
...

Bulletin of the

.

Iranian Mathematical Society

.

ISSN: 1017-060X (Print)

.

ISSN: 1735-8515 (Online)

.

Vol. 43 (2017), No. 5, pp. 1511–1528

.

Title:

.

On a p-Laplacian system and a generaliza-
tion of the Landesman-Lazer type condition

.

Author(s):

.

B.Q. Hung and H.Q. Toan

.

Published by the Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 43 (2017), No. 5, pp. 1511–1528
Online ISSN: 1735-8515

ON A P-LAPLACIAN SYSTEM AND A GENERALIZATION

OF THE LANDESMAN-LAZER TYPE CONDITION

B.Q. HUNG∗ AND H.Q. TOAN

(Communicated by Asadollah Aghajani)

Abstract. This article shows the existence of weak solutions of a reso-
nance problem for nonuniformly p-Laplacian system in a bounded domain
in RN . Our arguments are based on the minimum principle and rely on

a generalization of the Landesman-Lazer type condition.
Keywords: Semilinear elliptic equation, non-uniform, Landesman-Lazer
condition, minimum principle.

MSC(2010): Primary: 35J20, Secondary: 35J60, 58E05.

1. Introduction and preliminaries

Let Ω be a bounded domain in RN , with smooth boundary ∂Ω. In the
present paper we consider the existence of weak solutions of the following
Dirichlet problem at resonance for nonuniformly p-Laplacian system:
(1.1)

-div(h1(x)|∇u|p−2∇u) =λ1|u|α−1|v|β−1v + f(x, u, v)− k1(x), in Ω

-div(h2(x)|∇v|p−2∇v) =λ1|u|α−1|v|β−1u+ g(x, u, v)− k2(x), in Ω

u = 0 ; v = 0 on ∂Ω,

where

(1.2) p ≥ 2, α ≥ 1, β ≥ 1, α+ β = p.

and f, g : Ω×R2 → R are Carathéodory functions which will be specified later,

(1.3) hi(x) ∈ L1
loc(Ω), hi(x) ≥ 1, for a.e x ∈ Ω, i = 1, 2,

ki(x) ∈ Lp′
(Ω), p′ =

p

p− 1
, ki(x) > 0, for a.e x ∈ Ω̄, i = 1, 2.

λ1 denotes the first eigenvalue of the problem:
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(1.4)

{
−∆pu =λ|u|α−1|v|β−1v,

−∆pv =λ|u|α−1|v|β−1u,

and (u, v) ∈ W 1,p
0 (Ω)×W 1,p

0 (Ω), p > 2, α > 1, β > 1, α+ β = p.
It is well-known that the principle eigenvalue λ1 = λ1(p) of (1.4) is obtained

using the Ljusternick-Schnirelmann theory by minimizing the functional

J(u, v) =
α

p

∫
Ω

|∇u|pdx+
β

p

∫
Ω

|∇v|pdx,

on C1 - manifold:

S =
{
(u, v) ∈ X = W 1,p

0 (Ω)×W 1,p
0 (Ω) : ∧(u, v) = 1

}
,

where

∧(u, v) =
∫
Ω

|u|α−1|v|β−1u.vdx,

that is λ1 = λ1(p) can be variational characterized as
(1.5)

λ1 = λ1(p) = inf
∧(u,v)>0

J(u, v)

∧(u, v)
= inf

(u,v)∈X:uv>0

α
p

∫
Ω
|∇u|pdx+ β

p

∫
Ω
|∇v|pdx∫

Ω
|u|α−1|v|β−1uvdx

.

Moreover the eigenpair (φ1, φ2) associated with λ1 is componentwise positive
and unique (up to multiplication by nonzero scalar) (see [1, Theorem 2.2] and
[15, Remark 5.4]).

We firstly make some comments on the problem (1.1). Observe that the exis-
tence of weak solutions of (p, q)-Laplacian systems at resonance in bounded do-
mains with Dirichlet boundary condition, was first considered by Zographopou-
los in [20]. Later in [10] Kandilakis and Magiropoulos have studied a quasilin-
ear elliptic system with resonance part and nonlinear boundary condition in an
unbounded domain by assuming the nonlinearities f and g depending only on
variable u or v. In [14], Ou and Tang have considered the same system as in [10]
with Dirichlet condition in a bounded domain. In these papers, the existence
of weak solutions is obtained by critical point theory under a Landesman-Lazer
type condition. At the same time for nonuniformly nonlinear elliptic equations
involving p-Laplacian (p ≥ 2) at resonance we refer the reader to [12,13,18].

In this paper by introducing a generalization of Landesman-Lazer type con-
dition we shall prove an existence result for a p-Laplacian system on resonance
in bounded domain with the nonlinearities f and g to be functions depending
on both variables u and v.

Note that in [9] we considered system (1.1) in the case h1(x) = h2(x) = 1 and

shows the existence of weak solutions of (1.1) in W 1,p
0 ×W 1,p

0 . Our arguments
are based on the saddle point theorem and rely on a generalization of the
Landesman-Lazer type condition.
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Recall that due to hi(x) ∈ L1
loc(Ω), i = 1, 2, the problem (1.1) now is nonuni-

formly in sense that the Euler-Lagrange functional associated to the problem
may be infinity at some w0 = (u0, v0) ∈ X = W 1,p

0 (Ω) × W 1,p
0 (Ω). Hence

we must consider the problem (1.1) in some suitable subspace of W 1,p
0 (Ω) ×

W 1,p
0 (Ω).

As usually W 1,p
0 (Ω) denotes the Sobolev space which can be defined as the

completion of C∞
0 (Ω) under the norm:

∥u∥ =

(∫
Ω

|∇u|pdx
) 1

p

.

Now we define the following subspaces Ei, i = 1, 2, of W 1,p
0 (Ω) by:

Ei =

{
u ∈ W 1,p

0 (Ω) :

∫
Ω

hi(x)|∇u|pdx < +∞
}
,

where hi(x), i = 1, 2, satisfy condition (1.2). Ei can be endowed with the norm

∥u∥Ei =

(∫
Ω

hi(x)|∇u|pdx
) 1

p

.

Applying the arguments as those used in the proof of [8, Proposition 1.1] we
can prove the following proposition.

Proposition 1.1. For each i = 1, 2, Ei is a Banach space and the embeddings
Ei into W 1,p

0 (Ω) are continuous.

Proof. It is clear that Ei is a normed space. Let {um} be a Cauchy sequence
in Ei. Then

lim
m,k→+∞

∥um − uk∥pEi
= lim

m,k→+∞

∫
Ω

hi(x)|∇um −∇uk|pdx = 0,

and {∥um∥Ei} is bounded. By (1.3) : ∥um − uk∥W 1,p
0 (Ω) ≤ ∥um − uk∥Ei for

m, k = 1, 2, . . .. Hence the sequence {um} is also a Cauchy sequence in W 1,p
0 (Ω)

and it converges to some u in W 1,p
0 (Ω), i.e:

lim
m→+∞

∫
Ω

|∇um −∇u|p dx = 0.

It follows that ∇um → ∇u in Lp(Ω) and there exists a subsequence {∇umk
}

converging to ∇u a.e x ∈ Ω. Applying Fatou’s lemma we get∫
Ω

hi(x)|∇u|pdx ≤ lim inf
k→+∞

∫
Ω

hi(x) |∇umk
|p dx < +∞
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Hence u ∈ Ei. Applying again Fatou’s lemma we get

0 ≤ lim
k→+∞

∫
Ω

hi(x)|∇umk
−∇u|pdx

≤ lim
k→+∞

{
lim

l→+∞

∫
Ω

hi(x)|∇umk
−∇uml

|pdx
}

= 0.

Hence {umk
} converges to u in Ei. From this, it implies the sequence {um}

converges to u in Ei, i = 1, 2. Thus Ei is a Banach space and the continuous
embedding Ei into W 1,p

0 holds true. Proposition 1.1 is proved. □

Remark 1.2. Since the embedding W 1,p
0 (Ω) to Lp(Ω) is compact, hence Ei ↪→

Lp(Ω) compactly.
Set E = E1 × E2 and for w = (u, v) ∈ E:

∥w∥E =
(
∥u∥pE1

+ ∥v∥pE2

) 1
p .

Moreover for simplicity of notation denotes by X = W 1,p
0 (Ω)×W 1,p

0 (Ω). Then
we have ∥w∥X ≤ ∥w∥E , ∀w = (u, v) ∈ E.

Definition 1.3. Function w = (u, v) ∈ E is called a weak solution of the
problem (1.1) if and only if

α

∫
Ω

h1(x)∇u∇ūdx+ β

∫
Ω

h2(x)∇v∇v̄dx

− λ1

∫
Ω

(
α|u|α−1|v|β−1vū+ β|u|α−1|v|β−1uv̄

)
dx

−
∫
Ω

(αf(x, u, v)ū+ βg(x, u, v)v̄) dx

+

∫
Ω

(αk1(x)ū+ βk2(x)v̄) dx = 0, ∀w̄ = (ū, v̄) ∈ E.

Let us introduce the following some conditions on nonlinearities of system
(1.1):

(H1)

(i) f, g : Ω× R2 → R are Carathéodory functions: f(x, 0, 0) = 0, g(x, 0, 0)=0.

(ii) There exists function τ(x) ∈ Lp′
(Ω), p′ =

p

p− 1
such that:

|f(x, s, t)| ≤ τ(x) , |g(x, s, t)| ≤ τ(x), for a.e x ∈ Ω, (s, t) ∈ R2.

(iii) For(s, t) ∈ R2 :

(1.6) α
∂f(x, s, t)

∂t
= β

∂g(x, s, t)

∂s
for a.e x ∈ Ω.
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Denotes, for (u, v) ∈ R2

(1.7)

H(x, u, v) =
α

2

∫ u

0

(f(x, s, v)+f(x, s, 0)) ds+
β

2

∫ v

0

(g(x, u, t)+g(x, 0, t)) dt, for a.e x ∈ Ω.

Remark 1.4. By hypothesis (1.6), from (1.7) with some simple computations
we deduce that:

(1.8)
∂H(x, s, t)

∂s
= αf(x, s, t) ,

∂H(x, s, t)

∂t
= βg(x, s, t), a.e x ∈ Ω, ∀(s, t) ∈ R2.

Now we define, for i, j = 1, 2:

(1.9)

Fi(x) = lim sup
τ→+∞

α

τ

∫ τ

0

(
f
(
x, (−1)1+iyφ1, (−1)1+iτφ2

)
+ f

(
x, (−1)1+iyφ1, 0

))
dy,

Gj(x) = lim sup
τ→+∞

β

τ

∫ τ

0

(
g
(
x, (−1)1+jτφ1, (−1)1+jyφ2

)
+ g

(
x, 0, (−1)1+jyφ2

))
dy.

Assume that
(H2)

(1.10)∫
Ω

(F1(x)φ1(x) +G1(x)φ2(x)) dx <2

∫
Ω

(αk1(x)φ1(x) + βk2(x)φ2(x)) dx

<

∫
Ω

(F2(x)φ1(x) +G2(x)φ2(x)) dx.

Remark 1.5. For example, we can take functions f(x, u, v), g(x, u, v) as fol-
lowing:

f(x, u, v) = τ1(x) sin

(
u

β
+

v

α

)
+ η1(x)

u√
1 + u2

,

g(x, u, v) = τ1(x) sin

(
u

β
+

v

α

)
+ η2(x)

v√
1 + v2

,

where τ1(x), η1(x), η2(x) are functions in Lp′
(Ω) and η1(x) < 0, η2(x) < 0 for

x ∈ Ω.
By some simple computations we get:

F1(x) = 2αη1(x), F2(x) = −2αη1(x),

G1(x) = 2βη2(x), G2(x) = −2βη2(x).

Therefore, hypothesis (1.10) is satisfied whenever

−η1(x) > k1(x) and − η2(x) > k2(x).

Our main result is given by the following theorem:
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Theorem 1.1. Assume that the conditions (H1) and (H2) are fulfilled. Then
the problem (1.1) has at least a nontrivial weak solution in E.

Proof of Theorem 1.1 is based on variational techniques and the Minimum
Principle.

2. Proof of the main result

We define the Euler-Lagrange functional associated to the problem (1.1) by

I(w) =
α

p

∫
Ω

h1(x)|∇u|pdx+
β

p

∫
Ω

h2(x)|∇v|pdx− λ1

∫
Ω

|u|α−1|v|β−1uvdx

−
∫
Ω

H(x, u, v)dx+

∫
Ω

(αk1(x)u+ βk2(x)v) dx

= J(w) + T (w), ∀w = (u, v) ∈ E,

(2.1)

where

(2.2) J(w) =
α

p

∫
Ω

h1(x)|∇u|pdx+
β

p

∫
Ω

h2(x)|∇v|pdx,

T (w) = −λ1

∫
Ω

|u|α−1|v|β−1uvdx−
∫
Ω

H(x, u, v)dx+

∫
Ω

(αk1(x)u+ βk2(x)v) dx.

(2.3)

Firstly we note that due to hi(x) ∈ L1
loc(Ω), i = 1, 2, in general the functional

J(w) may not belong to C1(E). Therefore we need some modifications in order
to apply the critical point theory to our problem.

Definition 2.1. (see [6, Definition 2.1]) Let I be a map from a Banach space X
to R. We say that I is weakly continuously differentiable on X if the following
conditions are satisfied:

(i) I is continuous on X
(ii) For any u ∈ X there exists a linear map I ′(u) from X into R such that:

lim
t→0

I(u+ tv)− I(u)

t
= (I ′(u), v) , ∀v ∈ X.

(iii) For any v ∈ X the map u → (I ′(u), v) is continuous on X.

Denotes by C1
w(X) the set of weakly continuously differentiable functionals

on X. It is clear that C1(X) ⊂ C1
w(X), where we denote by C1(X) the set of

all continuously Fréchet differentiable functionals on X.
Let I ∈ C1

w(X) we put:

∥I ′(u)∥ = Sup {| < I ′(u), h > | : h ∈ X : ||h|| = 1} , ∀u ∈ X
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We say that I ∈ C1
w(X) satisfies the Palais-Smale condition on X if any se-

quence {um} ⊂ X for which {I(um)} is bounded and limm→+∞ ∥I ′(um)∥X∗ =
0 has a convergent subsequence in X.

Theorem 2.2 (The minimum Principle, see in [12, 13, Theorem 2.3]). Let X
be a Banach space and I ∈ C1

w(X). Assume that:

(i) I is bounded from below, c = infX I(u)
(ii) I satisfies the Palais-Smale condition on X.

Then there exists u0 ∈ X such that I(u0) = c.

The following proposition concerns the smoothness of the functional I =
J + T given by (2.1).

Proposition 2.3. Assuming hypothesis (H1) and (H2) are fulfilled. We assert
that:

(i) The functional T (w), w ∈ E given by (2.3) is continuous on E. More-
over, T is weakly continuously differentiable on E and

(2.4)

(T ′(w), w̄) =− λ1

∫
Ω

(
α|u|α−1|v|β−1vū+ β|u|α−1|v|β−1uv̄

)
dx

−
∫
Ω

(αf(x,w)ū+ βg(x,w)v̄) dx

+

∫
Ω

(αk1(x)ū+ βk2(x)v̄) dx, ∀w = (u, v); w̄ = (ū, v̄) ∈ E.

(ii) The functional J(w), w ∈ E given by (2.2) is weakly continuously dif-
ferentiable on E and we have: ∀w = (u, v), w̄ = (ū, v̄) ∈ E

(2.5) (J ′(w), w̄) = α

∫
Ω

h1(x)|∇u|p−1∇u∇ūdx+ β

∫
Ω

h2(x)|∇v|p−1∇v∇v̄dx.

Thus I = J + T is weakly continuously differentiable on E and

(2.6) (I ′(w), w̄) = (J ′(w), w̄) + (T ′(w), w̄), ∀w = (u, v); w̄ = (ū, v̄) ∈ E.

In the proof of the Proposition 2.3 we need the following remarks:

Remark 2.4. By similar arguments as those used in the proof of [21, Lemma
2.3] and [10, Lemma 5] we infer that the functional ∧ : E → R and operator
Γ : E → E∗ given by

∧(u, v) =
∫
Ω

|u|α−1|v|β−1uvdx, (u, v) ∈ E,

and

⟨Γ(u, v), (ū, v̄)⟩ =
∫
Ω

|u|α−1|v|β−1vūdx+

∫
Ω

|u|α−1|v|β−1uv̄dx, (u, v); (ū, v̄) ∈ E,

are compact.
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Proof. (i) By the Theorem C1 in [16, p. 248] and the Remark 2.4 with some

standard arguments we infer that T ∈ C1(X) where X = W 1,p
0 ×W 1,p

0 . More-
over since the embedding E → X is continuous, we have T ∈ C1(E) and hence
T ∈ C1

w(E) and

(T ′(w), w̄) =− λ1

∫
Ω

(
α|u|α−1|v|β−1vū+ β|u|α−1|v|β−1uv̄

)
dx

−
∫
Ω

(αf(x,w)ū+ βg(x,w)v̄) dx

+

∫
Ω

(αk1(x)ū+ βk2(x)v̄) dx, ∀w = (u, v); w̄ = (ū, v̄) ∈ E.

(ii) By similar arguments used in the proof of [8, Proposition 2.1], we deduce
that J ∈ C1

w(E) and (2.5), (2.6) hold true. The proof of Proposition 2.3 is
complete. □

Remark 2.5. From Proposition 2.3, it implies that the critical points of the
functional I given by (2.1) correspond to the weak solutions of the problem
(1.1)

Proposition 2.6. Suppose that the sequence {wm = (um, vm)}m converges

weakly to w0 = (u0, v0) in X = W 1,p
0 (Ω)×W 1,p

0 (Ω). Then we have

(2.7) J(w0) ≤ lim inf
m→+∞

J(wm).

Proof. The sequence {wm = (um, vm)} converges weakly to w0 ∈ X. Hence for
all bounded Ω′ ⊂ Ω, {wm} is also weakly converging in X. By compactness

of the embedding W 1,p
0 (Ω′) into Lp(Ω′), the sequence {wm} converges strongly

in Lp(Ω′) × Lp(Ω′). Then the sequences {um} and {vm} converge strongly in
L1(Ω′). Applying [16, Theorem 1.6, p9] we deduce that

J(w0) ≤ lim inf
m→+∞

J(wm).

The proof of Proposition 2.6 is complete. □

Proposition 2.7. Let {wm = (um, vm)} be a sequence in E such that:
(i) |I(wm)| ≤ c, (m = 1, 2, . . .), c is positive constant

I ′(wm) → 0 in E∗ as m → +∞.

(ii) {wm} converges weakly to w0 = (u0, v0) in X = W 1,p
0 (Ω)×W 1,p

0 (Ω).
Then w0 ∈ E and the sequence {wm} converges strongly to w0 in E.

Proof. Since {wm} converges weakly to w0 = (u0, v0) in X and the embedding

W 1,p
0 into Lp(Ω) is compact hence the sequences {um} and {vm} converge

strongly in Lp(Ω) to u0 and v0, respectively.
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By hypothesis (H1) and (1.7), applying Hölder’s inequality, we obtain

|T (wm)| ≤ λ1

∫
Ω

|um|α|vm|βdx+

∫
Ω

|H(x, um, vm)|dx

+

∫
Ω

(αk1(x)|um|+ βk2(x)|vm|) dx

≤ λ1∥um∥αLp(Ω)∥vm∥βLp(Ω) + ∥τ∥Lp′ (Ω)

(
α∥um∥Lp(Ω) + β∥vm∥Lp(Ω)

)
+ α∥k1∥Lp′ (Ω)∥um∥Lp(Ω) + β∥k2∥Lp′ (Ω)∥vm∥Lp(Ω).

Since {um} and {vm} are bounded in Lp(Ω), there exists M > 0 such that:

|T (wm)| ≤ M, m = 1, 2, . . . .

Moreover by Proposition 2.6

J(w0) ≤ lim inf
m→+∞

J(wm) = lim inf
m→+∞

{I(wm)− T (wm)}

≤ lim sup
m→+∞

{|I(wm)|+ |T (wm)|} ≤ C +M < +∞,

which implies∫
Ω

h1(x)|∇u0|pdx < +∞ ;

∫
Ω

h2(x)|∇v0|pdx < +∞.

Hence w0 = (u0, v0) ∈ E. Now from (2.4) and hypothesis (H1) we have:∣∣(T ′(wm), (wm − w0))
∣∣

≤ λ1

{∫
Ω

α|um|α−1|vm|β |um − u0|dx

+

∫
Ω

β|um|α|vm|β−1|vm − v0|dx
}

+

∫
Ω

{α|f(x,wm)||um − u0|+ β|g(x,wm)||vm − v0|} dx

+

∫
Ω

{αk1(x)|um − u0|+ βk2(x)|vm − v0|} dx

≤ λ1

{
α||um||α−1

Lp(Ω)||vm||βLp(Ω)||um − u0||Lp(Ω)

+β||um||αLp(Ω)||vm||β−1
Lp(Ω)||vm − v0||Lp(Ω)

}
+ ||τ ||Lp′ (Ω)

(
α||um − u0||Lp(Ω) + β||vm − v0||Lp(Ω)

)
+ α∥k1∥Lp′ (Ω)∥um − u0∥Lp(Ω) + β∥k2∥Lp′ (Ω)∥vm − v0∥Lp(Ω).

Letting m → +∞ and remark that

∥um − u0∥Lp(Ω) → 0; ∥vm − v0∥Lp(Ω) → 0 as m → +∞,

we deduce that

lim
m→+∞

(T ′(wm), (wm − w0)) = 0.
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From this we arrive at

lim
m→+∞

(J ′(wm), (wm − w0)) = lim
m→+∞

(I ′(wm)− T ′(wm), wm − w0) = 0.

Moreover, since J is convex we have

J(w0)− J(wm) ≥ (J ′(wm), (w0 − wm)).

Letting m → +∞ we obtain that

J(w0) ≥ lim
m→+∞

J(wm).

On the other hand, by Proposition 2.6 we have

J(w0) ≤ lim inf
m→+∞

J(wm).

This implies that

J(w0) = lim
m→+∞

J(wm).

Next we suppose, by contradiction, that {wm} does not converge to w0 =
(u0, v0). Then there exists a subsequence {wmk

= (umk
, vmk

)}k of {wm} and
ϵ > 0 such that

∥wmk
− w0∥E ≥ ