N+1wSE(t).(3.4)

Applying the operator PSE
N to both sides of (3.2) at t = tSE

k , k = −N, . . . , N +
1 and using the sinc quadrature formula give us the following approximate
equation in operator form

ZSE
N = PSE

N VZSE
N + PSE

N VθZSE
N + PSE

N f.(3.5)

So the collocation method for solving (3.1) amounts to solving (3.5) for N
sufficiently large. We are interested in approximating the integral operator in
(3.5) by the quadrature formula presented in (2.4). So the following discrete
SE operators can be defined

VSE
N u(t) := h

N∑
j=−N

ψ′
SE(jh)K1(t, t

SE
j )J(j, h)(ϕSE(t))u

SE
j ,

VSE
θN u(t) := h

N∑
j=−N

ψ′
SE(jh)K2(t, t

SE
j )J(j, h)(ϕSE(θ(t)))u

SE
j .

This numerical procedure leads us to replace (3.5) by

USE
N = PSE

N VSE
N USE

N + PSE
N VSE

θN USE
N + PSE

N f.

By substituting USE
N into (3.1) and approximating the integral by means of the

sinc quadrature formula and considering its collocation on 2N + 2 sampling
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points at t = tSE
k , for k = −N, . . . , N,N + 1, the following linear system of

equations is obtained

uSE
k = h

N∑
j=−N

ψ′
SE(jh)

{
K1(t

SE
k , tSE

j )J(j, h)(ϕSE(t
SE
k ))

+K2(t
SE
k , tSE

j )J(j, h)(ϕSE
k )

}
uSE
j + f(tSE

k ),

in which ϕSE
k := ϕ(θ(tSE

k )). From definition of tSE
k we can write

J(j, h)(ϕSE(t
SE
k )) =

{
J(j, h)(kh), k = −N, . . . , N ;

1, k = N + 1.

For tk that θ(tk) ⩽ 0 we set

K2(t
SE
k , tSE

j ) := 0, j = −N, . . . , N,
and

f(tSE
k ) := g(tSE

k )− 1

T
(T − tSE

k )φ(0) +
1

T
φ(0)

∫ tSE
k

0

K1(t
SE
k , s)(T − s)ds

+

∫ θ(tSE
k )

0

K2(t
SE
k , s)φ(s)ds.

Linear system (3.6) of equations is equivalent to (3.1). By solving this system,
the unknown coefficients uSE

j are determined. We rewrite the linear system in
matrix form

[I −ASE ]USE
N = FSE ,(3.6)

where

USE
N = [uSE

−N , . . . , u
SE
N ]t, FSE = [f(tSE

−N ), . . . , f(tSE
N )]t,

and for k, j = −N, . . .N ,

ASE
k,j = hψ′

SE(jh)
{
K1(t

SE
k , tSE

j )J(j, h)(kh) +K2(t
SE
k , tSE

j )J(j, h)(ϕSE
k )

}
.

By solving equation (3.6) we obtain uSE
−N , . . . , u

SE
N and then by using (3.6) uSE

N+1

is determained.

3.2. DE-sinc scheme. In this subsection we apply the DE-sinc method for
solving (1.2). The approximate solution UDE

N and the operator PDE
N can be

defined similar to the SE-sinc method,

PDE
N u(t) :=

N∑
j=−N

uDE
j S(j, h)(ϕDE(t)) + uDE

N+1wDE(t).(3.7)

The discrete DE operators are introduced

VDE
N u(t) := h

N∑
j=−N

ψ′
DE(jh)K1(t, t

DE
j )J(j, h)(ϕDE(t))u

DE
j ,(3.8)
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VDE
θN u(t) := h

N∑
j=−N

ψ′
DE(jh)K2(t, t

DE
j )J(j, h)(ϕDE(θ(t)))u

DE
j .

By applying (3.7)-(3.9) and setting its collocation on 2N + 2 sampling points
at t = tDE

k , for k = −N, . . . , N + 1, in equation (3.1), the linear system

uDE
k = h

N∑
j=−N

ψ′
DE(jh)

{
K1(t

DE
k , tDE

j )J(j, h)(ϕDE(t
DE
k ))

+K2(t
DE
k , tDE

j )J(j, h)(ϕDE
k )

}
uDE
j + f(tDE

k ),

is achieved. This linear system can be stated in matrix form as follows

[I −ADE ]UDE
N = FDE .(3.9)

By solving this system, the unknown coefficients in UDE
N are found.

