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Abstract. Let L be a commutative subspace lattice generated by fi-
nite many commuting independent nests on a complex separable Hilbert
space H with dim H ≥ 3, AlgL the CSL algebra associated with L and

M be an algebra containing AlgL . This article is aimed at describing
the form of additive mapppings F1, F2, G1, G2 : AlgL −→ M satisfying
functional identity F1(X)Y + F2(Y )X +XG2(Y ) + Y G1(X) = 0 for all
X,Y ∈ AlgL . As an application generalized inner biderivations and com-

muting additive mappings are determined.
Keywords: Functional identity, CSL algebra, generalized inner bideriva-
tion, commuting mapping.
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1. Introduction

A functional identity (FI) on an algebra A is, roughly speaking, an identity
holding in A which involves some mappings on A . The involved mappings can
be looked on as “functions”. If the identity, besides mappings (or functions),
also includes some fixed elements of A , then one has the notion of generalized
functional identity (GFI). The usual objective in studying (generalized) func-
tional identities is to “solve” these functions or, in case this is not possible, to
determine the structure of the algebra admitting the given FI and to obtain
information concerning the intrinsic structure of the algebra. That such identi-
ties extend the notions of polynomial identity (PI) and generalized polynomial
identity (GPI) is clear, but it seems that, especially from the perspective of
possible applications, the theory of FI’s shows its strength in the non-PI case
(a similar remark applies to the GFI theory versus GPI’s). In certain classes of
algebras, FIs have only trivial solutions, that is, solutions which do not depend
on some structural properties of the algebra but are merely consequences of
algebra axioms and formal calculations. We call them the standard solutions.
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In case there exists a non-standard solution, it reflects structural properties of
the algebra. The first functional identities were introduced in the early 90’s by
Brešar as an attempt to unify several results on centralizing mappings. Then
the theory quickly developed through a decade until reaching an ultimate stage
that covers and unifies a number of results previously obtained. It turned out to
be the right tool in proving several conjectures formulated by Herstein in 1961
concerning the description of Lie-type mappings in associative algebras. For a
clear and full account on the development of the theory of functional identities
and their applications, we refer the reader to the technical literature [5].

Let A be a nonempty subset of a unital algebra B with center Z (B). Let
F1, F2, G1, G2 : A −→ B be mappings satisfying the identity

(1.1) F1(X)Y + F2(Y )X +XG2(Y ) + Y G1(X) = 0 for all X,Y ∈ A .

Identities of this kind are called functional identities of degree 2, because they
involve two variables X and Y . This is one of the most basic functional iden-
tities, which were widely studied in (semi-)prime algebras. An ordinary task
in the theory of functional identities is to characterize set-theoretic mappings
satisfying certain identities. Therefore, the above mappings F1, F2, G1, G2 are
reasonably considered as unknowns. It is not difficult to check that mappings
of the form

(1.2)

F1(X) = XQ1 + Γ1(X),

F2(X) = XQ2 + Γ2(X),

G1(X) = −Q2X − Γ1(X),

G2(X) = −Q1X − Γ2(X),

where Q1, Q2 ∈ B,Γ1,Γ2 : A −→ Z (B) are exactly a solution of (1.1). Ac-
cording to [5], the solution of the form (1.2) is called a standard solution of
(1.1). It was Brešar who initiated the study of functional identity of type (1.1)
in the setting of prime algebras [4]. Let I be an ideal of a prime algebra
A with extended centroid C . If the mappings F1, F2, G1, G2 : I −→ A are
additive modulo C , then (1.1) has only standard solution (1.2). Using this
result he characterized the form of generalized inner biderivations of prime al-
gebras [4, Theorem 4.7]. Zhang et al. [15] investigated the functional identity
of type (1.1) in nest algebras and discovered that the functional identity (1.1)
has only the standard solution in a certain class of nest algebras. It should be
pointed out that the general theory of functional identities, which was elabo-
rated in [5], can not be applicable to the background of triangular algebras and
operator algebras, since these algebras may not be d-free. It’s not so bad, and
it’s not the end. Beidar, Brešar and Chebotar’s joint work [3] puts the matter in
a new light. They considered certain functional identities on upper triangular
matrix algebras. In [7], Cheung independently considered the question of when
all commuting mappings of a triangular algebra take the so-called “proper”
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form. Later, several problems on certain types of mappings on triangular rings
and algebras have been studied, where some special examples of functional
identities appear. In a recent article [9], Eremita studied the functional iden-
tity of type (1.1) in triangular algebras. He was in an effort to describe the
form of additive mappings F1, F2, G1, G2 : R −→ R satisfying (1.1) when a tri-
angular ring R satisfies some additional conditions, see [9, Theorem 2.2]. And
then, Eremita continued to generalize this result in a surprising manner [10].
He used the notion of the maximal left ring of quotients and described the form
of mappings F1, F2, G1, G2 : R −→ R satisfying (1.1) for a much wider class of
triangular rings.

Motivated by the afore-mentioned results, we are concerned with CSL alge-
bras in this article. As a matter of fact, CSL algebras are exactly the reflexive
algebras with commutative invariant projection lattice, which were introduced
by Arveson [2] and have been extensively studied since then(see [1,6,11,13,14],
etc). Most of existing work are contributed to linear mappings of CSL algebras,
such as derivations, higher derivations, Jordan derivations, Lie derivations, iso-
morphisms, Jordan isomorphisms et al. We will study the functional identity
of type (1.1) in a CSL algebra AlgL . The main purpose of this paper is to
determine the form of mappings F1, F2, G1, G2 : AlgL −→ M , where M is an
algebra containing AlgL .

