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Abstract. In this essay we introduce and study the notion of dimension
for observers via Caratheodory structures and relative probability mea-
sures. We show that the dimension as a three variables function is an

increasing function on observers, and decreasing function on the cuts of
an observer. We find observers with arbitrary non-negative dimensions.
We show that Caratheodory dimension for observers is an invariant ob-
ject under conjugate relations. Caratheodory dimension as a mapping,

for multi-dimensional observers is considered. News spread is modeled
via multi-dimensional observers.
Keywords: Caratheodory structure, observer, news spread, Hausdorff

dimension.
MSC(2010): Primary: 54F45; Secondary: 37C45.

1. Introduction

Caratheodory was the first scientist who introduced the notion of dimension
as an invariant object in dynamical systems [3,9]. In this paper we extend the
notion of Caratheodory dimension for one dimensional observers. One dimen-
sional observer as an extension of random variables [1] has been introduced
as a mathematical object in dynamical systems in 2004 [7]. It’s extension as
a multi-dimensional observer has been considered from topological viewpoint
in 2009 [8]. A one dimensional observer of a non-empty set X is a mapping
µ : X → [0, 1], [7]. One must pay attention to this point that an observer is
a fuzzy set, but each fuzzy set is not an observer. In fact the closed interval
[0, 1] has essential role in the mathematical modeling of a physical observer,
and it can not change with an ordered lattice, because of some physical facts.
For more details see [8]. In the physical world, because of the rules of nature
we have systems which are sets with a special kind of relations. Hence in this
paper we assume that (X,T ) is a discrete semi-dynamical system i.e., X is a
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non-empty set and T : X → X is a mapping. If E is a subset of X, then the
relative probability measure of E with respect to an observer µ is the observer
mT

µ (E) : X → [0, 1] defined by

mT
µ (E)(x) = lim sup

n→∞

1

n

n−1∑
i=0

χE(T
i(x))µ(T i(x)).

If we assume that (X,B,m) is a probability space, T : (X,B,m) → (X,B,m)
is an ergodic map and E is a member of the σ-algebra B, and if the one
dimensional observer µ : X → [0, 1] is the characteristic function of X, then
Birkhoff ergodic theorem [10] implies that

mT
µ (E)(x) = lim supn→∞

1
n

∑n−1
i=0 χE(T

i(x))χX(T i(x)) = m(E) a.e., for all
x ∈ X. Thus the relative probability measure is an extension of the concept of
probability measures.

In the next section the notion of dimension from an observer viewpoint is
considered. We show that the dimension of an observer depends on it’s relative
probability measure and the metrics defined by two set functions on it’s ob-
servational caratheodory structure. By examples we introduce observers with
arbitrary positive dimensions. In section three conjugate relations are con-
sidered and we show that dimension is an invariant object under conjugate
relations. In section four we extend the notion of Caratheodory dimension to
multi-dimensional observers. We show that in this case Caratheodory dimen-
sion is a mapping. As an application we consider news spread by using of
multi-dimensional observers.

2. Observational dimension

In this section we assume that X is a nonempty set and µ : X → [0, 1] is
an observer. An observer λ : X → [0, 1] is called a subset of µ if λ(x) ≤ µ(x).
Suppose that F is a collection of subsets of µ, and f, g are two set functions from
F to [0,∞]. Then (F, f, g) is called an observational Caratheodory dimension
structure or an OC-structure on µ if f and g satisfy the following three axioms:

A.1 χ∅ ∈ F and f(χ∅) = g(χ∅) = 0. Moreover f(α) > 0 and g(α) > 0 if
α ∈ F and α ̸= χ∅.

A2. For given δ > 0 there is ϵ > 0 such that if g(α) ≤ ϵ then f(α) ≤ δ.
A3. For given ϵ > 0 there is a finite or countable collection G ⊆ F such that

µ ⊆ ∪α∈Gα and g(G) = sup{g(α) : α ∈ G} ≤ ϵ.