3.3. Existence and uniqueness of the sinc-collocation solution. We now
use the computational forms of the collocation equation derived in Section 4.2
to show that the existence of a unique sinc-collocation solutions of (3.6) and
(3.9).

Lemma 3.1 ([15]). For x ∈ R, the function J(j, h)(x) is bounded by

|J(j, h)(x)| ⩽ 1.1.

Theorem 3.2. Assume that K1, K2 and f in the Volterra integral equation
(3.1) are continuous on their respective domains D, Dθ and I. Then there
exists a h > 0 so that for any h ∈ (0, h) the linear algebraic systems (3.6) and
(3.9) have a unique solution UN .

Proof. Using Lemma 3.1, Theorem 2.3, Theorem 2.5 and continuty of K1 and
K2, there exists c > 0 so that |Ak,j | < ch for k, j = −N, . . .N . Then ∥A∥∞ < 1

whenever h is sufficiently small. In other words, there is a h > 0 so that for
any h < h the matrix (I −A) has a uniformly bounded inverse. The assertion
of Theorem 3.2 now follows. □

4. Nonlinear delay integral equation

In the present section, the solution of the functional equation (1.2) will be
approximated by the sinc-collocation sloution. Equation (1.2) is stated again
for the convenience of the reader:

y(t) = g(t) +

∫ t

0

K1(t, s, u(s)) +

∫ θ(t)

0

K2(t, s, y(s))ds, t ∈ I := (0, T ].

If t = 0 we have y(0) = φ(0). Like Section 3, we use the following transforma-
tion

u(t) = y(t)− T − t

T
φ(0).
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In this case u(0) = 0. Then the above problem can be rewritten as

u(t) = f(t) +

∫ t

0

K1(t, s, u(s)) +

∫ θ(t)

0

K2(t, s, u(s))ds(4.1)

with

f(t) := g(t)− T − t

T
φ(0),

K1(t, s, u(s)) := K1(t, s, u(s) +
T − t

T
φ(0)),

K2(t, s, u(s)) := K2(t, s, u(s) +
T − t

T
φ(0)).

Now, let u(t) be the exact solution of equation (4.1).

4.1. SE-sinc scheme. We replace the approximate solution (3.4) in (4.1).
Substituting t = tSE

k , k = −N, . . . , N + 1 we can obtain

uSE
k = f(tSE

k ) +

∫ tSE
k

0

K1(t
SE
k , s,

N∑
j=−N

uSE
j S(j, h)(ϕSE(s)) + uSE

N+1wSE(s))ds+(4.2)

∫ θ(tSE
k )

0

K2(t
SE
k , s,

N∑
j=−N

uSE
j S(j, h)(ϕSE(s)) + uSE

N+1wSE(s))ds.

We approximate the integral in above equation by the quadrature formula
presented in (2.4)∫ tSE

k

0

K1(t
SE
k , s,

N∑
j=−N

uSE
j S(j, h)(ϕSE(s)) + uSE

N+1wSE(s))ds

= h
N∑

l=−N

ψ′
SE(lh)J(l, h)(ϕSE(t

SE
k ))K1(t

SE
k , tSE

l , uSE
l ),

∫ θ(tSE
k )

0

K2(t
SE
k , s,

N∑
j=−N

uSE
j S(j, h)(ϕSE(s)) + uSE

N+1wSE(s))ds

= h
N∑

l=−N

ψ′
SE(lh)J(l, h)(ϕ

SE
k )K2(t

SE
k , tSE

l , uSE
l ),

where

ϕSE
k := ϕSE(θ(t

SE
k )).
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Thus (4.2) is written as

uSE
k =f(tSE

k ) + h
N∑

l=−N

ψ′
SE(lh)

{
J(l, h)(ϕSE(t

SE
k ))K1(t

SE
k , tSE

l , uSE
l )(4.3)

+ J(l, h)(ϕSE
k )K2(t

SE
k , tSE

l , uSE
l )

}
,

where uSE
k = u(tSE

k ). This nonlinear system of equations is equivalent to (4.1).
By solving this system, the unknown coefficients uSE

k are determined. We
rewrite the nonlinear system (4.3) in matrix form

ASE(USE
N ) = USE

N ,(4.4)

where

[ASE(USE
N )]k,l := f(tSE

k ) + hψ′
SE(lh)

{
J(l, h)(kh)K1(t

SE
k , tSE

l , uSE
l )

+J(l, h)(ϕSE
k )K2(t

SE
k , tSE

l , uSE
l )

}
, k, l = −N, . . . , N,

USE
N := [uSE

−N , . . . , u
SE
N ]t.

