Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 5, pp. 1417-1456

Title:

Complete pivoting strategy for the IUL preconditioner obtained from backward factored APproximate INVerse process

> Author(s):
A. Rafiei and M. Bollhöfer

Published by the Iranian Mathematical Society http://bims.ims.ir

COMPLETE PIVOTING STRATEGY FOR THE IUL PRECONDITIONER OBTAINED FROM BACKWARD FACTORED APPROXIMATE INVERSE PROCESS

A. RAFIEI* AND M. BOLLHÖFER
(Communicated by Davod Khojasteh Salkuyeh)

Abstract

In this paper, we use a complete pivoting strategy to compute the IUL preconditioner obtained as the by-product of the Backward Factored APproximate INVerse process. This pivoting is based on the complete pivoting strategy of the Backward IJK version of Gaussian Elimination process. There is a parameter α to control the complete pivoting process. We have studied the effect of different values of α on the quality of the IUL preconditioner. For the numerical experiments section, the IUL factorization which is coupled with the complete pivoting is compared to the ILUTP and to the left-looking version of RIF which is coupled with the complete pivoting strategy. As the preprocessing, we have applied the maximum weighted matching coupled with the Reverse Cuthill-Mckee (RCM) and multilevel nested dissection reordering. Keywords: Backward factored APproximate INVerse, IUL preconditioner, backward IJK version of Gaussian elimination, complete pivoting, ILUTP, left-looking RIF with pivoting. MSC(2010): Primary: 65F10; Secondary: 65F50, 65F08.

1. Introduction

One can use the explicit and implicit preconditioner M for the linear system of equations of the form

$$
\begin{equation*}
A x=b, \tag{1.1}
\end{equation*}
$$

where the coefficient matrix $A \in \mathbb{R}^{n \times n}$ is nonsingular, large, sparse and nonsymmetric and also $x, b \in \mathbb{R}^{n}$. An explicit preconditioner M for system (1.1) is an approximation of the matrix A^{-1}. We can use this preconditioner to change the original system (1.1) to the right or left preconditioned systems and then, solve the preconditioned system by one of the Krylov subspace methods [17].

[^0]In this case, we only need matrix-vector products which is really suitable for parallel architecture.

In 1993, Luo presented the Backward Factored INVerse or BFINV algorithm which computes the inverse factorization of A in the form of

$$
\begin{equation*}
A^{-1}=\bar{Z} \bar{D}^{-1} \bar{W} \tag{1.2}
\end{equation*}
$$

where \bar{W} and \bar{Z}^{T} are unit upper triangular matrices and \bar{D} is a diagonal matrix [11]. By applying a dropping rule for the entries of the \bar{W} and \bar{Z} matrices in the BFINV algorithm, the explicit preconditioner M is computed as

$$
\begin{equation*}
A^{-1} \approx M=Z D^{-1} W \tag{1.3}
\end{equation*}
$$

where $W \approx \bar{W}, D \approx \bar{D}, Z \approx \bar{Z}$ and the process is termed as the Backward Factored APproximate INV erse or BFAPINV. The implementation details to compute this explicit preconditioner can be found in [23].

In 1999, Zhang presented the Forward Factored INVerse or FFINV algorithm which computes the factorization (1.2). In this case, matrices \bar{Z} and \bar{W} are unit upper and unit lower triangular, respectively and \bar{D} is again a diagonal matrix [22]. Using a dropping rule in this algorithm will compute the explicit preconditioner (1.3) and the process is termed as the Forward Factored APproximate INVerse or FFAPINV [13].

In [20], the authors could find a relation between the FFINV algorithm and the left-looking version of the A-biconjugation process of Benzi and Tůma [1]. Based on this relation they showed that the explicit preconditioner (1.3) which is computed from the FFAPINV algorithm is exactly the left-looking version of the AINV preconditioner.

An implicit preconditioner for the system (1.1) is an approximation of matrix A. This preconditioner can also be used as the right or left preconditioner. When using the Krylov subspace methods to solve this preconditioned system, we face the forward and backward solving which are the bottle necks in the parallel implementation of implicit preconditioners in recent years. Solving such a problem is so crutial to apply an implicit preconditioner on parallel machines [9]. In [13], we could compute an implicit preconditioner M as the by-product of the BFAPINV process. This preconditioner is in the form of

$$
\begin{equation*}
A \approx M=U D L \tag{1.4}
\end{equation*}
$$

where U and L^{T} are unit upper triangular matrices and D is a diagonal matrix. This preconditioner is an incomplete UDL factorization. We have merged the factors D and L of this factorization and then, have termed it as the IULBF. This notation refers to the IUL factorization obtained from Backward Factored approximate inverse process. In the factorizations (1.3) and (1.4), $L^{-1} \approx Z$ and $U^{-1} \approx W$.

Working with the FFAPINV process also gives us the chance to have an implicit preconditioner

$$
\begin{equation*}
A \approx M=L D U \tag{1.5}
\end{equation*}
$$

as the by-product. In [19], we have termed this preconditioner as the ILUFF which refers to the ILU preconditioner obtained from the Forward Factored approximate inverse process. In $[2,15]$, the authors showed that one can compute an ILU preconditioner in the form of (1.5) as the by-product of the AINV preconditioner. This preconditioner was called RIF or Robust Incomplete Factorization and has the left- and the right-looking versions. From the results presented in [20], one can easily verify that the ILUFF can be converted to the left-looking version of RIF and vice versa. In [16], we have implemented a type of complete pivoting strategy for the left-looking version of RIF which can also be considered as the complete pivoting strategy for the ILUFF preconditioner.

By applying the dropping strategy in the Forward form of the IJK version of Gaussian Elimination process one can compute an implicit ILU preconditioner for the system (1.1) [14, 16]. In a sequential architecture, the preconditioning time of this ILU is less than the preconditioning time of the explicit preconditioners BFAPINV, FFAPINV and AINV. There is also a backward form of the IJK version of Gaussian elimination process. If we apply dropping in this backward form, then we compute an implicit IUL preconditioner M as in (1.4). Since the whole parts of the Schur-Complement matrices are explicitly available, then it is possible to apply the complete pivoting strategy in the backward form of this version of Gaussian elimination process.

As in [20], can we find a relation between the BFINV and the right-looking A-biconjugation process? Or more precisely, is the BFAPINV preconditioner another version of right-looking AINV preconditioner? The answer is no, since the factors of these two preconditioners are computed in a completely different way.There is a version of right-looking AINV in which the factors can be computed independently, but this is not possible in the BFAPINV preconditioner and the computation of the factors of this preconditioner can not be seperated $[12,13]$. This indicates that the right-looking version of RIF is also quite different from the IULBF preconditioner. In [12], we have implemented the complete pivoting strategy for the right-looking RIF preconditioner. The main purpose of this paper is to apply a complete pivoting strategy for the IULBF preconditioner. This pivoting will be based on the complete pivoting strategy of the Backward IJK version Gaussian elimination process.

In section 2 of this paper, we first review the Backward form of the IJK version of Gaussian elimination process and then, present its complete pivoting strategy. In section 3, we recall the BFINV algorithm and show that the computed \bar{W}, \bar{D} and \bar{Z} factors in this algorithm can implicitly generate the last column and the last row of the Schur-Complement matrices which are

```
Algorithm 1 (Backward IJK version of Gaussian Elimination process)
    Input: \(A \in \mathbb{R}^{n \times n}\).
    Output: \(A=\bar{U} \bar{D} \overline{\bar{L}}\)
    \(\bar{U}=\bar{L}=I_{n}, \bar{S}^{(n)}=A\)
    for \(i=n\) to 1 do
        \(\bar{d}_{i i}=\bar{q}_{i}^{(i-1)}=\bar{p}_{i}^{(i-1)}=\left(\bar{S}^{(i)}\right)_{i i}\)
        for \(j=i-1\) to 1 do
            \(\bar{q}_{i}^{(j-1)}=\left(\bar{S}^{(i)}\right)_{i j}, \bar{p}_{i}^{(j-1)}=\left(\bar{S}^{(i)}\right)_{j i}\)
            \(\bar{L}_{i j}=\frac{\overline{\bar{q}}_{i}^{(j-1)}}{\bar{d}_{i i}}, \bar{U}_{j i}=\frac{\overline{\bar{p}}_{i}^{(j-1)}}{d_{i i}}\)
        end for
        for \(j=i-1\) to 1 do
            for \(k=i-1\) to 1 do
                \(\left(\bar{S}^{(i-1)}\right)_{j k}=\left(\bar{S}^{(i)}\right)_{j k}-\bar{U}_{j i} \bar{d}_{i i} \bar{L}_{i k}\)
            end for
        end for
    end for
    Return \(\bar{U}=\left(\bar{U}_{j i}\right)_{1 \leq j, i \leq n}, \bar{D}=\operatorname{diag}\left(\bar{d}_{i i}\right)_{1 \leq i \leq n}\) and \(\bar{L}=\left(\bar{L}_{i j}\right)_{1 \leq i, j \leq n}\).
```

computed in the Backward form of the IJK version of Gaussian elimination process. Based on this connection, a complete pivoting strategy for the IULBF preconditioner is proposed in section 4. In section 5, we have reported the numerical results and the implementation details.

2. Backward IJK version of Gaussian elimination process

Algorithm 1, computes the exact factorization

$$
\begin{equation*}
A=\bar{U} \bar{D} \bar{L} \tag{2.1}
\end{equation*}
$$

where \bar{U} and \bar{L}^{T} are unit upper triangular matrices and \bar{D} is a diagonal matrix. In this algorithm, matrices \bar{U} and \bar{L} are computed column-wise and row-wise, respectively. This algorithm is termed as a backward form since at the end of its i-th step, the columns n to i of matrix \bar{U}, the rows n to i of matrix \bar{L} and the diagonal entries $\bar{d}_{j j}$, for $j \geq i$, are computed. At the end of this step, the relation (2.2) holds. For $j \geq i$, the vectors $[\bar{h}_{j}^{T}, 1, \overbrace{0, \cdots, 0}^{n-j}]^{T}$ and $[\bar{g}_{j}, 1, \overbrace{0, \cdots, 0}^{n-j}]$ in (2.2), are the j-th column of matrix \bar{U} and the j-th row of matrix \bar{L}, respectively. In this relation, $\bar{h}_{j} \in \mathbb{R}^{(j-1) \times 1}$ and $\bar{g}_{j} \in \mathbb{R}^{1 \times(j-1)}$, for $j \geq i$. The submatrix $\left(\bar{S}^{(i-1)}\right)_{j, k \leq i-1}$ is the associated Schur-Complement matrix. The computing pattern of matrices $\bar{U}, \bar{D}, \bar{L}$ and Schur-Complement can be found in Figure 1. Since the whole Schur-Complement matrices are

Figure 1. Computing matrices $\bar{U}, \bar{D}, \bar{L}$ and Schur-Complement in the Backward IJK version of Gaussian Elimination process
available in this algorithm, then we can apply the complete pivoting strategy.