We now fix some notation and terminology. Let H be a complex separable
Hilbert space, and B(H) the algebra of all bounded linear operators on H.
The terms operator and projection on H will mean “bounded linear mapping
of H into itself” and “self-adjoint idempotent operator on H”, respectively. A
subspace lattice L of H is a family of orthogonal projections on B(H) which
contains the zero operator {0} and the identity operator I, and is closed under
the usual lattice operations ∨ and ∧. A nest is a totally ordered subspace
lattice; a commutative subspace lattice (CSL in brief) is a subspace lattice in
which all projections commute pairwise. Given a subspace lattice L of H, the
corresponding subspce lattice algebra Alg L is defined to be the collection of
operators in B(H) which leave invariant each element in L , that is,

Alg L = {A ∈ B(H) : PAP = AP for all P ∈ L }.
Alg L is called a CSL algebra if the subspace lattice L is a CSL; Alg L is called
a nest algebra if the subspace lattice L is a nest [8]. Dually, for a subalgebra
A of B(H), we define the invariant subspace lattice LatA to be the collection
of orthogonal projections which are left invariant by each operator in A . An
algebra A is called reflexive if Alg LatA = A ; a lattice is said to be reflexive
if Lat Alg L = L . Each CSL is reflexive [2].

Let L be a nest and P ∈ L , we let P+ = inf{Q ∈ L : Q > P} and P− =
sup{Q ∈ L : Q < P}. If P,Q ∈ L with Q < P , then the projection E = P−Q
is called an interval from L . A collection of nests {L1,L2, . . . ,Ln} is said
to be independent if the product

∏n
i Ei ̸= 0 whenever Ei is an interval from
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Li . We say that L is an independent finite-width CSL if L is generated by
finitely many commuting independent nests. By [12, Lemma 1.1], we know that
the commutant of Alg L is the von Neumann algebra generated by reducing
projections of Alg L in L . It follows that the commutant of Alg L is CI if
L is an independent finite-width CSL.

2. Functional identities of degree 2 in CSL algebras

Let L be a commutative subspace lattice generated by independent nests.
We assume that L is nontrivial in the present study. Let P ∈ L be a
nontrivial projection. Denote A11 = P (AlgL )P , A12 = P (AlgL )P⊥ and
A22 = P⊥(AlgL )P⊥. Then AlgL = A11 + A12 + A22(see [14]).

The following lemmas will be used in the sequel.

Lemma 2.1 ( [14, Lemma 2.3]). The commutant of A11 in B(PH) and the
commutant of A22 in B(P⊥H) are CP and CP⊥, respectively.

Lemma 2.2 ( [14, Lemma 2.4]). Let X ∈ B(H). We have (a) If XA12 = 0
for all A12 ∈ A12, then XP = 0; (b) If A12X = 0 for all A12 ∈ A12, then
P⊥X = 0.

Lemma 2.3. Let L be an independent finite-width CSL on a complex separable
Hilbert space H with dim H ≥ 3. Suppose that f, g : P (AlgL )P⊥ → C are
arbitrary maps such that

(2.1) f(PXP⊥)PY P⊥ + g(PY P⊥)PXP⊥ = 0

for all X,Y ∈ AlgL . Then f = g = 0.

Proof. By (2.1), we see that

f(PXP⊥)PZPY P⊥ + g(PY P⊥)PZPXP⊥ = 0

and
f(PXP⊥)PZPY P⊥ + g(PZPY P⊥)PXP⊥ = 0

for all X,Y, Z ∈ AlgL . Comparing the above two relations, we obtain

g(PY P⊥)PZPXP⊥ − g(PZPY P⊥)PXP⊥ = 0

for all X,Y, Z ∈ AlgL . Hence by Lemma 2.2, one sees that

(2.2) g(PY P⊥)PZP − g(PZPY P⊥)P = 0

for all Y, Z ∈ AlgL . Likewise, by (2.1), we can get

f(PXP⊥)PY P⊥ZP⊥ + g(PY P⊥)PXP⊥ZP⊥ = 0

and
f(PXP⊥)PY P⊥ZP⊥ + g(PY P⊥ZP⊥)PXP⊥ = 0

for all X,Y, Z ∈ AlgL . It follows that

g(PY P⊥)PXP⊥ZP⊥ − g(PY P⊥ZP⊥)PXP⊥ = 0
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for all X,Y, Z ∈ AlgL . Applying Lemma 2.2 again, we obtain

(2.3) g(PY P⊥)P⊥ZP⊥ − g(PY P⊥ZP⊥)P⊥ = 0

for all Y, Z ∈ AlgL .
Since dimH ≥ 3, we have dimP⊥H ≥ 2 or dimPH ≥ 2. Suppose that

dimP⊥H ≥ 2. If g(PY P⊥) ̸= 0 for some Y ∈ AlgL , then by equation (2.3),
P⊥ZP⊥ ∈ CP⊥ for all Z ∈ AlgL , and so the commutant of A22 in B(P⊥H) is
B(P⊥H) ̸= CP⊥, which contradicts the result of Lemma 2.1. Hence g(PY P⊥)
= 0 for all Y ∈ AlgL . Suppose that dimPH ≥ 2. If g(PY P⊥) ̸= 0 for some
Y ∈ AlgL , then by equation (2.2), PZP ∈ CP for all Z ∈ AlgL , and so the
commutant of A11 in B(PH) is B(PH) ̸= CP , which is also a contradiction.
So g(PY P⊥) = 0 for all Y ∈ AlgL . From (2.1) we know that f = 0 as
well. □

Let A be an arbitrary subalgebra of M . A map F : A → M is said to
be additive modulo CI, if F (X + Y ) − F (X) − F (Y ) ∈ CI for all X,Y ∈
A . For each map F : A → M we define a map ∆n,F : A n → M by
∆n,F (X1, . . . , Xn) := F (X1 + · · · + Xn) − F (X1) − · · · − F (Xn). Obviously,
∆n,F ⊆ CI, if F is additive modulo CI. In order to prove our main theorem
we need the following result.