4.2. DE-sinc scheme. The main consideration of this subsection is on DE-
sinc case. The approximate solution UDE

N , analogous to the SE-sinc method,
can be presented in the following form

UDE
N (t) =

N∑
j=−N

uDE
j S(j, h)(ϕDE(t)) + uDE

N+1wDE(t).(4.5)

By applying (4.5) and setting collocation points t = tDE
k , for k = N, . . . , N+1,

in equation (4.1), the following nonlinear system

ADE(UDE
N ) = UDE

N ,(4.6)

is achieved. By solving this system, the unknown coefficients inUDE
N are found.

4.3. Existence and uniqueness of the sinc-collocation solution. In this
section, we study the existence and uniqueness of the solution to (4.4) and
(4.6).

Theorem 4.1. Assume that K1, K2 and f in the nonlinear Volterra equation
(4.1) are continuous and

|K1(t, s, u(t))−K1(t, s, v(t))| < L1|u(t)− v(t)|,
|K2(t, s, u(t))−K2(t, s, v(t))| < L2|u(t)− v(t)|.

Then the nonlinear algebraic systems (4.4) and (4.6) have a unique solution.
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Proof. Using Lemma 3.1 and continuity of K1 and K2 we have

∥ASE(USE
N )− FSE∥∞ = max

k

∣∣∣h N∑
l=−N

ψ′
SE(lh)[J(l, h)(ϕSE(t

SE
k ))K1(t

SE
k , tSE

l , uSE
l )

+J(l, h)(ϕSE
k )K2(t

SE
k , tSE

l , uSE
l )]

∣∣∣
⩽ 1.1h sup

x
|ψ′(x)|

N∑
l=−N

∣∣∣K1(t
SE
k , tSE

l , uSE
l )+K2(t

SE
k , tSE

l , uSE
l )

∣∣∣
⩽ 1.1he−Nh

N∑
l=−N

|K1(t
SE
k , tSE

l , uSE
l )|+ |K2(t

SE
k , tSE

l , uSE
l )|

⩽ 1.1he−Nh(2N + 1)M,

where M is an upper bound of |K1(t, s, u(t))| + |K2(t, s, u(t))| and FSE :=
[f(tSE

−N ), . . . , f(tSE
N )]t. By using the fixed point theorem, this proves that the

nonlinear system has a solution in the closed ball with center FSE and radius
1.1hT (2N + 1)M .

It may be shown that, if K1 and K2 are Lipschitz with respect to u(t), the

solution is unique. Suppose that USE
N and VSE

N are two possible solutions.
Then

∥USE
N −VSE

N ∥∞ = ∥ASE(USE
N )−ASE(VSE

N )∥∞

= max
k

∣∣∣h N∑
l=−N

ψ′
SE(lh)J(l, h)(ϕ

SE
k )

[
K1(t

SE
k , tSE

l , ul)−K1(t
SE
k , tSE

l , vl)
]

+ψ′
SE(lh)J(l, h)(ϕSE(t

SE
k ))

[
K2(t

SE
k , tSE

l , ul)−K2(t
SE
k , tSE

l , vl)
] ∣∣∣

⩽ 1.1he−Nh max
k

N∑
l=−N

[ ∣∣K1(t
SE
k , tSE

l , ul)−K1(t
SE
k , tSE

l , vl)
∣∣

+
∣∣K2(t

SE
k , tSE

l , ul)−K2(t
SE
k , tSE

l , vl)
∣∣ ]

⩽ 1.1he−Nh max
k

N∑
l=−N

L1 |ul − vl|+ L2 |ul − vl|

⩽ 2.2he−Nh(2N + 1)L∥USE
N −VSE

N ∥∞
< ∥USE

N −VSE
N ∥∞,

because limN→∞ he−Nh(2N +1) = 0, we can write the last inequality for some

N . It follows that ∥USE
N −VSE

N ∥∞ vanishes and there is thus uniqueness.
The similar conclusions are achieved for DE case. □
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5. Convergence analysis

The convergence of the sinc-collocation method which was introduced in the
previous subsections is discussed in the present subsection. It is assumed that
u is the exact solution of equation (3.1) and USE

N and UDE
N are the approxima-

tions of the sinc method. Firstly, we state the following lemma which is used
subsequently.