Let η be a subset of µ and let d ∈ R, ϵ > 0, c ∈ [0, 1] and x ∈ X be given.
Then we define Mc(η, d, ϵ)(x) = inf

G
{Σα∈Gh(α)(x)f(α)

d}, where h(α)(x) =

mT
µ (α

−1(c, 1])(x), G is a finite or countable subcollection of F that covers µ
and g(G) ≤ ϵ. We denote limϵ→0 Mc(η, d, ϵ)(x) by Mc(η, d)(x). This limit can
be infinite.
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The definition of Mc(η, d)(x) implies that Mc(χ∅, d)(x) = 0 for d > 0 and
Mc(η1, d)(x) ≤ Mc(η2, d)(x) if η1 ⊆ η2 ⊆ µ.

Theorem 2.1. If x ∈ X and c ∈ [0, 1], then Mc(∪∞
i=1ηi, d)(x) ≤ Σ∞

i=1Mc(ηi, d)(x),
when ηi ⊆ µ.

Proof. If for some i, Mc(ηi, d)(x) = ∞, then the proof is complete. Hence
suppose that for each i, Mc(ηi, d)(x) < ∞. Let δ > 0 and ϵ > 0 be given. For
given i there is ϵi ≤ ϵ such that

|Mc(ηi, d)(x)−Mc(ηi, d, ϵi)(x)| ≤
δ

2i+1
,

and there is a subcollection Gi = {αij} of F which covers ηi, g(Gi) ≤ ϵi, and

|Mc(ηi, d, ϵi)(x)− Σ∞
j=1h(αij)(x)f(αij)

d| ≤ δ

2i+1
.

Hence

|Mc(ηi, d)(x)− Σ∞
j=1h(αij)(x)f(αij)

d| ≤ δ

2i
.

We have G = {ηij} is a cover of η = ∪∞
i=1ηi and g(G) ≤ ϵ. Thus

Mc(η, d, ϵ)(x) ≤ Σi,jh(ηij)(x)f(ηij)
d ≤ δ +Σ∞

i=1Mc(ηi, d)(x).

Since ϵ and δ are arbitrary, we get Mc(∪∞
i=1ηi, d)(x) ≤ Σ∞

i=1Mc(ηi, d)(x). □

Theorem 2.2. Let η ⊆ µ, x ∈ X and c ∈ [0, 1]. Then there exists dc(x) ∈
[−∞,∞] such that

Mc(η, d)(x) =

{
∞ if d < dc(x),
0 if d > dc(x).

Proof. If Mc(η, d)(x) = 0 for all d, then dc(x) = −∞. If Mc(η, d)(x) = ∞ for
all d, then dc(x) = ∞.

We now prove that if 0 ≤ Mc(η, d)(x) < ∞ then Mc(η, r)(x) = 0 for all
r > d. Let ϵ > 0 be given then (A2) implies that: for δ = 1

n there is 0 < ϵn ≤ ϵ

such that if g(α) ≤ ϵn then f(α) ≤ 1
n . Thus there exists 0 < ϵ′n ≤ ϵn and Gϵ′n

such that

|Mc(η, d)(x)− Σα∈Gϵ′n
h(α)(x)f(α)d| ≤ 1

n
, and g(Gϵ′n

) ≤ ϵ′n.

Hence

Σα∈Gϵ′n
h(α)(x)f(α)d ≤ Mc(η, d)(x) +

1

n
.

Thus

Mc(η, r, ϵ)(x) ≤ Σα∈Gϵ′n
h(α)(x)f(α)r ≤ (

1

n
)r−d(Mc(η, d)(x) +

1

n
)

for all n ∈ N. Therefore, Mc(η, r, ϵ)(x) = 0 for all ϵ and hence Mc(η, r)(x) = 0.
Now we prove that if Mc(η, d)(x) = ∞, then Mc(η, r)(x) = ∞ for all r < d.