Lemma 2.4. Let L be an independent finite-width CSL on a complex separable
Hilbert space H with dim H ≥ 3, and M an algebra containing AlgL . Suppose
that maps F1, F2, G1, G2 : AlgL → M are additive modulo CI such that

F1(X)Y + F2(Y )X +XG2(Y ) + Y G1(X) = 0

for all X,Y ∈ AlgL . If we have

(2.4)
P⊥F1(PXP

⊥)P⊥ − PG1(PXP
⊥)P ∈ CI,

P⊥F2(PXP
⊥)P⊥ − PG2(PXP

⊥)P ∈ CI,
then there exist U1, U2, Q1, Q2, R1, R2 ∈ M and maps Γ1,Γ2 : AlgL → CI
such that U1 + U2 = R1 +R2 ∈ CI, Ui[X,Y ] = [X,Y ]Ri, i = 1, 2, and

(2.5)

F1(X) = XQ1 − U1X + Γ1(X),

F2(X) = XQ2 − U2X + Γ2(X),

G1(X) = XR2 −Q2X − Γ1(X),

G2(X) = XR1 −Q1X − Γ2(X)

for all X,Y ∈ AlgL .

Proof. Taking X = I or Y = I into (1.1) yields

(2.6)
F1(X) +G1(X) = −F2(I)X −XG2(I),

F2(X) +G2(X) = −F1(I)X −XG1(I)

for all X ∈ AlgL .
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Setting Y = P in (1.1) and multiplying by P⊥ from the left hand side, we
obtain

(2.7) P⊥F1(X)P = −P⊥F2(P )X − P⊥XG2(P )

for all X ∈ AlgL . Analogously, we get

(2.8) P⊥F2(X)P = −P⊥F1(P )X − P⊥XG1(P ),

(2.9) P⊥G1(X)P = −F2(P
⊥)XP −XG2(P

⊥)P,

(2.10) P⊥G2(X)P = −F1(P
⊥)XP −XG1(P

⊥)P,

(2.11) PF1(X)P⊥ = −PF2(P
⊥)X − PXG2(P

⊥),

(2.12) PF2(X)P⊥ = −PF1(P
⊥)X − PXG1(P

⊥),

(2.13) PG1(X)P⊥ = −F2(P )XP
⊥ −XG2(P )P

⊥,

(2.14) PG2(X)P⊥ = −F1(P )XP
⊥ −XG1(P )P

⊥

for all X ∈ AlgL .
Next we will consider the following different cases of (1.1) for the proof of

the lemma.
Case 1. Replacing X by PXP and Y by P⊥Y P⊥ in (1.1) gives

(2.15)

F1(PXP )P⊥Y P⊥+F2(P
⊥Y P⊥)PXP+PXPG2(P

⊥Y P⊥)+P⊥Y P⊥G1(PXP ) = 0

for all X,Y ∈ AlgL . Multiplying the above relation by P⊥ from the left hand
side, we obtain

P⊥F1(PXP )P
⊥Y P⊥ + P⊥F2(P

⊥Y P⊥)PXP + P⊥Y P⊥G1(PXP ) = 0,

and consequently

(2.16) P⊥F1(PXP )P
⊥Y P⊥ + P⊥Y P⊥G1(PXP )P

⊥ = 0

for all X,Y ∈ AlgL .
Similarly, multiplying (2.15) by P from the left hand side gives

PF1(PXP )P
⊥Y P⊥ + PF2(P

⊥Y P⊥)PXP + PXPG2(P
⊥Y P⊥) = 0,

from which we can get

(2.17) PF2(P
⊥Y P⊥)PXP + PXPG2(P

⊥Y P⊥)P = 0

for all X,Y ∈ AlgL .
Case 2. Replacing X by P⊥XP⊥ and Y by PY P , we obtain

(2.18)

F1(P
⊥XP⊥)PY P+F2(PY P )P⊥XP⊥+P⊥XP⊥G2(PY P )+PY PG1(P

⊥XP⊥) = 0
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for all X,Y ∈ AlgL . Multiplying the above relation by P⊥ from the left hand
side gives

P⊥F1(P
⊥XP⊥)PY P + P⊥F2(PY P )P

⊥XP⊥ + P⊥XP⊥G2(PY P ) = 0,

and then we have

(2.19) P⊥F2(PY P )P
⊥XP⊥ + P⊥XP⊥G2(PY P )P

⊥ = 0

for all X,Y ∈ AlgL .
Similarly, multiplying (2.18) by P from the left hand side gives

PF1(P
⊥XP⊥)PY P + PF2(PY P )P

⊥XP⊥ + PY PG1(P
⊥XP⊥) = 0,

and hence

(2.20) PF1(P
⊥XP⊥)PY P + PY PG1(P

⊥XP⊥)P = 0

for all X,Y ∈ AlgL .

Remark 2.5. Now in view of (2.16), (2.17), (2.19), (2.20) and Lemma 2.1, we
arrive at

(2.21)

P⊥F1(PXP )P
⊥ = −P⊥G1(PXP )P

⊥ ∈ CP⊥

PF2(P
⊥XP⊥)P = −PG2(P

⊥XP⊥)P ∈ CP

P⊥F2(PXP )P
⊥ = −P⊥G2(PXP )P

⊥ ∈ CP⊥

PF1(P
⊥XP⊥)P = −PG1(P

⊥XP⊥)P ∈ CP

for all X ∈ AlgL . We might as well use CP⊥G1(PXP )P⊥P⊥ to denote

P⊥G1(PXP )P
⊥, and so on.

Case 3. Replacing X by PXP and Y by PY P⊥ in (1.1) yields

F1(PXP )PY P
⊥+F2(PY P

⊥)PXP+PXPG2(PY P
⊥)+PY P⊥G1(PXP ) = 0,

which further yields

(2.22) P⊥F1(PXP )PY P
⊥ = P⊥F2(PY P

⊥)PXP = 0,

(2.23) PF2(PY P
⊥)PXP + PXPG2(PY P

⊥)P + PY P⊥G1(PXP )P = 0

and

(2.24) PF1(PXP )PY P
⊥ + PXPG2(PY P

⊥)P⊥ + PY P⊥G1(PXP )P
⊥ = 0

for all X,Y ∈ AlgL .
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Furthermore, putting (2.14) into the last relation and applying (2.21), we
can compute that

0 =PF1(PXP )PY P
⊥ + PXP (−F1(P )PY P

⊥ − PY P⊥G1(P )P
⊥)

+ PY P⊥G1(PXP )P
⊥

=PF1(PXP )PY P
⊥ − PXPF1(P )PY P

⊥ − PXPY P⊥G1(P )P
⊥

+ PY P⊥G1(PXP )P
⊥

=(PF1(PXP )P − PXPF1(P )P − CP⊥G1(P )P⊥PXP

+ CP⊥G1(PXP )P⊥P )PY P⊥

for all X,Y ∈ AlgL . By Lemma 2.2 we immediately get

(2.25) PF1(PXP )P = PXPF1(P )P +CP⊥G1(P )P⊥PXP −CP⊥G1(PXP )P⊥P

for all X ∈ AlgL . Analogously, we obtain

(2.26) PF2(PXP )P = PXPF2(P )P +CP⊥G2(P )P⊥PXP −CP⊥G2(PXP )P⊥P

for all X ∈ AlgL .
Case 4. Replacing X by PXP⊥ and Y by PY P in (1.1) gives

F1(PXP
⊥)PY P+F2(PY P )PXP

⊥+PXP⊥G2(PY P )+PY PG1(PXP
⊥) = 0

for all X,Y ∈ AlgL . It follows that

(2.27) P⊥F2(PY P )PXP
⊥ = 0, P⊥F1(PXP

⊥)PY P = 0

and

(2.28) PF1(PXP
⊥)PY P + PXP⊥G2(PY P )P + PY PG1(PXP

⊥)P = 0

for all X,Y ∈ AlgL .
Case 5. Replacing X by PXP⊥ and Y by P⊥Y P⊥ in (1.1), we obtain

0 =F1(PXP
⊥)P⊥Y P⊥ + F2(P

⊥Y P⊥)PXP⊥

+ PXP⊥G2(P
⊥Y P⊥) + P⊥Y P⊥G1(PXP

⊥)

for all X,Y ∈ AlgL . Thus we have

(2.29) P⊥Y P⊥G1(PXP
⊥)P = 0, PXP⊥G2(P

⊥Y P⊥)P = 0

and

P⊥F1(PXP
⊥)P⊥Y P⊥+P⊥F2(P

⊥Y P⊥)PXP⊥+P⊥Y P⊥G1(PXP
⊥)P⊥ = 0

for all X,Y ∈ AlgL .
Case 6. Replacing X by P⊥XP⊥ and Y by PY P⊥ in (1.1) leads to

0 =F1(P
⊥XP⊥)PY P⊥ + F2(PY P

⊥)P⊥XP⊥

+ P⊥XP⊥G2(PY P
⊥) + PY P⊥G1(P

⊥XP⊥),
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which implies that

(2.30) PY P⊥G1(P
⊥XP⊥)P = 0, P⊥XP⊥G2(PY P

⊥)P = 0,

(2.31)
P⊥F1(P

⊥XP⊥)PY P⊥+P⊥F2(PY P
⊥)P⊥XP⊥+P⊥XP⊥G2(PY P

⊥)P⊥ = 0

and
(2.32)
PF1(P

⊥XP⊥)PY P⊥ + PF2(PY P
⊥)P⊥XP⊥ + PY P⊥G1(P

⊥XP⊥)P⊥ = 0

for all X,Y ∈ AlgL .
Taking X = PY P⊥ into (2.12), we can further get

(2.33) PF2(PY P
⊥)P⊥ = −PF1(P

⊥)PY P⊥ − PY P⊥G1(P
⊥)

for all Y ∈ AlgL . Combining (2.32) with (2.33) gives

0 =PF1(P
⊥XP⊥)PY P⊥ + (−PF1(P

⊥)PY P⊥ − PY P⊥G1(P
⊥))P⊥XP⊥

+ PY P⊥G1(P
⊥XP⊥)P⊥

=PY P⊥(CPF1(P⊥XP⊥)PP
⊥ − CPF1(P⊥)PP

⊥XP⊥ − P⊥G1(P
⊥)P⊥XP⊥

+ P⊥G1(P
⊥XP⊥)P⊥)

for all X,Y ∈ AlgL . It follows from Lemma 2.2 that

(2.34)
P⊥G1(P

⊥XP⊥)P⊥ =− CPF1(P⊥XP⊥)PP
⊥ + CPF1(P⊥)PP

⊥XP⊥

+ P⊥G1(P
⊥)P⊥XP⊥

for all X ∈ AlgL .
In addition, taking into account (2.22), (2.27), (2.29) and (2.30) and applying

Lemma 2.2 again yields

(2.35)
P⊥F1(PXP )P = 0, P⊥F2(PXP )P = 0,

P⊥G2(P
⊥XP⊥)P = 0, P⊥G1(P

⊥XP⊥)P = 0

for all X ∈ AlgL .
Case 7. Replacing X by P⊥XP⊥ and Y by P⊥Y P⊥ in (1.1) gives

0 =F1(P
⊥XP⊥)P⊥Y P⊥ + F2(P

⊥Y P⊥)P⊥XP⊥

+ P⊥XP⊥G2(P
⊥Y P⊥) + P⊥Y P⊥G1(P

⊥XP⊥)

for all X,Y ∈ AlgL . Taking Y = P⊥ into the above equality yields
(2.36)
F1(P

⊥XP⊥)P⊥+F2(P
⊥)P⊥XP⊥+P⊥XP⊥G2(P

⊥)+P⊥G1(P
⊥XP⊥) = 0,

which leads to

0 =P⊥F1(P
⊥XP⊥)P⊥ + P⊥F2(P

⊥)P⊥XP⊥

+ P⊥XP⊥G2(P
⊥)P⊥ + P⊥G1(P

⊥XP⊥)P⊥
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for all X ∈ AlgL . Using (2.34), we have

(2.37)

P⊥F1(P
⊥XP⊥)P⊥ =− P⊥F2(P

⊥)P⊥XP⊥ − P⊥XP⊥G2(P
⊥)P⊥

+ CPF1(P⊥XP⊥)PP
⊥ − CPF1(P⊥)PP

⊥XP⊥

− P⊥G1(P
⊥)P⊥XP⊥

for all X ∈ AlgL .
Now we can describe F1. In view of (2.7), (2.11), (2.21), (2.25) and (2.37)

we routinely compute that

F1(X) =F1(PXP ) + F1(PXP
⊥) + F1(P

⊥XP⊥) + ∆3,F1(PXP,PXP
⊥, P⊥XP⊥)