Lemma 5.1. Assume that the equation (1.2) has a unique solution. Then for
all sufficiently large N , N ⩾ n, the operator (I −PN (VN +VθN ))−1 exists and
it is uniformly bounded:

sup
N⩾n

∥(I − PN (VN + VθN ))−1∥ <∞.(5.1)

Proof. From Theorem 2.2 we can write

∥VN − PSE
N VN∥ ⩽ C1

√
Ne−

√
πdαN ,

∥VθN − PSE
N VθN∥ ⩽ C2

√
Ne−

√
πdαN ,

so

∥VN − PSE
N VN∥ → 0, ∥VθN − PSE

N VθN∥ → 0, as N → ∞.

From [1, Theorem 4.1.2] there exists the inverse of (I − VN − VθN ) for all
sufficiently large N , so we can pick n such that

ϵn = sup
n⩾N

∥VN + VθN − PSE
N (VN + VθN )∥ ⩽ 1

∥(I − VN − VθN )−1∥
.

Then the inverse of [I+(I −VN −VθN )−1(VN +VθN −PSE
N (VN +VθN ))] exists

and uniformly bounded by the geometric series theorem

∥
[
I+(I−VN − VθN )−1(VN+ VθN−PSE

N (VN+ VθN ))
]−1∥⩽ 1

1− ϵn∥(I − VN − VθN )−1∥ .

On the other hand,

I − PSE
N (VN + VθN ) = (I − VN − VθN ) + (VN + VθN −PSE

N (VN + VθN ))

= (I −VN −VθN )
[
I + (I − VN − VθN )−1(VN + VθN−PSE

N (VN + VθN ))
]
.

Using above equation, (I − PSE
N (VN + VθN ))−1 exists, and

(I − PSE
N (VN + VθN ))−1

=
[
I + (I − VN − VθN )−1(VN + VθN − PSE

N (VN + VθN ))
]−1

(I − VN − VθN )−1

∥(I − PSE
N (VN + VθN ))−1∥ ⩽ ∥(I − VN − VθN )−1∥

1− ϵn∥(I − VN − VθN )−1∥ .

This shows (5.1). Also it is true for PDE
N . □
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Lemma 5.2 ([16]). Let h > 0. Then it holds that

sup
x∈R

N∑
j=−N

|S(j, h)(x)| ⩽ 2

π
(3 + lnN).

Based on this lemma, it has been concluded ∥PSE
N ∥ ⩽ CSE ln(N) and

∥PSE
N ∥ ⩽ CSE ln(N) where CSE and CDE are constants independent of N .

In the following theorem, we will find an upper bound for the error.

Theorem 5.3. Let USE
N (x) be the approximate solution of integral equation

(3.1). Then there exists a constant c6 independent of N such that

sup
x∈(0,T )

|u(x)− USE
N (x)| ⩽ c6

√
N lnNe−

√
πdαN .(5.2)

Proof. The estimation (5.2) is obtained as follows:

u− USE
N = f − PSE

N f + Vu−PSE
N VNUSE

N + Vθu−PSE
N VθNUSE

N

= (f − PSE
N f) + (Vu− PSE

N Vu) + (PSE
N Vu− PSE

N VNu)

+(PSE
N VNu− PSE

N VNUSE
N ) + (Vθu− PSE

N Vθu)

+(PSE
N Vθu− PSE

N VθNu) + (PSE
N VθNu− PSE

N VθNUSE
N )

= (f − PSE
N f) + (Vu− PSE

N Vu) + PSE
N (Vu− VNu)

+PSE
N (VNu− VNUSE

N ) + (Vθu− PSE
N Vθu)

+PSE
N (Vθu− VθNu) + PSE

N (VθNu− VθNUSE
N ),

then we can write

(I − PSE
N VN −PSE

N VθN )(u− USE
N )

= (f − PSE
N f) + (Vu− PSE

N Vu) + PSE
N (Vu− VNu)

+(Vθu−PSE
N Vθu) + PSE

N (Vθu− VθNu).