SinceMc(η, d)(x) = ∞, there exists a positive sequence ϵn such that ϵn → 0 and
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Mc(η, d, ϵn)(x) ≥ n. Put δ = 1
n , then there exists ϵ′n ≤ ϵn such that g(α) ≤ ϵ′n

implies that f(α) ≤ 1
n . Thus if g(G) ≤ ϵ′n, then Σα∈Gh(α)(x)f(α)

d ≥ n and

f(G) ≤ 1
n . Hence∑

α∈G

h(α)(x)f(α)r =
∑
α∈G

h(α)(x)f(α)df(α)r−d ≥ 1

n

r−d

n = n1+d−r,

and it follows that Mc(η, r, ϵ
′
n)(x) ≥ n1+d−r. Since n → ∞ implies ϵ′n → 0, the

previous inequality implies that Mc(η, r)(x) = ∞.
Now we show that dc(x) = inf{d : Mc(η, d)(x) = 0}. Noting that dc(x) is a

real number, because we prove that there exist r, s such that Mc(η, r)(x) = 0
and Mc(η, s)(x) = ∞. If d < dc(x) and Mc(η, d)(x) < ∞, then we prove that
Mc(η, r)(x) = 0 for all d < r < dc(x), and this is a contradiction because
dc(x) is the infimum. If Mc(η, dc)(x) = ∞, then Mc(η, d)(x) = ∞ for all
d < dc. If s > dc then Mc(η, d)(x) = ∞ for all dc(x) < d < s. Thus dc(x) =
inf{d : Mc(η, d)(x) = 0} ≥ s which is a contradiction. Hence Mc(η, d)(x) =
∞ for all d < dc(x). If 0 < Mc(η, d)(x) < ∞ for some d > dc(x), then
Mc(η, r)(x) = ∞ for all dc(x) < r < d. Thus dc(x) ≥ d which is a contradiction.
Thus Mc(η, d)(x) = 0 for all d > dc(x). □

One can also prove that dc(x) = sup{d : Mc(η, d)(x) = ∞}. dc(x) is called
the Caratheodory dimension of η at x and we also denote it by dimcη(x).

Theorem 2.3. If η ⊆ µ, x ∈ X , c1, c2 ∈ [0, 1] and c1 ≥ c2, then dimc2η(x) ≥
dimc1η(x).

Proof. For i ∈ {1, 2} we define ηi : X → [0, 1] by

ηi(t) =

{
η(t) if t > ci,
0 if t ≤ ci.

We have η1 ⊆ η2 ⊆ µ. Thus Mc(η1, d)(x) ≤ Mc(η2, d)(x) for all c ∈ [0, 1]. Thus
dimc2η(x) = dimc2η2(x) = inf{d : Mc2(η2, d)(x) = 0} = inf{d : Mc1(η2, d)(x)
= 0} ≥ inf{d : Mc1(η1, d)(x) = 0} = dimc1η1(x) = dimc1η(x). □

We assume that X and Y are two non-empty sets, and T : X → X,
U : Y → Y are two bijections. We say that T and U are conjugate if there is
a bijection W : Y → X such that W ◦ U = T ◦W .

Theorem 2.4. If E is a subset of X, then mU
µoW (W−1E)(W−1(x)) =

mT
µ (E)(x), for all x ∈ X.
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Proof. Let x ∈ X be given. Then

mU
µ◦W (W−1E)(W−1(x))

= lim sup
n→∞

1

n

n−1∑
i=0

χW−1(E)(U
i(W−1(x)))µ ◦W (U i(W−1(x)))

= lim sup
n→∞

1

n

n−1∑
i=0

χW−1(E)(W
−1 ◦ T i ◦W (W−1(x)))µ ◦W (W−1 ◦ T i ◦W (W−1(x)))

= lim sup
n→∞

1

n

n−1∑
i=0

χE(T
i(x))µ(T i(x)) = mT

µ (E)(x).