=PF1(PXP )P + PF1(PXP
⊥)P + PF1(P

⊥XP⊥)P

+ P⊥F1(PXP )P⊥ + P⊥F1(PXP
⊥)P⊥ + P⊥F1(P

⊥XP⊥)P⊥

+ PF1(X)P⊥ + P⊥F1(X)P +∆3,F1(PXP,PXP
⊥, P⊥XP⊥)

=PXPF1(P )P + CP⊥G1(P )P⊥PXP − CP⊥G1(PXP )P⊥P

+ PF1(PXP
⊥)P + PF1(P

⊥XP⊥)P − P⊥G1(PXP )P⊥

+ P⊥F1(PXP
⊥)P⊥ − P⊥F2(P

⊥)P⊥XP⊥ − P⊥XP⊥G2(P
⊥)P⊥

+ CPF1(P⊥XP⊥)PP
⊥ − CPF1(P⊥)PP

⊥XP⊥ − P⊥G1(P
⊥)P⊥XP⊥

− PF2(P
⊥)X − PXG2(P

⊥)− P⊥F2(P )X

− P⊥XG2(P ) + ∆3,F1(PXP,PXP
⊥, P⊥XP⊥)

for all X ∈ AlgL . Let us define a commutant map Γ1 by

Γ1(X) =− CP⊥G1(PXP )P⊥P + CPF1(P⊥XP⊥)PP − CP⊥G1(PXP )P⊥P⊥

+ CPF1(P⊥XP⊥)PP
⊥ +∆3,F1(PXP,PXP

⊥, P⊥XP⊥)

=− CP⊥G1(PXP )P⊥I + CPF1(P⊥XP⊥)P I

+∆3,F1(PXP,PXP
⊥, P⊥XP⊥)

for all X ∈ AlgL . It follows from (2.28) and (2.35) that

F1(X) =PXPF1(P )P + CP⊥G1(P )P⊥PXP − PF2(P
⊥)XP⊥

− PXG2(P
⊥)P⊥ − P⊥F2(P

⊥)P⊥XP⊥ − P⊥XP⊥G2(P
⊥)P⊥

− CPF1(P⊥)PP
⊥XP⊥ − P⊥G1(P

⊥)P⊥XP⊥ − PXP⊥G2(P )P

− PG1(PXP
⊥)P + P⊥F1(PXP

⊥)P⊥ − P⊥F2(P )XP

− P⊥XG2(P )P + Γ1(X)

=PXPF1(P )P + CP⊥G1(P )P⊥PXP − PF2(P
⊥)XP⊥

− PXG2(P
⊥)P⊥ − P⊥F2(P

⊥)P⊥XP⊥ − P⊥XP⊥G2(P
⊥)P⊥

− CPF1(P⊥)PP
⊥XP⊥ − P⊥G1(P

⊥)P⊥XP⊥ −XP⊥G2(P )P

− PG1(PXP
⊥)P + P⊥F1(PXP

⊥)P⊥ + Γ1(X)
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for all X ∈ AlgL . Note that PF2(P
⊥)PXP⊥ = PF2(P

⊥)PX−XPF2(P
⊥)P ,

so we can rewrite the last relation as

F1(X) =PXPF1(P )P + CP⊥G1(P )P⊥PXP − PF2(P
⊥)PX +XPF2(P

⊥)P

− PF2(P
⊥)P⊥XP⊥ − PXG2(P

⊥)P⊥ − P⊥F2(P
⊥)P⊥XP⊥

− P⊥XP⊥G2(P
⊥)P⊥ − CPF1(P⊥)PP

⊥XP⊥ − P⊥G1(P
⊥)P⊥XP⊥

−XP⊥G2(P )P − PG1(PXP
⊥)P + P⊥F1(PXP

⊥)P⊥ + Γ1(X)

=PXPF1(P )P + CP⊥G1(P )P⊥PXP +XPF2(P
⊥)P − PXG2(P

⊥)P⊥

− P⊥XP⊥G2(P
⊥)P⊥ − P⊥F2(P

⊥)P⊥XP⊥ − CPF1(P⊥)PP
⊥XP⊥

− P⊥G1(P
⊥)P⊥XP⊥ − PF2(P

⊥)PX − PF2(P
⊥)P⊥XP⊥

−XP⊥G2(P )P − PG1(PXP
⊥)P + P⊥F1(PXP

⊥)P⊥ + Γ1(X)

for all X ∈ AlgL . Furthermore,

F1(X) =PXPF1(P )P + CP⊥G1(P )P⊥PXP +XPF2(P
⊥)P −XG2(P

⊥)P⊥

−XP⊥G2(P )P − P⊥F2(P
⊥)P⊥XP⊥ − CPF1(P⊥)PP

⊥XP⊥

− P⊥G1(P
⊥)P⊥XP⊥ − PF2(P

⊥)P⊥XP⊥ − PF2(P
⊥)PX

− PG1(PXP
⊥)P + P⊥F1(PXP

⊥)P⊥ + Γ1(X)

=X(PF1(P )P + CP⊥G1(P )P⊥P + CPF2(P⊥)PP −G2(P
⊥)P⊥ − P⊥G2(P )P )

− (F2(P
⊥)P⊥+ CPF1(P⊥)PP

⊥ + P⊥G1(P
⊥)P⊥+ CPF2(P⊥)PP )X + Γ1(X)

for all X ∈ AlgL . In view of (2.21) and (2.35), we further get
(2.38)

F1(X) =X(PF1(P )P + CP⊥G1(P )P⊥P −G2(P
⊥)− P⊥G2(P )P )

− (F2(P
⊥)P⊥ + CPF1(P⊥)PP

⊥ + P⊥G1(P
⊥)P⊥+ CPF2(P⊥)PP )X + Γ1(X)

for all X ∈ AlgL . By the symmetry of (1.1) we immediately get
(2.39)

F2(X) =X(PF2(P )P + CP⊥G2(P )P⊥P −G1(P
⊥)− P⊥G1(P )P )

− (F1(P
⊥)P⊥ + CPF2(P⊥)PP

⊥ + P⊥G2(P
⊥)P⊥+ CPF1(P⊥)PP )X +Γ2(X)

for all X ∈ AlgL . Now using (2.6) we can also describe G1 and G2, namely,

(2.40) G1(X) = −F1(X)− F2(I)X −XG2(I)

and

(2.41) G2(X) = −F2(X)− F1(I)X −XG1(I)

for all X ∈ AlgL .