By using Lemma 5.1 we have

(u− USE
N ) = (I − PSE

N VN −PSE
N VθN )−1

[
(f −PSE

N f) + (Vu−PSE
N Vu)

+PSE
N (Vu− VNu) + (Vθu−PSE

N Vθu) + PSE
N (Vθu− VθNu)

]
.

This leads to

∥u− USE
N ∥⩽∥(I − PSE

N VN − PSE
N VθN )−1∥

[
∥f −PSE

N f∥+ ∥Vu− PSE
N Vu∥

+∥PSE
N ∥∥Vu− VNu∥+∥Vθu− PSE

N Vθu∥+ ∥PSE
N ∥∥Vθu− VθNu∥

]
.
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We can apply Theorem 2.2 and get

∥f − PSE
N f∥ ⩽ C1

√
Ne−

√
πdαN ,

∥Vu− PSE
N Vu∥ ⩽ C2

√
Ne−

√
πdαN ,

∥Vθu−PSE
N Vθu∥ ⩽ C3

√
Ne−

√
πdαN .

By using Theorem 2.3, the following result is concluded

∥Vu− VNu∥ ⩽ C4e
−
√
πdαN ,

∥Vθu− VθNu∥ ⩽ C5e
−
√
πdαN ,

and finally ∥PSE
N ∥ is estimated by conclusion of Lemma 3.1. So

∥u− USE
N ∥ ⩽ C∥(I − PSE

N VN − PSE
N VθN )−1∥

√
Ne−

√
πdαN .

□

It is clear that the arguments employed in the above proof can be used to
DE-sinc method.

Theorem 5.4. Let UDE
N (x) be the approximate solution of integral equation

(3.1). Then there exists a constant c7 independent of N such that

sup
x∈(0,T )

|u(x)− UDE
N (x)| ⩽ c7e

−πdN/ ln(2dN/α).

In the following we try to discuss the conditions under which Newtons
method is convergent for the nonlinear equation. For this reason we will state
and prove the following theorem.

Theorem 5.5. Assume that USE
N is the exact solution of the nonlinear system

(4.3), and hypotheses of Theorem 5.3 are satisfied. Also, suppose that ∂K1

∂u and
∂K2

∂u are Lipschitz with respect to u. Then there exist δ > 0 and h > 0 such that

if ∥USE
N(0) − USE

N ∥ ⩽ δ, the Newton’s sequence {USE
N(m)} for any h ∈ (0, h) is

well-defined and convergence to USE
N . Furthermore, for some constant l with

lδ < 1, we have the error bounds

∥USE
N(m) −USE

N ∥ ⩽ (lδ)2
m

l
.

Proof. We must solve the nonlinear system

USE
N −ASE(USE

N ) = 0.

The Newton method reads as follow. Choose an initial guess USE
N(0); for m =

0, 1, . . ., compute

USE
N(m+1) = USE

N(m)(5.3)

−[I − (ASE(USE
N(m)))

′]−1[USE
N(m) −ASE(USE

N(m))].
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We know that

[(ASE(USE
N ))′]k,l = hψ′(lh)

[
J(l, h)(kh)

∂K1

∂u
(tSE

k , tSE
l , uSE

k )

+J(l, h)(ϕSE
k )

∂K2

∂u
(tSE

k , tSE
l , uSE

k )
]
, k, l = −N, . . . , N.

Using Lemma 3.1 and differentiability of K1 and K2, there exists c > 0 so
that |[(ASE(USE

N ))′]k,l| < ch and then ∥(ASE(USE
N ))′∥ < 1 whenever h is

sufficiently small. In other words, there is a h > 0 so that for any h < h the
matrix (I − (ASE(USE

N ))′) has a uniformaly bounded inverse.
The conclusion is straightforwardly achievable by applying [2, Theorem

5.4.1] and the above discussion. □

In the following theorem, we summarize the conclusions of theorems proved
in this section.

Theorem 5.6. Assume that u is an isolated solution of (4.1). Furthermore,
USE
N and USE

N,(m) are the solutions of (4.3) and (5.3), respectively. Suppose that

hypotheses of Theorems 5.3 and 5.5 are satisfied. Then there exists a positive
constant C(m) independent of N and dependant on m such that

∥u− USE
N,(m)∥ ⩽ C(m)

√
N lnNe−

√
πdαN .