Algorithm 2, is the Backward form of the IJK version of Gaussian elimination process which is coupled with the complete pivoting and dropping. At the end of step $i+1$ of this algorithm, the incomplete factorization 2.4 is computed. For $j \geq i+1$, matrices Π_{j} and Σ_{j} are the row and the column permutation matrices associated to step j. Also, $\Pi=\Pi_{i+1} \Pi_{i+2} \ldots \Pi_{n}$ and $\Sigma=\Sigma_{n} \ldots \Sigma_{i+2} \Sigma_{i+1}$. The submatrix $\left(S^{(i)}\right)_{j, k \leq i}$ is the approximate Schur-Complement matrix. At the end of this algorithm, the matrices U, D, L, Π and Σ will be computed such that

$$
\begin{equation*}
\Pi A \Sigma \approx U D L \tag{2.3}
\end{equation*}
$$

For $j \geq i+1$, the vectors $[h_{j}^{T}, 1, \overbrace{0, \cdots, 0}^{n-j}]^{T}$ and $[g_{j}, 1, \overbrace{0, \cdots, 0}^{n-j}]$ in (2.4), are the already computed columns and rows of matrices U and L, respectively and the entries $d_{j j}$ are the diagonal elements of D.

In this relation, $h_{j} \in \mathbb{R}^{(j-1) \times 1}$ and $g_{j} \in \mathbb{R}^{1 \times(j-1)}$, for $j \geq i+1$.
Here, we explain the i-th step of Algorithm 2. At the beginning of this step, the elements m_{i} and n_{i} are set equal to zero. These two elements will be the number of row and column pivoting at the end of this step. The two logical parameters satisfied_ p and satisfied_ q are initialized as false in line 4 of the algorithm. When satisfied_ p (satisfied_ q) is false, then this indicates that we should apply the row (column) pivoting. Since satisfied_ p is false, then the internal while loop will be run. In lines 6-8 of the algorithm, the vector $\left(p_{i}^{(0)}, p_{i}^{(1)}, \cdots, p_{i}^{(i-1)}\right)^{T}$ is obtained which is the last column of the approximate Schur-Complement matrix $\left(S^{(i)}\right)_{j, k \leq i}$. Suppose that $\left|p_{i}^{(k-1)}\right|=$ $\max _{m \leq i}\left|p_{i}^{(m-1)}\right|$. In line 9 of the algorithm, we check whether the row pivoting criterion

$$
\begin{equation*}
\left|p_{i}^{(i-1)}\right|<\alpha\left|p_{i}^{(k-1)}\right| \tag{2.5}
\end{equation*}
$$

is satisfied for $\alpha \in(0,1]$. In (2.5), α is a parameter which controls the pivoting process. If this criterion is satisfied, then the lines 10-14 of the algorithm will be run. In these lines, m_{i} is incremented by one, $\pi_{m_{i}}^{(i)}$ is set equal to the identity matrix and satisfied_ q is set to false which means that after the row pivoting one should also apply the column pivoting. Also, the rows i and k of matrices $U-I$ and $\pi_{m_{i}}^{(i)}$ and the entries $p_{i}^{(i-1)}$ and $p_{i}^{(k-1)}$ are interchanged in these lines and matrices $S^{(i)}$ and Π are updated. After the row pivoting, satisfied_ p is set to true in line 16 of the algorithm. The vector $\left(q_{i}^{(0)}, q_{i}^{(1)}, \cdots, q_{i}^{(i-1)}\right)$ which is the last row of the approximate Schur-Complement matrix $\left(S^{(i)}\right)_{j, k \leq i}$
is obtained in lines 17-19. Since the parameter satisfied_ q is false, then the lines 21-27 of the algorithm are run. Suppose that $\left|q_{i}^{(l-1)}\right|=\max _{m \leq i}\left|q_{i}^{(m-1)}\right|$. In line 21 of the algorithm, the column pivoting criterion

$$
\begin{equation*}
\left|q_{i}^{(i-1)}\right|<\alpha\left|q_{i}^{(l-1)}\right| \tag{2.6}
\end{equation*}
$$

is checked. In (2.6), $\alpha \in(0,1]$ is again the pivoting parameter. If this criterion is satisfied, then the parameter n_{i} is incremented by one, the matrix $\sigma_{n_{i}}^{(i)}$ is initialized as the identity matrix and satisfied_ p is set to false which indicates that after the column pivoting we should again apply the row pivoting strategy. Also, the columns i and l of matrices $L-I$ and $\sigma_{n_{i}}^{(i)}$ and the elements $q_{i}^{(i-1)}$ and $q_{i}^{(l-1)}$ are interchanged and matrices $S^{(i)}$ and Σ are updated. After the column pivoting strategy, the parameter satisfied_ q is set to true in line 29 of the algorithm and the internal while loop will be run again. This will be continued until a desired pivot element will be obtained. In line 31 of the algorithm, the (i, i) entry of the approximate Schur-Complement matrix $\left(S^{(i)}\right)_{j, k \leq i}$ is defined as the (i, i) entry of matrix D. In lines 32-35 of the algorithm, the i-th column of matrix U and the i-th row of matrix L are computed and dropped. The dropping criterion is checked in line 34 of the algorithm. In lines 36-40 of the algorithm, the new approximate Schur-Complement matrix $\left(S^{(i-1)}\right)_{j, k \leq i-1}$ is obtained.

If we define $\Pi_{i}=\pi_{m_{i}}^{(i)} \pi_{m_{i}-1}^{(i)} \cdots \pi_{1}^{(i)}, \Sigma_{i}=\sigma_{1}^{(i)} \cdots \sigma_{n_{i}-1}^{(i)} \sigma_{n_{i}}^{(i)}$ and if we consider $[h_{i}^{T}, 1, \overbrace{0, \cdots, 0}^{n-i}]^{T}$ and $[g_{i}, 1, \overbrace{0, \cdots, 0}^{n-i}]$ as the i-th column of matrix U and the i th row of matrix L, respectively, then at the end of step i of Algorithm 2, the relation

holds.

```
Algorithm 2 (Backward IJK version of Gaussian Elimination process
with complete pivoting and dropping)
Input: \(A \in \mathbb{R}^{n \times n}, \tau_{l}\) and \(\tau_{u} \in(0,1)\) be the drop tolerances for \(L\) and \(U\) matrices and prescribe
a pivoting tolerance \(\alpha \in(0,1]\)
Output: \(\Pi A \Sigma \approx U D L\)
    \(U=L=\Pi=\Sigma=I_{n}, S^{(n)}=A\)
    for \(i=n\) to 1 do
    \(m_{i}=n_{i}=0\)
    satisfied- \(p=\) false, satisfied_ \(q=\) false
    while not satisfied_ \(p\) do
        for \(j=i\) to 1 do
            \(p_{i}^{(j-1)}=e_{j}^{T} S^{(i)} e_{i}\)
        end for
        if \(\left|p_{i}^{(i-1)}\right|<\alpha \max _{m \leq i}\left|p_{i}^{(m-1)}\right|\) then
            \(m_{i}=m_{i}+1, \pi_{m_{i}}^{(i)}=I_{n}\)
            satisfied_ \(q=\) false, choose \(k\) such that \(\left|p_{i}^{(k-1)}\right|=\max _{m<i}\left|p_{i}^{(m-1)}\right|\)
            Interchange the rows \(i\) and \(k\) of \(U-I\) and \(\pi_{m_{i}}^{(i)}\) and the elements \(p_{i}^{(i-1)}\) and \(p_{i}^{(k-1)}\)
            \(S^{(i)}=\pi_{m_{i}}^{(i)} S^{(i)}\)
            \(\Pi=\pi_{m_{i}}^{(i)} \Pi\)
        end if
        satisfied_ \(p=\) true
        for \(j=i\) to 1 do
            \(q_{i}^{(j-1)}=e_{i}^{T} S^{(i)} e_{j}\)
        end for
        if not satisfied \(q\) then
            if \(\left|q_{i}^{(i-1)}\right|<\alpha \max _{m \leq i}\left|q_{i}^{(m-1)}\right|\) then
                \(n_{i}=n_{i}+1, \sigma_{n_{i}}^{(i)}=I_{n}\)
                satisfied_ \(p=\) false, choose \(l\) such that \(\left|q_{i}^{(l-1)}\right|=\max _{m \leq i}\left|q_{i}^{(m-1)}\right|\)
                Interchange the columns \(i\) and \(l\) of \(L-I\) and \(\sigma_{n_{i}}^{(i)}\) and the elements \(q_{i}^{(i-1)}\) and
                \(q_{i}^{(l-1)}\)
                \(S^{(i)}=S^{(i)} \sigma_{n_{i}}^{(i)}\)
                \(\Sigma=\Sigma \sigma_{n_{i}}^{(i)}\)
            end if
        end if
        satisfied_ \(q=\) true
    end while
    \(d_{i i}=e_{i}^{T} S^{(i)} e_{i}\left\{\right.\) Consider that \(\left.e_{i}^{T} S^{(i)} e_{i}=p_{i}^{(i-1)}=q_{i}^{(i-1)}\right\}\)
    for \(j=i-1\) to 1 do
        \(L_{i j}=\frac{q_{i}^{(j-1)}}{d_{i i}}, U_{j i}=\frac{p_{i}^{(j-1)}}{d_{i i}}\)
        If \(\left|L_{i j}\right|<\tau_{l}\), then set \(L_{i j}^{i i}=0\). Also if \(\left|U_{j i}\right|<\tau_{u}\), then set \(U_{j i}=0\)
    end for
    for \(j=i-1\) to 1 do
        for \(k=i-1\) to 1 do
            \(\left(S^{(i-1)}\right)_{j k}=\left(S^{(i)}\right)_{j k}-U_{j i} d_{i i} L_{i k}\)
        end for
        end for
    end for
    Return \(L=\left(L_{i j}\right)_{1 \leq i, j \leq n}, D=\operatorname{diag}\left(d_{i i}\right)_{1 \leq i \leq n}, U=\left(U_{j i}\right)_{1 \leq j, i \leq n}, \Pi\) and \(\Sigma\)
```


3. Backward Factored APproximate INVerse process

Algorithm 3, computes the factorization (1.2). This algorithm is termed as a backward form since at the end of its i-th step, for $j \geq i$, the vectors $\bar{w}_{j}^{(n-j)}$

(a)

(b)

Figure 2. (a) Pattern of the update for the rows of matrix \bar{W} in Algorithm 3. (b) Pattern of the update for the columns of matrix \bar{Z} in Algorithm 3
which are the rows n to i of matrix \bar{W}, the vectors $\bar{z}_{j}^{(n-j)}$ which are the columns n to i of matrix \bar{Z} and the entries $\bar{d}_{j j}$ are computed.

```
Algorithm 3 (BFINV algorithm)
Input: \(A \in \mathbb{R}^{n \times n}\)
Output: \(A^{-1}=\bar{Z} \bar{D}^{-1} \bar{W}\)
    for \(i=n\) to 1 do
        \(\bar{w}_{i}^{(0)}=e_{i}^{T}, \bar{z}_{i}^{(0)}=e_{i}\).
        for \(j=i+1\) to \(n\) do
            \(\bar{p}_{j}^{(i-1)}=e_{i}^{T} A \bar{z}_{j}^{(n-j)} \bar{q}_{j}^{(i-1)}=\bar{w}_{j}^{(n-j)} A e_{i}\)
            \(\bar{z}_{i}^{(j-i)}=\bar{z}_{i}^{(j-i-1)}-\frac{\bar{q}_{j}^{(i-1)}}{\bar{d}_{j j}} \bar{z}_{j}^{(n-j)}, \bar{w}_{i}^{(j-i)}=\bar{w}_{i}^{(j-i-1)}-\frac{\bar{p}_{j}^{(i-1)}}{\bar{d}_{j j}} \bar{w}_{j}^{(n-j)}\)
        end for
        \(\bar{d}_{i i}=\bar{w}_{i}^{(n-i)} A e_{i}\)
    end for
    Return \(\bar{W}=\left[\left(\bar{w}_{1}^{(n-1)}\right)^{T},\left(\bar{w}_{2}^{(n-2)}\right)^{T}, \ldots,\left(\bar{w}_{n}^{(0)}\right)^{T}\right]^{T}, \quad \bar{D}=\operatorname{diag}\left(\bar{d}_{i i}\right)_{1 \leq i \leq n}\) and \(\bar{Z}=\)
        \(\left[\bar{z}_{1}^{(n-1)}, \bar{z}_{2}^{(n-2)}, \ldots, \bar{z}_{n}^{(0)}\right]\).
```

Consider step i of Algorithm 3. In the internal j loop of this step, a linear combination of the already obtained columns $\bar{z}_{j}^{(n-j)}$, for $j \geq i+1$, will compute the column $\bar{z}_{i}^{(n-i)}$ of matrix \bar{Z}. Also, a linear combination of the already obtained rows $\bar{w}_{j}^{(n-j)}$, for $j \geq i+1$, are used to compute the row $\bar{w}_{i}^{(n-i)}$ of matrix \bar{W}. In Figure 2, we have drawn a pattern for computing the rows of matrix \bar{W} and the columns of matrix \bar{Z} in this algorithm.

D

Figure 3. Computing pattern of the U, D and L factors in Algorithm 4

Recall that at the beginning of step $i+1$ of Algorithm 1, the Schur-Complement matrices $\left(\bar{S}^{(j)}\right)_{k, l \leq j}$, for $j \geq i+1$, were already obtained. There is the relation

$$
\left(\bar{S}^{(j)}\right)_{i j}=e_{i}^{T} A \bar{z}_{j}^{(n-j)}, \quad\left(\bar{S}^{(j)}\right)_{j i}=\left(\bar{w}_{j}^{(n-j)}\right) A e_{i}, \quad j \geq i+1
$$

which connects the Schur-Complement matrices in Algorithm 1 to the columns and rows of matrices \bar{Z} and \bar{W} of Algorithm 3. More details can be found in [13]. Therefore, we can use the relation

$$
\begin{equation*}
\bar{U}_{i j}=\frac{e_{i}^{T} A \bar{z}_{j}^{(n-j)}}{\bar{d}_{j j}}, \quad \quad \bar{L}_{j i}=\frac{\left(\bar{w}_{j}^{(n-j)}\right) A e_{i}}{\bar{d}_{j j}}, \quad j \geq i+1 \tag{3.1}
\end{equation*}
$$

to compute the i-th row and the i-th column of matrices \bar{U} and \bar{L} in (2.1).
Since we use the dropping strategy in line 8 of Algorithm 4, then the matrices $W=\left[\left(w_{1}^{(n-1)}\right)^{T}, \cdots,\left(w_{n}^{(0)}\right)^{T}\right]^{T}, Z=\left[z_{1}^{(n-1)}, \cdots, z_{n}^{(0)}\right]$ and $D=$ $\operatorname{diag}\left(d_{i i}\right)_{1 \leq i \leq n}$ are computed which are the approximations of the matrices $\bar{W}=\left[\left(\bar{w}_{1}^{(n-1)}\right)^{T}, \cdots,\left(\bar{w}_{n}^{(0)}\right)^{T}\right]^{T}, \bar{Z}=\left[\bar{z}_{1}^{(n-1)}, \cdots, \bar{z}_{n}^{(0)}\right]$ and $\bar{D}=\operatorname{diag}\left(\bar{d}_{i i}\right)_{1 \leq i \leq n}$ computed in Algorithm 3. The incomplete factorization in (1.4) is also computed as the by-product of Algorithm 4. Based on the two relations in (3.1), the entries of matrices U and L are computed in lines 4 and 5 of this algorithm. After merging the factors D and L, this incomplete factorization is termed as the IULBF preconditioner [13]. The factors U and L of this preconditioner are computed row-wise and column-wise, respectively. The computation of these two factors does not depend on each other. Figure 3, shows the pattern of the computation for matrices U, D and L of this preconditioner.

```
Algorithm 4 (IULBF preconditioner obtained from BFAPINV pro-
cess)
Input: \(A \in \mathbb{R}^{n \times n}\) and \(\tau_{l}, \tau_{u}, \tau_{z}, \tau_{w} \in(0,1)\) be drop tolerance parameters
Output: \(A \approx U D L\)
    for \(i=n\) to 1 do
        \(w_{i}^{(0)}=e_{i}^{T}, z_{i}^{(0)}=e_{i}\).
        for \(j=i+1\) to \(n\) do
            \(p_{j}^{(i-1)}=e_{i}^{T} A z_{j}^{(n-j)} q_{j}^{(i-1)}=w_{j}^{(n-j)} A e_{i}\)
            \(U_{i j}=\frac{p_{j}^{(i-1)}}{d_{j j}} L_{j i}=\frac{q_{j}^{(i-1)}}{d_{j j}}\)
            If \(\left|L_{j i}\right|<\tau_{l}\), then set \(L_{j i}=0\). Also if \(\left|U_{i j}\right|<\tau_{u}\), then set \(U_{i j}=0\)
            \(z_{i}^{(j-i)}=z_{i}^{(j-i-1)}-\frac{q_{j}^{(i-1)}}{d_{j j}} z_{j}^{(n-j)}, w_{i}^{(j-i)}=w_{i}^{(j-i-1)}-\frac{p_{j}^{(i-1)}}{d_{j j}} w_{j}^{(n-j)}\)
            For all \(l \geq j\), if \(\left|z_{l i}^{(j-i)}\right|<\tau_{z}\) and \(\left|w_{i l}^{(j-i)}\right|<\tau_{w}\), then set \(z_{l i}^{(j-i)}=0\) and \(w_{i l}^{(j-i)}=0\)
        end for
        \(d_{i i}=w_{i}^{(n-i)} A e_{i}\)
    end for
    Return \(U=\left(U_{i j}\right)_{1 \leq i, j \leq n}, D=\operatorname{diag}\left(d_{i i}\right)_{1 \leq i \leq n}\) and \(L=\left(L_{j i}\right)_{1 \leq j, i \leq n}\).
```

At the beginning of step i of Algorithm 1, the Schur-Complement matrix $\left(\bar{S}^{(i)}\right)_{j, k \leq i}$ is available. Also, at the end of step i of Algorithm 3, the row $\bar{w}_{i}^{(n-i)}$ and the column $\bar{z}_{i}^{(n-i)}$ have been computed. The relation

$$
\begin{equation*}
\left(\bar{S}^{(i)}\right)_{j i}=\bar{p}_{i}^{(j-1)}=e_{j}^{T} A \bar{z}_{i}^{(n-i)}, \quad\left(\bar{S}^{(i)}\right)_{i j}=\bar{q}_{i}^{(j-1)}=\left(\bar{w}_{i}^{(n-i)}\right) A e_{j}, \quad j \leq i, \tag{3.2}
\end{equation*}
$$

enables us to only obtain the last column and the last row of the SchurComplement matrix $\left(\bar{S}^{(i)}\right)_{j, k \leq i}[7]$. Therefore, this relation also connects the two Algorithms 1 and 3. This relation will help us in Algorithm 5 to extend the complete pivoting strategy of the Backward form of the IJK version of Gaussian Elimination process to the complete pivoting strategy for the IULBF preconditioner.

4. Complete pivoting strategy for the IULBF preconditioner

In Algorithm 5, we use a complete pivoting strategy to obtain the incomplete factorization (2.3). We term this incomplete factorization as the IULBF preconditioner with complete pivoting strategy. The pivoting strategy of this algorithm is based on the complete pivoting strategy of the Backward IJK version of Gaussian elimination process.

At the end of step $i+1$ of this algorithm, suppose that $\Pi=\Pi_{i+1} \Pi_{i+2} \cdots \Pi_{n}$ and $\Sigma=\Sigma_{n} \cdots \Sigma_{i+2} \Sigma_{i+1}$ where Π_{j} and Σ_{j}, for $j \geq i+1$, are the row and the column permutation matrices associated to step j of this algorithm. Also, consider that the columns n to $i+1$ of matrix L, the rows n to $i+1$ of matrix U and the entries $d_{j j}$, for $j \geq i+1$, have already been computed. Here, we explain the step i of this algorithm. In line 2 , we initialize the parameters m_{i}, n_{i} and iter. At the end of this step, m_{i} and n_{i} will be the number of row and column pivoting strategies, respectively. The parameter iter will help us in line 12 to compute the pivot entry. In line 3 , the two logical variables satisfied p and
satisfied_ q are set equal to false. When satisfied_ p (satisfied_ q) is false, then we need to apply the row (column) pivoting. Since satisfied_p is false, then the algorithm will enter the internal while loop. In line 5 , the parameter iter is incremented by one. In lines 6-11 of the algorithm, the column vector $z_{i}^{(n-i)}$ is computed. As we explained before, at the end of step $i+1$ of Algorithm 2, the relation (2.4) holds and therefore, the approximate Schur-Complement matrix $\left(S^{(i)}\right)_{j, k \leq i}$ is available. In lines 12-15 of Algorithm 5, the relation

$$
\begin{equation*}
\left(S^{(i)}\right)_{j i} \approx p_{i}^{(j-1)}=e_{j}^{T}(\Pi A \Sigma) z_{i}^{(n-i)}, \quad j \leq i \tag{4.1}
\end{equation*}
$$

enables us to implicitly approximate the last column of the approximate SchurComplement matrix $\left(S^{(i)}\right)_{j, k \leq i}$. This relation has been written based on the first part of relation (3.2). We have mentioned in line 12 that if only iter is equal to 1 , then $\left(S^{(i)}\right)_{i i}$ can be approximated from (4.1). In lines $16-22$ of the algorithm, we are applying the row pivoting strategy. Suppose that $\left|p_{i}^{(k-1)}\right|=\max _{m \leq i}\left|p_{i}^{(m-1)}\right|$. In these lines, we first check whether the row pivoting criterion (2.5) is satisfied. If yes, then m_{i} is incremented by one, the matrix $\pi_{m_{i}}^{(i)}$ is initialized as the identity matrix and then, the rows i and k of this matrix will be interchanged. Also, satisfied_ q is set to false, the entries $p_{i}^{(i-1)}$ and $p_{i}^{(k-1)}$ are interchanged and the matrix Π is updated by $\pi_{m_{i}}^{(i)}$. The lines 16-22 of Algorithm 5 are the same as the lines 9-15 of Algorithm 2, except that in Algorithm 5, there is no need to update the matrix $S^{(i)}$ and to interchange the rows i and k of matrix $U-I$. After the row pivoting strategy, we set satisfied_ p to true in line 23 of Algorithm 5. In line 24 of this algorithm, we check whether the column pivoting is needed. Since satisfied_q is false, then the lines $25-43$ of the algorithm will be run. In lines $25-30$, the row vector $w_{i}^{(n-i)}$ is computed. In line 31, we set the pivot entry $q_{i}^{(i-1)}$ equal to the entry $p_{i}^{(i-1)}$ which was an approximation for the (i, i) entry of $\left(S^{(i)}\right)_{j, k \leq i}$. In lines 32-34, we use the relation

$$
\left(S^{(i)}\right)_{i j} \approx q_{i}^{(j-1)}=w_{i}^{(n-i)}(\Pi A \Sigma) e_{j}, \quad j<i
$$

to implicitly approximate the rest of the entries of the last row of the approximate Schur-Complement matrix $\left(S^{(i)}\right)_{j, k \leq i}$. This relation is proposed based on the second part of relation (3.2). The column pivoting strategy is applied in lines 35-41 of the algorithm. Suppose that $\left|q_{i}^{(l-1)}\right|=\max _{m \leq i}\left|q_{i}^{(m-1)}\right|$. In these lines, we first test whether the column pivoting criterion (2.6) is satisfied. If yes, then n_{i} is incremented by one, $\sigma_{n_{i}}^{(i)}$ is initialized as the identity matrix and then, the columns i and l of this matrix will be interchanged. Also, the parameter satisfied p is set to false, the elements $q_{i}^{(i-1)}$ and $q_{i}^{(l-1)}$ are interchanged and the matrix Σ will be updated by $\sigma_{n_{i}}^{(i)}$. Comparing the lines 35-41 of Algorithm 5 by the lines 21-27 of Algorithm 2 indicates that there are differences between the column pivoting strategies of the two algorithms.

```
Algorithm 5 (IULBF preconditioner coupled with complete pivoting strategy)
    Input: Let \(A \in \mathbb{R}^{n \times n}, U=L=\Pi=\Sigma=I_{n}, \tau_{w}, \tau_{z}, \tau_{l}, \tau_{u} \in(0,1)\) be drop tolerances and
    prescribe a pivoting tolerance \(\alpha \in(0,1]\).
    Output: \(\Pi A \Sigma \approx U D L\).
    for \(i=n\) to 1 do
        \(m_{i}=n_{i}=\) iter \(=0\)
        satisfied_ \(p=\) satisfied \(_{-} q=\) false \(^{\prime}\)
        while not satisfied_ \(p\) do
            iter \(=\) iter +1
            \(z_{i}^{(0)}=e_{i}\)
            for \(j=i+1\) to \(n\) do
                \(q_{j}^{(i-1)}=w_{j}^{(n-j)}(\Pi A \Sigma) e_{i}\)
                \(z_{i}^{(j-i)}=z_{i}^{(j-i-1)}-\left(\frac{q_{j}^{(i-1)}}{d_{j j}}\right) z_{j}^{(n-j)}\)
                For all \(l \geq j\), if \(\left|z_{l i}^{(j-i)}\right|<\tau_{z}\), then set \(z_{l i}^{(j-i)}=0\)
            end for
            If iter \(=1\), then set \(p_{i}^{(i-1)}=e_{i}^{T}(\Pi A \Sigma) z_{i}^{(n-i)}\). Otherwise set \(p_{i}^{(i-1)}=q_{i}^{(i-1)}\)
            for \(j=i-1\) to 1 do
                \(p_{i}^{(j-1)}=e_{j}^{T}(\Pi A \Sigma) z_{i}^{(n-i)}\)
            end for
            if \(\left|p_{i}^{(i-1)}\right|<\alpha \max _{m \leq i}\left|p_{i}^{(m-1)}\right|\) then
                \(m_{i}=m_{i}+1, \pi_{m_{i}}^{(i)}=I_{n}\).
                satisfied_ \(q=\) false
                Choose \(k\) such that \(\left|p_{i}^{(k-1)}\right|=\max _{m \leq i}\left|p_{i}^{(m-1)}\right|\).
                Interchange the rows \(i\) and \(k\) of \(\pi_{m_{i}}^{(i)}\) and the elements \(p_{i}^{(i-1)}\) and \(p_{i}^{(k-1)}\)
                \(\Pi=\pi_{m_{i}}^{(i)} \Pi\)
            end if
            satisfied_ \(p=\) true
            if not satisfied \(q\) then
                    \(w_{i}^{(0)}=e_{i}^{T}\)
                    for \(j=i+1\) to \(n\) do
                    \(p_{j}^{(i-1)}=e_{i}^{T}(\Pi A \Sigma) z_{j}^{(n-j)}\)
                    \(w_{i}^{(j-i)}=w_{i}^{(j-i-1)}-\left(\frac{p_{j}^{(i-1)}}{d_{j j}}\right) w_{j}^{(n-j)}\)
                    For all \(l \geq j\), if \(\left|w_{i l}^{(j-i)}\right|<\tau_{w}\), then set \(w_{i l}^{(j-i)}=0\)
                    end for
                \(q_{i}^{(i-1)}=p_{i}^{(i-1)}\)
            for \(j=i-1\) to 1 do
                \(q_{i}^{(j-1)}=w_{i}^{(n-i)}(\Pi A \Sigma) e_{j}\)
            end for
            if \(\left|q_{i}^{(i-1)}\right|<\alpha \max _{m \leq i}\left|q_{i}^{(m-1)}\right|\) then
                \(n_{i}=n_{i}+1, \sigma_{n_{i}}^{(i)}=I_{n}\)
                satisfied_ \(p=\) false \(^{2}\)
                Choose \(l\) such that \(\left|q_{i}^{(l-1)}\right|=\max _{m \leq i} \mid q_{i}^{(m-1)}\)
                Interchange the columns \(i\) and \(l\) of \(\sigma_{n_{i}}^{(i)}\) and the elements \(q_{i}^{(i-1)}\) and \(q_{i}^{(l-1)}\)
                \(\Sigma=\Sigma \sigma_{n_{i}}^{(i)}\)
            end if
            satisfied_ \(q=\) true
        end if
        end while
        \(d_{i i}=p_{i}^{(i-1)}\)
        for \(j=i+1\) to \(n\) do
            \(L_{j i}=\frac{q_{j}^{(i-1)}}{d_{j j}}, U_{i j}=\frac{p_{j}^{(i-1)}}{d_{j j}}\)
            If \(\left|L_{j i}\right|<\tau_{l}\), then set \(L_{j i}=0\). Also if \(\left|U_{i j}\right|<\tau_{u}\), then set \(U_{i j}=0\).
        end for
    end for
    Return \(L=\left(L_{j i}\right)_{1 \leq j, i \leq n}, D=\operatorname{diag}\left(d_{i i}\right)_{1 \leq i \leq n}, U=\left(U_{i j}\right)_{1 \leq i, j \leq n}, \Pi\) and \(\Sigma\).
```


Figure 4. Row and column pivoting strategies in step i of Algorithm 5

Despite the column pivoting strategy of Algorithm 2, there is no need to interchange the columns i and l of matrix $L-I$ and to update matrix $S^{(i)}$ in the column pivoting strategy of Algorithm 5. After the column pivoting strategy, the parameter satisfied_ q is set to true in line 42 of Algorithm 5. Since satisfied_ p is false, then the internal while loop should be run one more time. At the end of this loop, we set the (i, i) entry of matrix D equal to the element $p_{i}^{(i-1)}$ in line 45 of the algorithm. The i-th column of matrix L and the i-th row of matrix U are computed as the by-products in lines 46-49 of the algorithm.

In Figure 4, we have drawn a pattern for the row and the column pivoting strategies in step i of Algorithm 5.

5. Numerical results and implementation details

In this section, we report the results of numerical experiments to study the effectiveness of complete pivoting on the quality of the IULBF preconditioner. We have also presented some comparison between the three preconditioners ILUTP [17], left-looking RIF with complete pivoting [16] and IULBF with complete pivoting. This comparison is based on the results for 165 artificial linear systems where the coefficient matrices have been downloaded from [4].

We have proposed the names of these matrices in Table 1. The solution of the systems are the vectors $e=[1, \cdots, 1]^{T}$ and the right hand side vectors are $b=A e$. We have applied all the preconditioners as the right preconditioner for these linear systems and then have solved the preconditioned systems by the GMRES(30) method. The code of GMRES can be found in [18]. For all the systems, the initial solution is taken as the zero vector and the stopping criterion is satisfied when the relative residual is less than 10^{-8}. For the original linear systems we have considered 5000 as the maximum number of iterations of the GMRES(30) method while for the preconditioned systems this value has been set to 2500 . We have written the codes of plain IULBF and IULBF with complete pivoting strategy in Fortran 77.

We have considered the following details in the implementation of Algorithms 4 and 5.

- Matrix A is stored in CSR and CSC formats.
- Matrices Z and W are stored in CSC and CSR formats, respectively. This item is associated to line 7 of Algorithm 4 and to lines 9 and 28 of Algorithm 5.
- To break the complexity of these two algorithms, we need to access matrices Z and W row-wise and column-wise, respectively. For this aim, we have also stored matrices Z and W in dynamic sparse row and dynamic sparse column formats, respectively. For more details about these two formats see [1].
- The arrays invpermw and permw are used to store the information of matrices Π and Π^{T}, respectively. Also, the arrays sigmaz and invsigmaz are used to consider the information of the matrices Σ and Σ^{T}, respectively.

The first, third and fourth items are essential for the efficient implementation of line 4 of Algorithm 4 and lines 8 and 27 of Algorithm 5. These items will shorten the running time of these two algorithms.

The code of left-looking RIF with complete pivoting is also in Fortran 77. The code of ILUTP is available in [18]. All the numerical experiments have been run on a computing server with 30 GB of RAM. For plain IULBF, IULBF with complete pivoting and left-looking RIF with complete pivoting we have applied the multilevel nested dissection reordering [3,10] while for ILUTP the RCM [3, 8] has been used as the reordering. This is why we have used the notations Metis and RCM in the title of Figures $5-13$ and 17-25. For all the linear systems the maximum weighted matching process [6] has been coupled with the reorderings. This is the reason we have mentioned MC64 in the title of all figures. This process is available in the MC64 package of the HSL library [21].
Table 1. All the test matrices

The density of all preconditioners is defined as

$$
\text { density }=\frac{n n z(L)+n n z(U)}{n n z(A)}
$$

where $n n z(L), n n z(U)$ and $n n z(A)$ are the number of nonzero entries of matrices L, U and A, respectively.

We have seperated the numerical experiments of this paper to two parts. In the next subsection we explain the first part.
5.1. First part of experiments. For all 165 linear systems we have considered $\tau_{w}=\tau_{z}=0.1$ and $\tau_{l}=\tau_{u}=0.001$ and have computed the plain IULBF preconditioner. In Tables 3 and 4, and in Figures 5 and 6, the notation $\operatorname{IULBF}(0.1,0.001)$ refers to this case.

For all the linear systems, we have set $\tau_{w}=\tau_{z}=0.1$ and $\tau_{l}=\tau_{u}=0.001$ and then computed the IULBF with complete pivoting for $\alpha=0.01,0.1,0.25$, $0.5,0.75,1.0$. In Tables 3 and 4 and in Figures $5-7$ and $14-16$, we have used the notation $\operatorname{IULBFP}(\alpha, 0.1,0.001)$ for these cases. For these preconditioners we have plotted the number of iterations, density, preconditioning time, total time, total number of row and total number of column pivoting performance profiles in Figures 5-7. As in [5], we here review the concept of performance profile for these parameters. Consider S as the set of all preconditioners IULBF ($0.1,0.001$) and $\operatorname{IULBFP}(\alpha, 0.1,0.001)$, for $\alpha=0.01,0.1,0.25,0.5,0.75,1.0$. Also let p be one of the 165 test linear systems. If $s \in S$, then the performance ratio $r_{p, s}$ is defined as

$$
\begin{equation*}
r_{p, s}=\frac{t_{p, s}}{\min \left\{t_{p, s} \mid s \in S\right\}} \tag{5.1}
\end{equation*}
$$

where $t_{p, s}$ is the required preconditioning time to compute the preconditioner s for system p. The distributed function for the performance ratio is

$$
\begin{equation*}
\rho_{s}(\tau)=\frac{1}{165} \operatorname{size}\left(\left\{p \in P \mid r_{p, s} \leq \tau\right\}\right) \tag{5.2}
\end{equation*}
$$

where P is the set of all linear systems. This distributed function is known as the performance profile of the preconditioning time associated to s. As it is claimed in [5], if P is suitably large, then the preconditioners with larger $\rho_{s}(\tau)$ need the less preconditioning time than the other preconditioners.

FIGURE 5. (a) Number of iterations performance profile for $\operatorname{IULBFP}(\alpha, 0.1,0.001)$ and $\operatorname{IULBF}(0.1,0.001)$. (b) Density performance profile for $\operatorname{IULBFP}(\alpha, 0.1,0.001)$ and $\operatorname{IULBF}(0.1,0.001)$

(a)

(b)

Figure 6. (a) Preconditioning time performance profile for $\operatorname{IULBFP}(\alpha, 0.1,0.001)$ and $\operatorname{IULBF}(0.1,0.001)$. (b) Total time performance profile for $\operatorname{IULBFP}(\alpha, 0.1,0.001)$ and $\operatorname{IULBF}(0.1,0.001)$

Figure 7. (a) Total number of row pivoting performance profile for IULBFP $(\alpha, 0.1,0.001)$. (b) Total number of column pivoting performance profile for $\operatorname{IULBFP}(\alpha, 0.1,0.001)$

If in (5.1) we replace $t_{p, s}$ by the density, total time, total number of row and total number of column pivoting, then $\rho_{s}(\tau)$ in (5.2) will be the associated performance profile of these parameters. We define the GMRES(30) method which is coupled with one of the preconditioners $\operatorname{IULBF}(0.1,0.001)$ and $\operatorname{IULBFP}(\alpha, 0.1,0.001)$, for $\alpha=0.01,0.1,0.25,0.5,0.75,1.0$ as a solver. Consider S_{1} as the set of these solvers. For $s \in S_{1}$, if in (5.1) we replace the preconditioning time $t_{p, s}$ by the number of iterations of the solver s, then $r_{p, s}$ will be the performance ratio for the number of iterations and $\rho_{s}(\tau)$ in (5.2) will be the performance profile associated to the number of iterations. It should be mentioned that the larger number of iteration performance profile for a solver s is preferred since it indicates that the less number of iterations is required. In Figures 5-7, one can also find the associated performance profile plots for $\operatorname{IULBF}(0.1,0.001)$ preconditioner.

In Figures 5 and 6, we have reported the percentage of the solved right preconditioned systems by each of the preconditioners. From these figures, one can come to the following observations. For $\alpha=0.01,0.1, \ldots, 1.0$, all of the preconditioners $\operatorname{IULBFP}(\alpha, 0.1,0.001)$, make the $\operatorname{GMRES}(30)$ method convergent in less number of iterations than the $\operatorname{IULBF}(0.1,0.001)$ preconditioner. The choice of $\alpha=0.01$ gives less number of iterations of the GMRES(30) method while it needs less total number of row and less total number of column pivoting than the other choices of α.

The density and preconditioning time of $\operatorname{IULBFP}(\alpha, 0.1,0.001)$, for $\alpha=$ $0.01,0.1, \ldots, 1.0$, are more or less the same while the $\operatorname{IULBF}(0.1,0.001)$ is the most sparse preconditioner. The $\operatorname{IULBFP}(0.01,0.1,0.001)$ has the least total time among all preconditioners. From these figures we can say that all of the preconditioners $\operatorname{IULBFP}(\alpha, 0.1,0.001)$ for different values of α, have better quality than the $\operatorname{IULBF}(0.1,0.001)$ at reducing the number of iterations while the best choice of α is 0.01 .

As it is mentioned in [16], the left-looking version of RIF preconditioner is in the form of $A \approx M=L D U$ and also needs to compute the upper triangular factors Z and W such that $A^{-1} \approx Z D^{-1} W^{T}$. For all the 165 linear systems, we have also computed this preconditioner which is coupled with complete pivoting strategy. To compute this preconditioner the drop tolerance parameters τ_{w} and τ_{z} have been set equal to 0.1 and the drop tolerance parameters τ_{l} and τ_{u} have been considered as 0.001 . The complete pivoting strategy for this preconditioner also depends on a parameter α. We have set this parameter equal to $\alpha=0.01,0.1,0.25,0.5,0.75,1.0$. The preconditioning time, density, number of iterations, total time, total number of row and column pivoting performance profiles can be found in Figures 8-10. These performance profiles are computed when we define S to be the set of all preconditioners $\operatorname{LLRIFP}(\alpha, 0.1,0.001)$, for $\alpha=0.01,0.1,0.25,0.5,0.75,1.0$ and S_{1} to be the set of all these preconditioners which are coupled with GMRES(30).

Figure 8. (a) Number of iterations performance profile for $\operatorname{LLRIFP}(\alpha, 0.1,0.001)$. (b) Density performance profile for $\operatorname{LLRIFP}(\alpha, 0.1,0.001)$

(a)

(b)

Figure 9. (a) Preconditioning time performance profile for $\operatorname{LLRIFP}(\alpha, 0.1,0.001)$. (b) Total time performance profile for $\operatorname{LLRIFP}(\alpha, 0.1,0.001)$

Figure 10. (a) Total number of row pivoting performance profile for $\operatorname{LLRIFP}(\alpha, 0.1,0.001)$. (b) Total number of column pivoting performance profile for $\operatorname{LLRIFP}(\alpha, 0.1,0.001)$

FIGURE 11. (a) Number of iterations performance profile for ILUTP(permtol,0.001,10). (b) Density performance profile for $\operatorname{ILUTP}($ permtol,0.001,10)

(a)

(b)

Figure 12. (a) Preconditioning time performance profile for $\operatorname{ILUTP}($ permtol, $0.001,10$). (b) Total time performance profile for ILUTP(permtol,0.001,10)

Figure 13. Total number of pivoting performance profile for ILUTP (permtol,0.001,10) preconditioner

In Tables 3 and 4 and in Figures 8-10 and 14-16 the notation LLRIFP $(\alpha, 0.1,0.001)$, for $\alpha=0.01,0.1,0.25,0.5,0.75,1.0$, indicates the left-looking version of RIF coupled with complete pivoting which uses $\tau_{z}=\tau_{w}=0.1$ and $\tau_{l}=\tau_{u}=0.001$ as the drop tolerance parameters and α as the pivoting parameter. In these figures, for each of the preconditioners we have also presented the percentage of the solved linear systems. Figure 8 shows that $\operatorname{LLRIFP}(0.01,0.1,0.001)$ gives the less number of iterations of the GMRES(30) method. It also indicates that the density of the preconditioners $\operatorname{LLRIFP}(\alpha, 0.1,0.001)$, for $\alpha=$ $0.01,0.1,0.25,0.5,0.75$ are nearly the same while $\operatorname{LLRIFP}(1.0,0.1,0.001)$ is the most dense preconditioner. One can observe in Figure 9 that there is not a great difference between the preconditioning time (total time) of all of the preconditioners $\operatorname{LLRIFP}(\alpha, 0.1,0.001)$, for $\alpha=0.01,0.1, \cdots, 1.0$. From the graphs in Figure 10 it can be concluded that the choice of $\alpha=0.01$ generates the less total number of row and the less total number of column pivoting than the other choices of α. From the three Figures 8-10 it can be said that the choice of $\alpha=0.01$ is the most effective value than the other choices of α for the left-looking RIF with complete pivoting.

The ILUTP preconditioner has three parameters to be set. They are τ which is the drop tolerance parameter for its L and U factors, the lfil which is the total number of elements that should be kept in each row of L and U factors and the permtol which is the column pivoting parameter. This preconditioner only applies the column pivoting strategy. To compute this preconditioner we have selected $\tau=0.001$, lfil $=10$ and permtol equal to $0.01,0.1,0.25,0.5,0.75,1.0$. In Tables 3 and 4 and in Figures 11-13 and 1416 , the notation $\operatorname{ILUTP}($ permtol $, 0.001,10)$ refer to these cases. In Figures 11-13, there are the performance profile plots for the number of iterations, density, preconditioning time, total time and total number of column pivoting associated to the preconditioners $\operatorname{ILUTP}($ permtol $, 0.001,10)$, for permtol $=$ $0.01,0.1,0.25,0.5,0.75,1.0$. These plots can be obtained when S in (5.1) consists of $\operatorname{ILUTP}($ permtol, $0.001,10)$, for permtol $=0.01,0.1,0.25,0.5,0.75,1.0$ and S_{1} to be the set of all these preconditioners which are coupled with GMRES(30). In the legend of these figures one can also see the percentage of the solved right preconditioned systems associated to each preconditioner. From these figures one can conclude the following information. It is hard to see any great difference between the density of the preconditioners ILUTP (permtol, $0.001,10$), for permtol $=0.01,0.1,0.25,0.75,1.0$ while the choice of permtol $=0.5$ generates the most dense ILUTP preconditioner. The worst number of iterations and total time are due to the choice permtol $=0.5$ while the least preconditioning time is associated to this value of permtol. The choice of permtol $=0.25$ seems to give the best number of iterations of the GMRES(30) method.

FigURE 14. (a) Number of iterations performance profile for ILUTP, IULBFP and LLRIFP. (b) Density performance profile for ILUTP, IULBFP and LLRIFP

(a)

(b)

Figure 15. (a) Preconditioning time performance profile for ILUTP, IULBFP and LLRIFP. (b) Total time performance profile for ILUTP, IULBFP and LLRIFP

Figure 16. Total number of pivoting performance profile for ILUTP, IULBFP and LLRIFP

Except for the value permtol $=0.5$, for the other choices of permtol, the preconditioning time of the preconditioners are more or less the same. The
permtol $=0.5$ and permtol $=1.0$ need the least and the most total number of column pivoting, respectively.

In Figures 14 and 15 we have compared the number of iterations, density, preconditioning and total time performance profiles of the preconditioners $\operatorname{ILUTP}(0.25,0.001,10), \operatorname{IULBFP}(0.01,0.1,0.001)$ and $\operatorname{LLRIFP}(0.01,0.1,0.001)$. We have summed the total number of row and column pivoting for IULBF with complete pivoting and for left-looking RIF with complete pivoting. This parameter is termed as the total number of pivoting associated to these preconditioners. In Figure 16, one can see the total number of pivoting performance profile for these two preconditioners and also the column pivoting performance profile for $\operatorname{ILUTP}(0.25,0.001,10)$. From Figures $14-16$ we can consider the following results. The $\operatorname{ILUTP}(0.25,0.001,10)$ gives the best number of iterations of the GMRES(30) method than the other preconditioners. $\operatorname{IULBFP}(0.01,0.1,0.001)$ makes GMRES(30) method convergent in better number of iterations than the $\operatorname{LLRIFP}(0.01,0.1,0.001)$. The $\operatorname{IULBFP}(0.01,0.1,0.001)$ is the most dense one while $\operatorname{ILUTP}(0.25,0.001,10)$ is the most sparse preconditioner.
$\operatorname{ILUTP}(0.25,0.001,10)$ is the fastest preconditioner in terms of preconditioning time while $\operatorname{IULBFP}(0.01,0.1,0.001)$ is the slowest one. This situation also happens for the total time of the GMRES(30) method. The lines in Figure 16 indicate that among the three preconditioners $\operatorname{ILUTP}(0.25,0.001,10)$, $\operatorname{IULBFP}(0.01,0.1,0.001)$ and $\operatorname{LLRIFP}(0.01,0.1,0.001)$, the first one is computed by using the most number of total pivoting while the third one is obtained by the least number of total pivoting. The line associated to the total number of pivoting for the $\operatorname{IULBFP}(0.01,0.1,0.001)$ lies in between the lines associated to the two other preconditioners. In the legend of the Figures 14-16, we have also repeated the percentage of the solved preconditioned systems by each of the preconditioners. From the results of these figures we can say that among the three preconditioners $\operatorname{ILUTP}(0.25,0.001,10), \operatorname{IULBFP}(0.01,0.1,0.001)$ and $\operatorname{LLRIFP}(0.01,0.1,0.001)$, the first one is the most effective one at reducing the number of iterations of $\operatorname{GMRES}(30)$ method while it needs the most total number of pivoting. Despite the fact that the quality of the $\operatorname{IULBFP}(0.01,0.1,0.001)$ preconditioner is not as well as the first one but it needs less total number of pivoting. Although $\operatorname{IULBFP}(0.01,0.1,0.001)$ is computed by using more total pivoting than $\operatorname{LLRIFP}(0.01,0.1,0.001)$ but it has a better quality at reducing the number of iterations of the GMRES(30) method.

For a better comparison of the four preconditioners $\operatorname{ILUTP}(0.25,0.001,10)$, $\operatorname{IULBFP}(0.01,0.1,0.001), \operatorname{LLRIFP}(0.01,0.1,0.001)$ and $\operatorname{IULBF}(0.1,0.001)$, we have selected a subset of test matrices. The information of these matrices and the results of GMRES(30) method to solve the original systems can be found in Table 2. In this table, n and $n n z$ are the dimension and the number of nonzero entries of the matrix and $I t$ and Itime are the number of iterations and iteration time of the GMRES(30) method. Itime is in seconds. $\mathrm{A}+$ sign in this

TABLE 2. A subset of test matrices

Matrix Name	Matrix properties		GMRES(30)	
	n	$n n z$	It	Itime
af 23560	23560	484256	+	+
atmosmodd	1270432	8814880	808	46.85
atmosmodj	1270432	8814880	1615	93.27
cage14	1505785	27130349	19	1.61
cavity 13	2597	76367	+	+
cavity19	4562	138187	+	+
cavity 20	4562	138187	+	+
circuit5M_dc	3523317	19194193	60	12.40
Freescale 1	3428755	18920347	+	+
$h v d c 2$	189860	1347273	+	+
hcircuit	105676	513072	+	+
language	399130	1216334	30	0.72
memchip	2707524	14810202	+	+
ohne2	181343	11063545	+	+
para-4	153226	5326228	+	+
rajat15	37261	443573	$+$	+
rajat28	87190	607235	+	+
Raj1	263743	1302464	+	+
tmt_unsym	917825	4584801	+	+
trans 4	116835	766396	+	+
trans 5	116835	766396	+	+
Transport	1602111	23500731	+	+
venkat01	62424	1717792	+	+
venkat25	62424	1717792	+	+
venkat50	62424	1717792	+	+
bp_1400	822	4790	+	+
bp_1600	822	4841	+	+
fs_760_2	760	5976	+	+
fs_760_3	760	5976	+	+
gemat12	4929	33111	+	+
lns_3937	3937	25407	+	+
lnsp3937	3937	25407	+	+
sherman 2	1080	23094	+	+
sherman 4	1104	3786	558	0.04
sherman5	3312	20793	+	+
west1505	1505	5445	+	+
west2021	2021	7353	+	+

table is used when the stopping criterion has not been satisfied in 5000 number of iterations. In Table 3, there are the properties of the preconditioners. In this table, density and Prtime are the density and preconditioning time of the preconditioners. Prtime is in seconds. In this table, Tot_piv is the summation of the total number of row and column pivoting. For $\operatorname{ILUTP}(0.25,0.001,10)$, this is only the total number of column pivoting.

In this paragraph, we discuss about the numerical results in Table 3. What we are concluding is something on average. From the results of this table we can say that in terms of preconditioning time, the $\operatorname{ILUTP}(0.25,0.001,10)$ is the fastest preconditioner for all the matrices while for most of the matrices, $\operatorname{IULBF}(0.1,0.001)$ is the slowest one. For 22 matrices $\operatorname{LLRIFP}(0.01,0.1,0.001)$
TABLE 3. Properties of the preconditioners for 37 matrices

TABLE 4. Properties of the $G M R E S(30)$ method to solve the right preconditioned systems for 37 matrices
is faster than $\operatorname{IULBFP}(0.01,0.1,0.001)$ in terms of preconditioning time and for the 15 other matrices this is vice versa. For most of the test matrices, the $\operatorname{ILUTP}(0.25,0.001,10)$ is the most sparse preconditioner. For all of the test matrices, the total number of pivoting associated to $\operatorname{ILUTP}(0.25,0.001,10)$ preconditioner is more than the total number of pivoting associated to the two other preconditioners. For 11 matrices, the total number of pivoting for $\operatorname{IULBFP}(0.01,0.1,0.001)$ is bigger than the total number of pivoting for LL$\operatorname{RIFP}(0.01,0.1,0.001)$ and for 8 other matrices this is vice versa. For the rest of other matrices, there is not a total number of pivoting associated to these two preconditioners or the total number of pivoting of these two preconditioners are equal. All these observation emphasize the results obtained from Figures 14-16.

In Table 4, there are the information of GMRES(30) method to solve the right preconditioned systems. In this table, $I t$ is the iteration count and Ttime is the total time which is the summation of preconditioning time and the iteration time. This parameter is also in seconds. $\mathrm{A}+$ sign in this table, indicates that the stopping criterion has not been satisfied in 2500 number of iterations. From this table we can say that for most of the test matrices, $\operatorname{ILUTP}(0.25,0.001,10)$ gives better number of iterations of GMRES(30) method than the two other preconditioners. The results in this table show that for 17 matrices, the $\operatorname{IULBFP}(0.01,0.1,0.001)$ makes the GMRES(30) method convergent in less number of iterations than the $\operatorname{LLRIFP}(0.01,0.1,0.001)$ and for 7 other matrices this is vice versa. For the rest of other matrices, these two preconditioners can not make the GMRES(30) method convergent or the number of iterations associated to these two preconditioners are equal. By comparing the data in the columns $\operatorname{IULBFP}(0.01,0.1,0.001)$ and $\operatorname{IULBF}(0.1,0.001)$ we can see that for almost all of the matrices, the number of iterations of the $\operatorname{IULBFP}(0.01,0.1,0.001)$ is much better than the number of iterations of the $\operatorname{IULBF}(0.1,0.001)$ preconditioner. If we summarize our consideration from Table 4 , we can say that on average, the quality of the $\operatorname{IULBFP}(0.01,0.1,0.001)$ preconditioner is way better than the quality of the $\operatorname{LLRIFP}(0.01,0.1,0.001)$ and $\operatorname{IULBF}(0.1,0.001)$ preconditioners but not as well as the quality of the $\operatorname{ILUTP}(0.25,0.001,10)$ preconditioner. This was also a consideration we could get from Figure 14.
5.2. Second part of experiments. In this part of the numerical experiments, we have set $\tau_{z}=\tau_{w}=0.01$ and $\tau_{l}=\tau_{u}=0.001$ and $\alpha=0.01,0.1,0.25,0.5$, $0.75,1.0$ for the IULBF, IULBF with complete pivoting and for the left-looking RIF with complete pivoting. For the ILUTP, τ has been set to 0.001 and $l f i l=15$ and permtol will be $0.01,0.1,0.25,0.5,0.75,1.0$. In Figures 17-19 and in Tables 5 and 6 , the notations $\operatorname{IULBF}(0.01,0.001), \operatorname{IULBFP}(\alpha, 0.01,0.001)$, $\operatorname{LLRIFP}(\alpha, 0.01,0.001)$ and $\operatorname{ILUTP}($ permtol $, 0.001,15)$ refer to these cases.

Figure 17. (a) Number of iterations performance profile for $\operatorname{IULBFP}(\alpha, 0.01,0.001)$ and $\operatorname{IULBF}(0.01,0.001)$. (b) Density performance profile forIULBFP $(\alpha, 0.01,0.001)$ and $\operatorname{IULBF}(0.01,0.001)$

Figure 18. (a) Preconditioning time performance profile for $\operatorname{IULBFP}(\alpha, 0.01,0.001)$ and $\operatorname{IULBF}(0.01,0.001)$. (b) Total time performance profile for $\operatorname{IULBFP}(\alpha, 0.01,0.001)$ and $\operatorname{IULBF}(0.01,0.001)$

Figure 19. (a) Total number of row pivoting performance profile for $\operatorname{IULBFP}(\alpha, 0.01,0.001)$. (b) Total number of column pivoting performance profile for $\operatorname{IULBFP}(\alpha, 0.01,0.001)$

Figure 20. (a) Number of iterations performance profile for $\operatorname{LLRIFP}(\alpha, 0.01,0.001)$. (b) Density performance profile for $\operatorname{LLRIFP}(\alpha, 0.01,0.001)$

(a)

(b)

Figure 21. (a) Preconditioning time performance profile for $\operatorname{LLRIFP}(\alpha, 0.01,0.001)$. (b) Total time performance profile for $\operatorname{LLRIFP}(\alpha, 0.01,0.001)$

Figure 22. (a) Total number of row pivoting performance profile for LLRIFP ($\alpha, 0.01,0.001$). (b) Total number of column pivoting performance profile for $\operatorname{LLRIFP}(\alpha, 0.01,0.001)$

All these preconditioners have been applied as the right preconditioner for linear systems and then, the preconditioned systems were solved by the GMRES(30) method. In Figures 17-19, the performance profile plots associated to the preconditioners $\operatorname{IULBF}(0.01,0.001)$ and $\operatorname{IULBFP}(\alpha, 0.01,0.001)$ for $\alpha=0.01,0.1$, $\cdots, 1.0$ have been compared. For the three matrices Freescale1, memchip and rajat21, it was not possible to compute the $\operatorname{IULBF}(0.01,0.001)$ preconditioner. Therefore, all the performance profile figures are due to the numerical tests on 162 matrices. In the legend of these figures, we have written the percentage of the solved right preconditioned systems. Figure 17 indicates that the best preconditioner is $\operatorname{IULBFP}(0.01,0.01,0.001)$ at reducing the number of iterations of the GMRES(30) method while the worst one is $\operatorname{IULBF}(0.01,0.001)$. This figure also shows that the most sparse preconditioner is $\operatorname{IULBF}(0.01,0.001)$ and the other preconditioners have nearly the same density. From Figure 18, we can not say anything special about the preconditioning time (total time). In Figure 19, one can see that the least total number of row and column pivoting are due to the $\operatorname{IULBFP}(0.01,0.01,0.001)$. From Figures $17-19$, we can claim that the choice of $\alpha=0.01$ gives better preconditioner than the other choices of α.

In Figures 20-22 and for all the 165 linear systems, we have drawn the performance profile graphs of the preconditioners $\operatorname{LLRIFP}(\alpha, 0.01,0.001)$ for $\alpha=0.01$, $0.1, \ldots, 1.0$. The percentage of the solved systems have also been reported. The (a) part of Figure 20, shows that $\operatorname{LLRIFP}(0.1,0.01,0.001)$ has the least number of iterations of the GMRES(30) method than the other preconditioners. The (b) part of this figure indicates that the most and the least dense preconditioners are $\operatorname{LLRIFP}(0.01,0.01,0.001)$ and $\operatorname{LLRIFP}(1.0,0.01,0.001)$, respectively. From Figure 21, we can see that the preconditioners $\operatorname{LLRIFP}(0.01,0.01,0.001)$ and $\operatorname{LLRIFP}(1.0,0.01,0.001)$ are the fastest and the slowest preconditioners, respectively in terms of preconditioning time while the second preconditioner also has the highest total time. The (b) part of this figure shows that the total time of the $\operatorname{LLRIFP}(0.1,0.01,0.001)$ preconditioner is less than the total time of the other preconditioners. With respect to the percentage of the solved systems, number of iterations and total time, we can conclude from Figures 20-22 that the choice of $\alpha=0.1$ gives better results of the left-looking RIF with complete pivoting.

Figures 23-26 are due to the performance profile lines of the preconditioners $\operatorname{ILUTP}($ permtol $, 0.001,15)$ for permtol $=0.01,0.1, \ldots, 1.0$. In these figures, we have also presented the percentage of the solved systems by each preconditioner. From the (a) part of Figure 23 and with respect to the percentage of the solved systems, it is really hard to select the best preconditioner among the three preconditioners $\operatorname{ILUTP}(0.01,0.001,15), \operatorname{ILUTP}(0.1,0.001,15)$ and $\operatorname{ILUTP}(0.25,0.001,15)$ in terms of the number of iterations of the GMRES(30) method. We have considered a parameter count for each of these three preconditioners.

FIGURE 23. (a) Number of iterations performance profile for ILUTP (permtol,0.001,15). (b) Density performance profile for ILUTP (permtol,0.001,15)

Figure 24. (a) Preconditioning time performance profile for ILUTP(permtol,0.001,15). (b) Total time performance profile for ILUTP(permtol,0.001,15)

Figure 25. Total number of pivoting performance profile for ILUTP (permtol,0.001,15) preconditioner

FIGURE 26. (a) Number of iterations performance profile for ILUTP, IULBFP and LLRIFP. (b) Density performance profile for ILUTP, IULBFP and LLRIFP

Figure 27. (a) Preconditioning time performance profile for ILUTP, IULBFP and LLRIFP. (b) Total time performance profile for ILUTP, IULBFP and LLRIFP

FIGURE 28. Total number of pivoting performance profile for ILUTP, IULBFP and LLRIFP

If for a system, the number of iterations of for example $\operatorname{ILUTP}(0.25,0.001,15)$ is less than the number of iterations of the two other preconditioners, then
we have incremented the count of $\operatorname{ILUTP}(0.25,0.001,15)$ by one. For the two other preconditioners $\operatorname{ILUTP}(0.01,0.001,15)$ and $\operatorname{ILUTP}(0.1,0.001,15)$ we have done the same and we have computed their count parameter. The count of $\operatorname{ILUTP}(0.25,0.001,15), \operatorname{ILUTP}(0.1,0.001,15)$ and $\operatorname{ILUTP}(0.01,0.001,15)$ were 23,5 and 19 , respectively. This indicates that the best preconditioner is $\operatorname{ILUTP}(0.25,0.001,15)$ at reducing the number of iterations of the $\operatorname{GMRES}(30)$ method.
From the (b) part of Figure 23 we can only say that the choice of permtol $=1.0$ generates the most dense preconditioner. As it is clear from Figure 24, all of the preconditioners $\operatorname{ILUTP}($ permtol, $0.001,15)$ for permtol $=0.01,0.1, \cdots, 1.0$, have more or less the same preconditioning time while $\operatorname{ILUTP}(1.0,0.001,15)$ needs the highest toltal time. From the graphs in Figure 25 we see that $\operatorname{ILUTP}(0.01,0.001,15)$ and $\operatorname{ILUTP}(1.0,0.001,15)$ are computed by using the most and the least total number of column pivoting. All these observation define the permtol $=0.25$ as the best parameter for ILUTP preconditioner.

In Figures 26-28, we have compared the number of iterations, density, preconditioning time, total time and total number of pivoting performance profile lines of the preconditioners $\operatorname{ILUTP}(0.25,0.001,10), \operatorname{ILUTP}(0.25,0.001,15)$, $\operatorname{IULBFP}(0.01,0.01,0.001)$ and $\operatorname{LLRIFP}(0.1,0.01,0.001)$. The (a) part of Figure 26 shows that the $\operatorname{IULBFP}(0.01,0.01,0.001)$ makes the $\operatorname{GMRES}(30)$ convergent in a better number of iterations than the $\operatorname{ILUTP}(0.25,0.001,10)$ and LL$\operatorname{RIFP}(0.1,0.01,0.001)$ preconditioners. From this part of the figure we can see that the number of iterations of the two preconditioners $\operatorname{IULBFP}(0.01,0.01,0.001)$ and $\operatorname{ILUTP}(0.25,0.001,15)$ are comparable but we can not claim which one is a better preconditioner, although the percentage of the solved systems by the first preconditioner is less than the percentage of the solved systems by the second one.
From the (b) part of this figure it is obvious that $\operatorname{IULBFP}(0.01,0.01,0.001)$ is the most dense preconditioner while both of preconditioners $\operatorname{ILUTP}(0.25,0.001,10)$ and $\operatorname{ILUTP}(0.25,0.001,15)$ are the most sparse ones. Figure 27 indicates that the $\operatorname{IULBFP}(0.01,0.01,0.001)$ is computed by the highest preconditioning time and it solves the systems by the highest total time than the other preconditioners. Both of the preconditioners $\operatorname{ILUTP}(0.25,0.001 .10)$ and $\operatorname{ILUTP}(0.25,0.001,15)$ seem to have the least preconditioning and total time. In Figure 28, the lines associated to each of the four preconditioners say that the $\operatorname{IULBFP}(0.01,0.01,0.001)$ preconditioner is computed by using the least total pivoting while the preconditioners $\operatorname{ILUTP}(0.25,0.001,10)$ and $\operatorname{IULTP}(0.25,0.001,15)$ need the most total pivoting than the other preconditioners.

In Table 5, we have presented the density and preconditioning time of $\operatorname{ILUTP}(0.25,0.001,15), \operatorname{IULBFP}(0.01,0.01,0.001), \operatorname{LLRIFP}(0.1,0.01,0.001)$ and $\operatorname{IULBF}(0.01,0.001)$ for 35 of the test linear systems. For the first three preconditioners, we have also reported the total number of pivoting in this table. In

Table 6, the number of iterations of the GMRES(30) method and the total time for each of these preconditioners have been reported. The notations density, Prtime, Tot_piv, It and Ttime in these two tables have the same definition as in Tables 3 and 4.

We can say the following from the results of Table 5. For almost all of the 35 matrices, the preconditioning time of the $\operatorname{ILUTP}(0.25,0.001,15)$ is less than the preconditioning time of the other preconditioners. For most of the test matrices, the density of the $\operatorname{IULBFP}(0.01,0.01,0.001)$ preconditioner is bigger than the density of the three other preconditioners. For 15 matrices, the preconditioning time of this preconditioner is less than the preconditioning time of the $\operatorname{LLRIFP}(0.1,0.01,0.001)$ while for the other test matrices this is vice versa. For 24 matrices, the total pivoting of the $\operatorname{ILUTP}(0.25,0.001,15)$ is bigger than the total pivoting of the $\operatorname{IULBFP}(0.01,0.01,0.001)$ and $\operatorname{LLRIFP}((0.1,0.01,0.001)$ preconditioners. For the rest of 11 other matrices, all these three preconditioners are computed without any pivoting.

What we can observe from the information of Table 6 is presented here. For 16 matrices, the number of iterations of the $\operatorname{ILUTP}(0.25,0.001,15)$ is less than the number of iterations of the $\operatorname{IULBFP}(0.01,0.01,0.001)$ while for 12 other matrices this is vice versa. For the rest of 7 other matrices, both preconditioners have the same effect on the number of iterations of the GMRES(30) method. The data in this table show that for 15 matrices the $\operatorname{IULBFP}(0.01,0.01,0.001)$ has a better effect than $\operatorname{LLRIFP}(0.1,0.01,0.001)$ at reducing the number of iterations of GMRES(30) method while for 8 other matrices, the second preconditioner gives better number of iterations than the first one. For the rest of 12 other matrices, both preconditioners have the same effect on the number of iterations of the GMRES(30) method.

If we compare the data associated to the $\operatorname{IULBFP}(0.01,0.01,0.001)$ in Table 6 by the information in the column $\operatorname{ILUTP}(0.25,0.001,10)$ in Table 4 , we see that for 19 matrices, the number of iterations of the $\operatorname{IULBFP}(0.01,0.01,0.001)$ is less than the number of iterations of the $\operatorname{ILUTP}(0.25,0.001,10)$ while for 8 other matrices, the second preconditioner makes the GMRES(30) method convergent in less number of iterations than the first one. From the results of these two tables, we can also verify that for the rest of 8 other matrices, both of these two preconditioners behave the same on the number of iteartions of the GMRES(30) method.

If we summarize our consideration from Figures 17-28 and by analyzing the data in Tables 4, 5 and 6 , it can be concluded that the quality of the $\operatorname{IULBFP}(0.01,0.01,0.001)$ preconditioner is better than the quality of preconditioners $\operatorname{ILUTP}(0.25,0.001,10), \operatorname{LLRIFP}(0.1,0.01,0.001)$ and $\operatorname{IULBF}(0.01,0.001)$ at reducing the number of iterations of the GMRES(30) method. We should also mention that $\operatorname{ILUTP}(0.25,0.001,15)$ is somewhat better than the preconditioner $\operatorname{IULBFP}(0.01,0.01,0.001)$.
TABLE 5. Properties of the preconditioners for 35 matrices

Table 6. Properties of the $\operatorname{GMRES}(30)$ method to solve the right preconditioned systems for 35 matrices

6. Conclusion

In this paper, we presented a complete pivoting strategy for the IUL preconditioner obtained as the by-product of the backward factored approximate inverse process. This preconditioner is termed as IULBFP. The pivoting process for this preconditioner depends on a parameter α. We have used the values $0.01,0.1,0.25,0.5,0.75$ and 1.0 as α and then have applied the computed IULBFP as the right preconditioner for linear systems. The preconditioned systems have been solved by the GMRES(30) method. As the preprocessing, the multilevel nested dissection reordering has been coupled with the maximum weighted matching. The numerical results show that when we use different drop tolerance parameters to compute this preconditioner, the choice of $\alpha=0.01$ gives better results at reducing the number of iterations while it needs the less total number of pivoting than the other choices of α. We have also prepared the same atmosphere for the left-looking version of RIF with complete pivoting to know if we can have the best value of α. The results show that the choices $\alpha=0.01$ and $\alpha=0.1$ are the most effective ones for this preconditioner when the multilevel nested dissection reordering and the maximum weighted matching are used as the preprocessing.

In the numerical experiments we have also used the ILUTP which is coupled with the RCM reordering and maximum weighted matching. This preconditioner has also been applied as the right preconditioner for linear systems and then the preconditioned systems have been solved by GMRES(30) method. For this preconditioner, we have fixed the drop tolerance parameter and have played around with the number of fill-in entries in L and U factors and have applied the same pivoting parameters as IULBF with complete pivoting and left-looking RIF with complete pivoting. The results show that the pivoting parameter 0.25 is the best option for this preconditioner.

As part of the numerical experiments, we have also compared the three preconditioners ILUTP, IULBF with complete pivoting and left-looking RIF with complete pivoting. For each of these preconditioners its associated best value of pivoting parameter has been used. The results show that by tuning the drop tolerance parameters, the quality of the IULBF with complete pivoting can be comparable to the quality of ILUTP at reducing the number of iterations of the GMRES(30) method. But this is not true for left-looking RIF with complete pivoting. The preconditioning time, total time and the density of ILUTP is way better than these parameters associated to the IULBF with complete pivoting and left-looking RIF coupled with complete pivoting. From the numerical tests, we could find that the ILUTP needs more total number of pivoting than the two other preconditioners. In terms of number of iterations, IULBF with complete pivoting seems to be better than the left-looking RIF with complete pivoting while it applies more total pivoting. The numerical results of this paper, also show that IULBF with complete pivoting is much
more robust than plain IULBF at reducing the number of iterations of the GMRES(30) method.

Acknowledgements

The authors are really thankful for the comments of the two referees which really improved the paper. The numerical experiments section of the paper was done when the first author was on a short sabbatical leave in Technische Universität Braunschweig. This stay was financially supported by the Niels Henrik Abel Board in Berlin.

The first author is so thankful to Tanja Schenk in the institute of computational mathematics of Technische Universität Braunschweig. His special thanks goes to Kathrin Huter in the international office of this university for her great favors. At the end, he really thanks Lena Koch in the International Mathematical Union, CDC section in Berlin.

References

[1] M. Benzi and M. Tůma, A sparse approximate inverse preconditioner for nonsymmetric linear systems, SIAM J. Sci. Comput. 19 (1998), no. 3, 968-994.
[2] M. Benzi and M. Tůma, A robust incomplete factorization preconditioner for positive definite matrices, Numer. Linear Algebra Appl. 10 (2003), no. 5-6, 385-400.
[3] M. Bollhöfer, ILUPACK software package, http://www.icm.tu-bs.de/~bolle/ilupack. Accessed 2015.
[4] T. Davis, University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/ research/sparse/matrices. Accessed 2015.
[5] E.D. Dolan and J.J. More, Benchmarking optimization software with performance profile, Math. Program. Ser. A 91 (2002) 201-213.
[6] I.S. Duff and J. Koster, The design and use of algorithms for permuting large entries to the diagonal of sparse matrices, SIAM J. Matrix Anal. Appl. 20 (1999), no. 4, 889-901.
[7] F.R. Fazel, Computing the IUL factorization coupled by the complete pivoting as the by-product of BFAPINV process, M.Sc. Dissertation, Department of Mathematics and Computer Sciences, Hakim Sabzevari University, in Persian, 2015.
[8] J.A. George and J.W.H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, 1981.
[9] T. Huckle, Personal communications, 2016.
[10] G. Karypis and V. Kumar, METIS, a Software Package for Partitioning Unstructured Graphs and Computing Fill-Reduced Orderings of Sparse Matrices, http://glaros.dtc.umn.edu/gkhome/views/metis. Accessed 2015.
[11] J.G. Luo, A new class of decomposition for inverting asymmetric and indefinite matrices, Comput. Math. Appl. 25, no. 4, (1993) 95-104.
[12] A. Rafiei, A complete pivoting strategy for the right-looking Robust Incomplete Factorization preconditioner, Comput. Math. Appl. 64 (2012), no. 8, 2682-2694.
[13] A. Rafiei, ILU and IUL factorizations obtained from Forward and Backward Factored APproximate Inverse algorithms, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1327-1346.
[14] A. Rafiei, Left-looking version of AINV preconditioner with complete pivoting strategy, Linear Algebra Appl. 445 (2014) 103-126.
[15] A. Rafiei and M. Bollhöfer, Extension of inverse-based dropping techniques for ILU preconditioners, http://www.digibib.tu-bs.de/?docid=00035624.
[16] A. Rafiei, B. Tolue and M. Bollhöfer, Complete pivoting strategy for the left-looking Robust Incomplete Factorization preconditioner, Comput. Math. Appl. 67 (2014), no. 11, 2055-2070.
[17] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, New York, 1996.
[18] Y. Saad, Sparskit and sparse examples, http://www-users.cs.umn.edu/~saad/software. Accessed 2015.
[19] D.K. Salkuyeh, A. Rafiei and H. Roohani, ILU preconditioning based on the FAPINV algorithm, Opuscula Math. 35 (2015), no. 2, 235-250.
[20] D.K. Salkuyeh and H. Roohani, On the relation between the AINV and the FAPINV algorithms, Int. J. Math. Math. Sci. 2009 (2009), Article ID 179481, 6 pages.
[21] The HSL Mathematical Software Library, http://www.hsl.rl.ac.uk. Accessed 2015.
[22] J. Zhang, A procedure for computing factored approximate inverse, M.Sc. Dissertation, Department of Computer Science, University of Kentucky, 1999.
[23] J. Zhang, A sparse approximate inverse preconditioner for parallel preconditioning of general sparse matrices, Appl. Math. Comput. 130 (2002), no. 1, 63-85.
(Amin Rafiei) Department of Applied Mathematics, Hakim Sabzevari University, Sabzevar, Iran.

E-mail address: rafiei.am@gmail.com, a.rafiei@hsu.ac.ir, amin.rafiei@tu-bs.de.
(Matthias Bollhöfer) Institute computational Mathematics, Technische UniverSität Braunschweig, D-38106 Braunschweig, Germany.

E-mail address: m.bollhoefer@tu-bs.de.

[^0]: Article electronically published on 31 October, 2017.
 Received: 2 January 2016, Accepted: 1 July 2016.

 * Corresponding author.