Functional identities of degree 2 in CSL algebras 1612

Let us define

Q1 = PF1(P )P + CP⊥G1(P )P⊥P −G2(P
⊥)− P⊥G2(P )P,

Q2 = PF2(P )P + CP⊥G2(P )P⊥P −G1(P
⊥)− P⊥G1(P )P,

λ = CPF2(P⊥)P I + CP⊥G1(P )P⊥I,

µ = CPF1(P⊥)P I + CP⊥G2(P )P⊥I.

Equalities (2.10), (2.14), (2.21) and (2.35) jointly lead to

λ−Q1 = CPF2(P⊥)P I + CP⊥G1(P )P⊥P
⊥ − PF1(P )P +G2(P

⊥) + P⊥G2(P )P

= CPF2(P⊥)PP
⊥ + CP⊥G1(P )P⊥P

⊥ − PF1(P )P

+ PG2(P
⊥)P⊥ + P⊥G2(P

⊥)P⊥ + P⊥G2(P
⊥)P + P⊥G2(P )P

= CPF2(P⊥)PP
⊥ + CP⊥G1(P )P⊥P

⊥ − PF1(P )P

− F1(P )P⊥ − P⊥G1(P )P⊥ + P⊥G2(P
⊥)P⊥ + P⊥G2(P

⊥)P + P⊥G2(P )P

= CPF2(P⊥)PP
⊥ − F1(P ) + P⊥G2(P

⊥)P⊥ − F1(P
⊥)P − PG1(P

⊥)P.

.

Similarly, using (2.9), (2.13), (2.21) and (2.35), we obtian

µ−Q2 = CPF1(P⊥)P I + CP⊥G2(P )P⊥P
⊥ − PF2(P )P +G1(P

⊥) + P⊥G1(P )P

= CPF1(P⊥)PP
⊥ + CP⊥G2(P )P⊥P

⊥ − PF2(P )P

+ PG1(P
⊥)P⊥ + P⊥G1(P

⊥)P⊥ + P⊥G1(P
⊥)P + P⊥G1(P )P

= CPF1(P⊥)PP
⊥ + CP⊥G2(P )P⊥P

⊥ − PF2(P )P − F2(P )P⊥ − P⊥G2(P )P⊥

− P⊥G2(P
⊥)P − F2(P

⊥)P − PG2(P
⊥)P + P⊥G1(P

⊥)P⊥

= CPF1(P⊥)PP
⊥ − F2(P ) + P⊥G1(P

⊥)P⊥ − F2(P
⊥)P − PG2(P

⊥)P.

A simple computation shows that

F2(P
⊥)P⊥ + CPF1(P⊥)PP

⊥ + P⊥G1(P
⊥)P⊥ + CPF2(P⊥)PP

= µ−Q2 + F2(P ) + F2(P
⊥),

F1(P
⊥)P⊥ + CPF2(P⊥)PP

⊥ + P⊥G2(P
⊥)P⊥ + CPF1(P⊥)PP

= λ−Q1 + F1(P ) + F1(P
⊥),

PF1(P )P + CP⊥G1(P )P⊥P −G2(P
⊥)− P⊥G2(P )P +G2(I)

= Q1 +G2(I),

PF2(P )P + CP⊥G2(P )P⊥P −G1(P
⊥)− P⊥G1(P )P +G1(I)

= Q2 +G1(I).
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By the previous facts we can rewrite (2.38), (2.39), (2.40) and (2.41) as

(2.42)

F1(X) =XQ1 − (µ−Q2 + F2(P ) + F2(P
⊥))X + Γ1(X),

F2(X) =XQ2 − (λ−Q1 + F1(P ) + F1(P
⊥))X + Γ2(X),

G1(X) =−X(Q1 +G2(I)) + (µ−Q2 −∆2,F2(P, P
⊥))X − Γ1(X)

=−X(Q1 +G2(I)− µ+∆2,F2(P, P
⊥))−Q2X − Γ1(X),

G2(X) =−X(Q2 +G1(I)) + (λ−Q1 −∆2,F1(P, P
⊥))X − Γ2(X)

=−X(Q2 +G1(I)− λ+∆2,F1(P, P
⊥))−Q1X − Γ2(X)

for all X ∈ AlgL . Set

U1 :=µ−Q2 + F2(P ) + F2(P
⊥),

U2 :=λ−Q1 + F1(P ) + F1(P
⊥),

R2 :=−Q1 −G2(I) + µ−∆2,F2(P, P
⊥),

R1 :=−Q2 −G1(I) + λ−∆2,F1(P, P
⊥).

This gives (2.5) directly.
Now (1.1) yields

(2.43) 0 = −U1XY − U2Y X +XY R1 + Y XR2

for all X,Y ∈ AlgL . Taking Y = I into (2.43), we get

(−U1 − U2)X +X(R1 +R2) = 0

for all X ∈ AlgL . Since the commutant of AlgL is CI, we see U1 + U2 =
R1 +R2 ∈ CI. This fact together with equality (2.43) implies that

Ui[X,Y ] = [X,Y ]Ri(i = 1, 2)

for all X,Y ∈ AlgL . We complete the proof of the lemma. □

We are now ready to prove our main results.

Theorem 2.6. Let L be an independent finite-width CSL on a complex sep-
arable Hilbert space H with dim H ≥ 3, and M an algebra containing AlgL
satisfying A12P

⊥MP ⊆ CP and P⊥MPA12 ⊆ CP⊥. Suppose that maps
F1, F2, G1, G2: AlgL → M are additive modulo CI such that

F1(X)Y + F2(Y )X +XG2(Y ) + Y G1(X) = 0

for all X,Y ∈ AlgL . Then there exist U1, U2, Q1, Q2, R1, R2 ∈ M and maps
Γ1,Γ2 : AlgL → CI such that U1 + U2 = R1 + R2 ∈ CI, Ui[X,Y ] =
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[X,Y ]Ri(i = 1, 2) and

F1(X) = XQ1 − U1X + Γ1(X),

F2(X) = XQ2 − U2X + Γ2(X),

G1(X) = XR2 −Q2X − Γ1(X),

G2(X) = XR1 −Q1X − Γ2(X)

for all X,Y ∈ AlgL .

Proof. First, using the conditions A12P
⊥MP ⊆ CP and P⊥MPA12 ⊆ CP⊥,

we know that

P⊥F2(P
⊥Y P⊥)PXP⊥ ∈ CP⊥, PXP⊥F2(P

⊥Y P⊥)P ∈ CP

for all X,Y ∈ AlgL . This shows there exist two functionals φ,ψ : A12 → CI
such that

P⊥F2(P
⊥Y P⊥)PXP⊥ = φ(PXP⊥)P⊥, PXP⊥F2(P

⊥Y P⊥)P = ψ(PXP⊥)P

for all X ∈ AlgL . Consequently, we have
(2.44)
φ(PXP⊥)P⊥ZP⊥ = P⊥F2(P

⊥Y P⊥)PXP⊥ZP⊥ = φ(PXP⊥ZP⊥)P⊥

for all Z ∈ AlgL , and

(2.45) ψ(PXP⊥)PZP = PZPXP⊥F2(P
⊥Y P⊥)P = ψ(PZPXP⊥)P

for all Z ∈ AlgL .
Since dimH ≥ 3, we have dimP⊥H ≥ 2 or dimPH ≥ 2. Suppose that

dimP⊥H ≥ 2. If φ(PXP⊥) ̸= 0 for some X ∈ AlgL , then by equation
(2.44), P⊥ZP⊥ ∈ CP⊥ for all Z ∈ AlgL , and so the commutant of A22

in B(P⊥H) is B(P⊥H) ̸= CP⊥, which contradicts the result of Lemma 2.1.
Hence φ(PXP⊥)
= 0 for all X ∈ AlgL . Suppose that dimPH ≥ 2. If ψ(PXP⊥) ̸= 0 for some
X ∈ AlgL , then by equation (2.45), PZP ∈ CP for all Z ∈ AlgL , and so the
commutant of A11 inB(PH) isB(PH) ̸= CP , which is also a contradiction. So
ψ(PXP⊥) = 0 for all X ∈ AlgL . Now by Lemma 2.2, P⊥F2(P

⊥Y P⊥)P = 0
for all Y ∈ AlgL , and we have from (2.29) that

P⊥F1(PXP
⊥)P⊥Y P⊥ + P⊥Y P⊥G1(PXP

⊥)P⊥ = 0

for allX,Y ∈ AlgL . In particular, P⊥F1(PXP
⊥)P⊥+P⊥G1(PXP

⊥)P⊥ = 0
and hence

(2.46) P⊥F1(PXP
⊥)P⊥ = −P⊥G1(PXP

⊥)P⊥ ∈ CP⊥
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for all X ∈ AlgL . In an analogous manner, using (2.23), (2.28) and (2.31),
we can get

(2.47)

PF2(PXP
⊥)P =− PG2(PXP

⊥)P ∈ CP,

PF1(PXP
⊥)P =− PG1(PXP

⊥)P ∈ CP,

P⊥F2(PXP
⊥)P⊥ =− P⊥G2(PXP

⊥)P⊥ ∈ CP⊥

for all X ∈ AlgL .
Substituting X by PXP⊥ and Y by PY P⊥ in (1.1), we have

0 =F1(PXP
⊥)PY P⊥ + F2(PY P

⊥)PXP⊥

+ PXP⊥G2(PY P
⊥) + PY P⊥G1(PXP

⊥)

for all X,Y ∈ AlgL . It follows that

0 =PF1(PXP
⊥)PY P⊥ + PF2(PY P

⊥)PXP⊥

+ PXP⊥G2(PY P
⊥)P⊥ + PY P⊥G1(PXP

⊥)P⊥

for all X,Y ∈ AlgL . This together with (2.47) implies that

0 =(CPF1(PXP⊥)P − CP⊥F1(PXP⊥)P⊥)PY P⊥

+ (CPF2(PY P⊥)P − CP⊥F2(PY P⊥)P⊥)PXP⊥

for all X,Y ∈ AlgL . Applying Lemma 2.3, we obtain

CPF1(PXP⊥)P = CP⊥F1(PXP⊥)P⊥ , CPF2(PY P⊥)P = CP⊥F2(PY P⊥)P⊥

for all X,Y ∈ AlgL . Now taking into account (2.46) and (2.47), we obtain

P⊥F1(PXP
⊥)P⊥ − PG1(PXP

⊥)P = P⊥F1(PXP
⊥)P⊥ + PF1(PXP

⊥)P ∈ CI,

P⊥F2(PXP
⊥)P⊥ − PG2(PXP

⊥)P = P⊥F2(PXP
⊥)P⊥ + PF2(PXP

⊥)P ∈ CI

for all X ∈ AlgL . The desired result follows from Lemma 2.4. □

From the above theorem, we have the following corollary directly.

Corollary 2.7. Let L be an independent finite-width CSL on a complex sep-
arable Hilbert space H with dim H ≥ 3, and M an algebra containing AlgL
satisfying P⊥MP = {0}. Suppose that maps F1, F2, G1, G2 : AlgL → M are
additive modulo CI such that

F1(X)Y + F2(Y )X +XG2(Y ) + Y G1(X) = 0

for all X,Y ∈ AlgL . Then there exist U1, U2, Q1, Q2, R1, R2 ∈ M and maps
Γ1,Γ2 : AlgL → CI such that U1 + U2 = R1 + R2 ∈ CI, Ui[X,Y ] =
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[X,Y ]Ri(i = 1, 2) and

F1(X) = XQ1 − U1X + Γ1(X),

F2(X) = XQ2 − U2X + Γ2(X),

G1(X) = XR2 −Q2X − Γ1(X),

G2(X) = XR1 −Q1X − Γ2(X)

for all X,Y ∈ AlgL .

The next result shows that functional identity (1.1) of degree 2 in CSL
algebras has only the standard solution.

Proposition 2.8. Let L be an independent finite-width CSL on a complex
separable Hilbert space H with dim H ≥ 3, and M an algebra containing
AlgL satisfying A12P

⊥MP ⊆ CP and P⊥MPA12 ⊆ CP⊥. Then functional
identity (1.1) has only the standard solution if and only if

U [X,Y ] = [X,Y ]R for all X,Y ∈ AlgL =⇒ U = R ∈ CI.

Proof. Suppose that (1.1) has only the standard solution. Further, assume
that U [X,Y ] = [X,Y ]R for all X,Y ∈ AlgL . We might as well assume that
F1(X) = −F2(X) = UX and G1(X) = −G2(X) = XR for all X,Y ∈ AlgL .
Then we must have

UX = XQ+ Γ1(X), XR = QX + Γ2(X),

where X ∈ AlgL , Q ∈ M and Γ1,Γ2 are mappings from AlgL to CI. Obvi-
ously, the above two identities imply PUP⊥ = 0, P⊥UP = 0 and U = Q = R.
Now we have

(2.48) UPXP⊥ − PXP⊥U = PUPXP⊥ − PXP⊥UP⊥ = 0

for all X ∈ AlgL . This implies that for any A ∈ A11 we can get

(PUPA−APUP )PXP⊥ = PUP (APXP⊥)−A(PUPXP⊥)

= (APXP⊥)P⊥UP⊥ −A(PXP⊥UP⊥) = 0.

So by Lemma 2.2 we can see that (PUPA − APUP ) = 0 for all A ∈ A11.
This fact and Lemma 2.1 imply that PUP ∈ CP . Using (2.48) again we have
U ∈ CI. The converse follows immediately from Theorem 2.6. □

3. Applications

In this section, as an application, we will consider generalized inner bideriva-
tions and commuting additive mappings of certain CSL algebras.
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3.1. Commuting maps. Let R be a commutative ring with identity, A be a
unital algebra over R and Z(A) be the center of A. An R-linear mapping f
of A is called commuting if [f(x), x] = 0 for all x ∈ A. A commuting mapping
f of A is called proper if it is of the form

f(x) = xc+ α(x), ∀x ∈ A,
where c ∈ Z(A) and α is an R-linear mapping from A into Z(A). As a simple
application of our results, we give the following result.

Corollary 3.1. Let L be an independent finite-width CSL on a complex sep-
arable Hilbert space H with dim H ≥ 3, and M an algebra containing AlgL
with A12P

⊥MP ⊆ CP and P⊥MPA12 ⊆ CP⊥. Suppose that the map
F : AlgL → M is additive modulo CI satisfying [F (X), X] = 0 for all
X ∈ AlgL . Then there exist λ ∈ CI and a map Γ : AlgL → CI such
that

F (x) = λX + Γ(X)

for all X ∈ AlgL .

Proof. Firstly, the linearization of the identity F (X)X −XF (X) = 0 gives

F (X)Y + F (Y )X −XF (Y )− Y F (X) = 0

for all X,Y ∈ AlgL . Thus by Theorem 2.6 we obtain

(3.1)
F (X) = XQ1 − U1X + Γ1(X) = XQ2 − U2X + Γ2(X),

− F (X) = XR2 −Q2X − Γ1(X) = XR1 −Q1X − Γ2(X)

for some U1, U2, Q1, Q2, R1, R2 ∈ M and maps Γ1,Γ2 : AlgL → CI such that
U1 + U2 = R1 +R2 ∈ CI. From (3.1) we can see that

X(Q1 −Q2)− (U1 − U2)X ∈ CI,
X(R2 −R1)− (Q2 −Q1)X ∈ CI

for all X ∈ AlgL . Repeating the same computational process in Proposition
2.8, we know that

Q1 −Q2 = U1 − U2 = R1 −R2 ∈ CI,
which yields U1 = R1 ∈ CI and U2 = R2 ∈ CI. Comparing the two relations
in (3.1), we can also get Q1, Q2 ∈ CI. Setting λ := Q1 −U1 ∈ CI and Γ := Γ1,
We conclude that F (x) = λX + Γ(X) for all X ∈ AlgL . □
3.2. Generalized inner biderivation. Let R be a commutative ring. A
map g : R → R is called a generalized inner derivation, if g(x) = ax +
xb for some a, b ∈ R. Further, a biadditive map Υ : R × R → R is a
generalized inner biderivation, if for each y ∈ R there exist unique elements
g1(y), g2(y), g3(y), g4(y) ∈ R such that Υ(x, y) = g1(y)x+xg2(y) and Υ(y, x) =
g3(y)x + xg4(y) for all x ∈ R( [4]). The main results in this paper also imply
the following corollary.
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Corollary 3.2. Let L be an independent finite-width CSL on a complex sep-
arable Hilbert space H with dim H ≥ 3, and M an algebra containing AlgL
with A12P

⊥MP ⊆ CP and P⊥MPA12 ⊆ CP⊥. Suppose that the map Υ :
AlgL × AlgL → M is a generalized inner biderivation. Then there ex-
ist U1, U2, Q1, Q2, R1, R2 ∈ M and maps Γ1,Γ2 : AlgL → CI such that
U1 + U2 = R1 +R2 ∈ CI, Ui[X,Y ] = [X,Y ]Ri, i = 1, 2, and

Υ(X,Y ) = (U2Y −Y Q2)X+X(Q1Y −Y R1) = (XQ1−U1X)Y +Y (XR2−Q2X)

for all X,Y ∈ AlgL .

Proof. The proof is similar to [9, Corollary 4.1]. □
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