Proof. The conclusion is obtained by using the triangular inequality and con-
clusions of Theorems 5.3 and 5.5. □

Theorem 5.7. Assume that u is an isolated solution of (4.1). Furthermore,
UDE
N and UDE

N,(m) are the solutions of (4.6) and (5.3), respectively. Suppose that

hypotheses of Theorems 5.4 and 5.5 are satisfied. Then there exists a positive
constant C(m) independent of N and dependant on m such that

∥u− UDE
N,(m)∥ ⩽ C(m)e−πdN/ ln(2dN/α).

Proof. The proof of this theorem goes almost in the same way as in the SE
case. □

6. Illustrative examples

In this section, we illustrate the theoretical results of the previous sections
by the following three exampls with τ = 1. The numerical experiments are
implemented in MATLAB.

It is assumed that α = 1. The d values are π
2 and π

4 for the SE-sinc and
DE-sinc methods, respectively. The errors of the two methods for different
N are reported. These tables show that increasing N the error significantly is
reduced. As expected, the tables show that the convergence rate of the DE-sinc
method is faster than the SE-sinc scheme.
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Example 6.1. Consider the delay integral equation (see [3, Example 4.1])

y(t) = g(t) +

∫ t

0

K1(t, s)y(s)ds+

∫ t−τ

0

K2(t, s)y(s)ds, t ∈ (0, 5],

φ(t) = sin(t) + 1, t ∈ [−1, 0],

with K1(t, s) = es−t, K2(t, s) = t sin(s) and g is chosen so that its exact
solution is y(t) = sin(t) + 1. Table 1 shows the absolute error of sinc method
and the numerical results of [3] for this example.

Table 1. Values of ∥E∥∞ for Example 6.1.

N 30 50 60 75
SE 1.16E-4 1.85E-6 1.38E-7 1.84E-9
DE 5.68E-7 5.19E-12 1.74E-13 1.54E-13

Result in [3] 1E-3 1.41E-5 1.65E-6 1.39E-7

20 30 40 50 60 70
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

N

||E
||

 

 

SE
DE

Figure 1. Results for Example 6.1.

Example 6.2. Consider the following equation (see [3, Example 4.2])

y(t) = g(t) +

∫ t

0

K1(t, s)y(s)ds+

∫ t−τ

0

K2(t, s)y(s)ds, t ∈ (0, 5],

φ(t) =
1 + t

et
, t ∈ [−1, 0],

with K1(t, s) = sin(s + t), K2(t, s) = s
1+t and g is chosen so that the exact

solution y(t) = 1+t
et . Table 2 shows the absolute error of DE-sinc method for

N = 50 and the numerical results of [3] for this example.
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Table 2. Comparison of results in [3] to sinc method

t Result in [3] SE DE
1 3.5E-5 3.20E-9 1.13E-15
2 1.43E-5 4.35E-9 3.33E-16
3 2.83E-5 3.24E-9 0
4 1.18E-4 1.92E-9 1.15E-15
5 9.3E-5 1.42E-8 4.99E-16

Example 6.3. We consider the following nonvanishing delay Volterra integral
equation

y(t) = g(t) +

∫ t−τ

0

(s+ t)[y(s)]3ds, t ∈ (0, 3],

φ(t) = t, t ∈ [−1, 0],

g(t) chosen so that its exact solution is y(t) = t2 − t. The absolute error of
SE-sinc and DE-sinc methods for different values of N are reported in Table
3. In this example, Newton’s method is iterated until the accuracy 10−8 is
obtained.

Table 3. Values of ∥E∥∞ for Example 6.3.

N 20 30 40 50 60
SE 3.6794E-3 8.3369E-4 3.3180E-5 4.7941E-7 1.5158E-7
DE 4.4596E-5 1.8916E-8 2.2818E-10 3.2987E-11 2.9460E-12

20 30 40 50 60 70
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

N

||E
||

 

 

SE
DE

Figure 2. Results for Example 6.3.
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7. Conclusion

We propose two numerical methods based on the sinc function, the SE-sinc
and DE-sinc, in order to solve the linear and nonlinear delay integral equations
(1.1) and (1.2), where θ is a general function. Our methods have been shown
theoretically and numerically that they are extremely accurate and achieve
exponential convergence with respect to N . These two methods have some
strengths and weaknesses. In comparison with each other, as the theorems
show, it is understood that the SE-sinc formulas are applicable to larger classes
of functions than the DE-sinc formulas, whereas the DE-sinc formulas are more
efficient for well-behaved functions.
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