□

If (F, f, g) is an OC-structure on µ, then (FW = {α ◦W | α ∈ F}, fW , gW )
is an OC-structure on µ ◦ W , where fW : FW → [−∞,∞], and gW : FW →
[−∞,∞] are defined by fW (α◦W ) = f(α) and gW (α◦W ) = g(α). With these
assumptions and notations we have the next theorem.

Theorem 2.5. dimcη(x) = dimcη ◦W (W−1(x)), for all η ⊆ µ and x ∈ X.

Proof. Let d ∈ R, ϵ > 0, c ∈ [0, 1] and x ∈ X be given. Then
Mc(η ◦W,d, ϵ)(W−1(x)) = inf

GW
{Σα◦W∈GW hW (α ◦W )(W−1(x))(fW (α ◦W ))d},

where hW (α◦W )(W−1(x)) = mU
µ◦W ((α◦W )−1(c, 1])(W−1(x)), and gW (GW ) ≤

ϵ. Hence Theorem 2.4 implies that

Mc(η ◦W,d, ϵ)(W−1(x)) = inf
G
{Σα∈Gh(α)(x)f(α)

d} = Mc(η, d, ϵ)(x),

where h(α)(x) = mT
µ (α

−1(c, 1])(x), and g(G) ≤ ϵ. Thus dimcη(x) = dimcη ◦
W (W−1(x)), for all η ⊆ µ and x ∈ X. □

3. Examples

In the genesis population model [2], the number of population at time t is
P (t) = ekt where k is the birth rate minus the death rate, and it is a positive
number. This situation will be true only for a period of time such as [0, 1].
Hence let X = [0, 1] and let T : X → X be defined by T (t) = 1

ek
ekt. This

normal situation disturb by some natural facts such as illness, earthquake, and
so on. We can insert these facts via observers. Let µ : X → X be defined by
µ(t) = e−t. The mapping T has two fixed points in (0, 1] one of them is 1, and
we denote the other one by p, this fixed point is an attracting point (see Figure
1). Thus if E is an interval as a subset of [0, 1], then

mT
µ (E)(x) =

{
e−p if p ∈ E,
0 otherwise.
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Figure 1. p is an attracting fixed point of T .

Example 3.1. For given n ∈ N , and i ∈ {1, 2, . . . , n} let λn,i : X → X be
defined by

λn,i(t) =

{
µ(t)− µ(t)

n if t ∈ [ i−1
n , i

n ],
0 otherwise.

We take F = {χ∅, µ, λn,i : n ∈ N and i ∈ {1, 2, . . . , n}} and we define f = g :
F → [0,∞] by

f(α) =

 1 if α = µ,
0 if α = χ∅,
1
n if α = λn,i.

Then we have

Mc(µ, d,
1

n
)(x) ∼=

{
e−p

nd if c ≤ p,
0 if c > p.

Thus

dimcµ(x) =

{
0 if c ≤ p,
−∞ if c > p.

Example 3.2. For given n ∈ N, let λn : X → X be defined by

λn(t) =

{
µ(t)− µ(t)

n if t ∈ [ 1n , 1],
0 otherwise.

If F = {χ∅, µ, λn : n ∈ N} and if f = g : F → [0,∞] is the mapping

f(α) =

 1 if α = µ,
0 if α = χ∅,
1
ns if α = λn,

where s is a constant positive number, then for large enough n

Mc(µ, d,
1

n
)(x) ∼=

{
ne−p

nsd if c ≤ p,
0 if c > p.
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Thus

dimcµ(x) =

{
1
s if c ≤ p.
−∞ if c > p.

4. Caratheodory dimension for multi-dimensional observers

We assume that X is a non-empty set, I is an index set and∏
i∈I

[0, 1] = {g : I → [0, 1] : g is a mapping}.

A mapping µ : X →
∏
i∈I

[0, 1] is called a multi-dimensional observer [8].

Information systems are examples of multi-dimensional observers. We know
that a triple (X, I, F ) is called an information system ifX, and I are non-empty
finite sets, and F = {fi | fi is a map on X, and i ∈ I} [5,11]. The finiteness of
X implies to the finiteness of the image of each fi, so it corresponds to a finite
subset of the interval [0, 1] via a one to one mapping gi. Thus an information
system (X, I, F ) can be denoted by a finite dimensional observer

µ : X →
∏
i∈I

[0, 1]

defined by

µ(x) = (g1(f1(x)), g2(f2(x)), . . . , g|I|(f|I|(x)),

where X and I are finite sets, and x ∈ X.
Fuzzy information systems are other examples of multi-dimensional observers.
In fact in a fuzzy information system each fi allows to take it’s values in the
interval [0, 1] [6]. Hence it is a multi-dimensional observer.
Stochastic (or random) processes on finite spaces are other examples of multi-
dimensional observers. A stochastic process (Amigo, Kennel 2007) on a finite
space X is a sequence (Sn), where Sn is a random variable on X with values in
A = {a1, . . . , a|A|}, n ∈ I, and I is N or N0 = N

∪
{0} or Z. If we correspond the

image of each Sn with a finite subset of [0, 1] via a one to one mapping gn, then

(Sn) can be considered as a multi-dimensional observer µ : X →
∏
i∈I

[0, 1] defined

by µ = (gn ◦ Sn), where I is N or N0 = N
∪
{0} or Z. A multi-dimensional

observer µ of X can be denoted by µ =
∏
i∈I

µi, where each µi : X → [0, 1] is a

one dimensional observer defined by µi(x) = µ(x)(i).
Now we assume that E is a subset of X, and T : X → X is a mapping. The

relative probability measure of E with respect to a multi-dimensional observer
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µ is the multi-dimensional observer mT
µ (E) : X →

∏
i∈I

[0, 1] defined by

mT
µ (E)(x) = lim sup

n→∞

1

n

n−1∑
i=0

χE(T
i(x))µ(T i(x)).

Let µ =
∏
i∈I

µi and η =
∏
i∈I

ηi be two multi-dimensional observers of X. Then

we say that η ⊆ µ if ηi(x) ≤ µi(x) for all x ∈ X and i ∈ I. η∩µ and η∪µ are two
multi-dimensional observers of X defined by (η ∩ µ)i(x) = min{ηi(x), µi(x)}
and (η ∪ µ)i(x) = max{ηi(x), µi(x)}.

Now let F be a collection of subsets of µ, and let f, g be two set functions from
F to [0,∞]. We say that (F, f, g) is an observational Caratheodory dimension
structure or OC-structure on multi-dimensional observer µ if f and g satisfy
the following three axioms:

(AM1)
∏
i∈I

χ∅ ∈ F and f(
∏
i∈I

χ∅) = g(
∏
i∈I

χ∅) = 0. Moreover, f(α) > 0 and

g(α) > 0 if α ∈ F and α ̸=
∏
i∈I

χ∅.

(AM2) For given δ > 0 there is ϵ > 0 such that if g(α) ≤ ϵ then f(α) ≤ δ.
(AM3) For given ϵ > 0 there is a finite or countable collection G ⊆ F such

that µ ⊆ ∪α∈Gα and g(G) = sup{g(α) : α ∈ G} ≤ ϵ.

Now such as section 2 we assume that η is a subset of µ, d ∈ R, ϵ > 0, c ∈ [0, 1]
and x ∈ X. Then we define Mc(η, d, ϵ)(x) = inf

G
{Σα∈Gh(α)(x)f(α)

d}, where
h(α)(x) = mT

µ (α
−1(

∏
i∈I(c, 1]))(x), G is a finite or countable subcollection

of F that covers µ and g(G) ≤ ϵ. We also denote limϵ→0 Mc(η, d, ϵ)(x) by
Mc(η, d)(x).

Theorem 4.1. Let η ⊆ µ, x ∈ X, and c ∈ [0, 1] be given. Then there exists
dc(x) : I → [−∞,∞] such that

Mc(η, d)(x)(i) =

{
∞ if d < dc(x)(i),
0 if d > dc(x)(i).

Proof. Since Mc(η, d)(x) is a multi-dimensional observer, then we can denote

it by
∏
i∈I

Mc(ηi, d)(x). If we apply Theorem 2.2 for Mc(ηi, d)(x), then we find

dc(x)(i) ∈ [−∞,∞] such that

Mc(ηi, d)(x) =

{
∞ if d < dc(x)(i),
0 if d > dc(x)(i).

Thus the mapping dc(x) : I → [−∞,∞], i 7→ dc(x)(i) implies the validity of
the theorem. □
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We denote the mapping dc(x) by dimcη(x) and we call it the Caratheodory
dimension of η at x.

5. Modelling of news spread

News can spread in a society by different means such as internet, television,
magazine, mobile, radio and so on. We assume that X is the set of communi-
cation means, and λ : X → [0, 1] is a mapping such that the probability that
some news transforms in a small time interval ∆t by a means x ∈ X is equal to
λ(x)∆t+O((∆t)2). Let N(t) be the number of population of a society at time
t (we assume that there is a positive constant M such that N(t) ≤ M for all
t ∈ R). We denote the expected number of population at time t who receive a
special news via a means x ∈ X by E(N(t))(x). Hence

E(N(t))(x) = ΣM
n=0np

x
n(t),

where pxn(t) is the probability that exactly n individuals receive that news at

time t via the means x. If I ⊆ R, then we define µ : X →
∏
t∈I

[0, 1] by µ(x) =∏
t∈I

1

M
E(N(t))(x). The observer µ determines the news spread by different

communication means. To determine µ we first determine the evolution of
pxn(t). The probability law implies

pxn(t+∆t) =

 (n− 1)pxn−1(t)λ(x)∆t+ pxn(t) +O((∆t)2) if 1 < n ≤ M,
px1(t) + λ(x)∆t if n = 1,
px0(t) + (1− λ(x))∆t if n = 0.

Letting ∆t → 0, we deduce the following system of differential equations

dpxn(t)

dt
=

 (n− 1)λ(x)pxn−1(t) if 1 < n ≤ M,
λ(x) if n = 1,
(1− λ(x)) if n = 0.

Hence

pxn(t) =


(n− 1)λ(x)n tn

n! + (n− 1)λ(x)n−1px1(0)
tn−1

(n−1)! + · · ·+
(n− 1)λ(x)pxn−1(0)t+ pxn(0) if 1< n ≤ M,
λ(x)t+ px1(0) if n = 1,
(1− λ(x))t+ px0(0) if n = 0.

Thus we can determine E(N(t))(x)=
M∑
n=0

npxn(t) and µ(x) =
∏
t∈I

1

M
E(N(t))(x).

Example 5.1. Suppose X = {x1 = Television, x2 = Radio, x3 = Magazine,
x4 = Internet}, I ⊆ R, M = 20, pxi

n (0) = n
101 , and λ(xi) = 1

i+100 for i ∈
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{1, 2, 3, 4}. If E ⊆ X and T : X → X is the mapping

T (xi) =

 xi+3 if i = 1,
xi−3 if i = 4,
xi if i ∈ {2, 3},

then

mT
µ (E)(x1) =

 µ(x1) if x1, x4 ∈ E,
1
2µ(x1) if (x1 ∈ E, and x4 /∈ E) or (x4 ∈ E, and x1 /∈ E),∏

t∈I 0 otherwise,

mT
µ (E)(x4) =

 µ(x4) if x1, x4 ∈ E,
1
2µ(x4) if (x1 ∈ E, and x4 /∈ E) or (x4 ∈ E, and x1 /∈ E),∏

t∈I 0 otherwise,

and for i ∈ {2, 3}

mT
µ (E)(xi) =

{
µ(xi) if xi ∈ E,∏

t∈I 0 otherwise.

Let ηn = (1− 1
n )µ, and F = {

∏
i∈I χ∅, µ, ηn : n ∈ N}. If α ∈ F , then we define

||α|| = max{||α(xi)|| | i = 1, 2, 3, 4}. We also define f = g : F → [−∞,∞] by

f(α) =


1

n||µ||+1 if α = ηn,
1 if α = µ,
0 if α =

∏
i∈I χ∅.

If d ∈ R, n ∈ N , and c ∈ [0, 1], then

Mc(µ, d,
1

n
)(x1) ∼=

n
n(||µ||+1)dµ(x1) if µ(x1) > µ(c), and µ(x4) > µ(c),

n
2n(||µ||+1)dµ(x1) if (µ(x1) > µ(c), and µ(x4) ≤ µ(c)) or

(µ(x4) > µ(c), and µ(x1) ≤ µ(c)),∏
t∈I 0 otherwise,

Mc(µ, d,
1

n
)(x4) ∼=

n
n(||µ||+1)dµ(x4) if µ(x1) > µ(c), and µ(x4) > µ(c),

n
2n(||µ||+1)dµ(x4) if (µ(x1) > µ(c), and µ(x4) ≤ µ(c)) or

(µ(x4) > µ(c), and µ(x1) ≤ µ(c)),∏
t∈I 0 otherwise,

and for i ∈ {2, 3}

Mc(µ, d,
1

n
)(xi) ∼=

{
n

n(||µ||+1)dµ(xi) if µ(xi) > µ(c),∏
t∈I 0 otherwise.

Thus

dimcµ(x1)(i) =

{ 1
||µ||+1 if µ(x1)(i) ̸= 0 and µ(x1) > µ(c) or µ(x4) > µ(c),

−∞ if µ(x1)(i) = 0 or (µ(x1) ≤ µ(c), and µ(x4) ≤ µ(c)),
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dimcµ(x4)(i) =

{ 1
||µ||+1

if µ(x4)(i) ̸= 0 and µ(x1) > µ(c) or µ(x4) > µ(c),

−∞ if µ(x4)(i) = 0 or (µ(x1) ≤ µ(c) and µ(x4) ≤ µ(c)),

and for j ∈ {2, 3}

dimcµ(xj)(i) =

{ 1
||µ||+1

if µ(xj)(i) ̸= 0 and µ(xj) > µ(c),

−∞ otherwise.

6. Conclusion

We assume that µ is a multi-dimensional observer of X, and F is a µ-
topology [8] i.e. F is a collection of subsets of µ with the following conditions:

(i) µ,
∏
i∈I

χ∅ ∈ F ;

(ii) λ ∩ η ∈ F whenever λ, η ∈ F ;

(iii)
∪
a∈J

λa ∈ F whenever λa ∈ F .

If T : X → X is a mapping and c ∈ [0, 1], then we define f = g : F → [0,∞] by
f(α) = ||mT

α(E)||, where E = µ−1
∏

i∈I(c, 1]. If (F, f, g) is an OC-structure on
multi-dimensional observer µ, x ∈ X, and η ⊆ µ, then dimcµ(x) is called the
Hausdorff dimension of η at x. This dimension is an extension of the notion
of Hausdorff dimension for a bounded subset X of the Euclidean space Rn.
To see this we assume that B is the σ-algebra generated by open subsets of
Rn restricted to X and m is the Lebesgue measure on X. We assume that
T : (X,B, 1

m(X)m) → (X,B, 1
m(X)m) is an ergodic map, and that the one

dimensional observer µ : X → [0, 1] is the characteristic function of X. If
F = {χU : U is open in X}, then simple calculations imply that dimcµ(x) is
the Hausdorff dimension of X, for all x ∈ X and c ∈ [0, 1). Because in this case
mT

χU
(E) = m(U) a.e., and k1diameter(U) ≤ m(U) ≤ k2diameter(U), where k1

and k2 are two positive constants.
Consideration of Hausdorff dimension [4] for observers can be a topic for

further research.
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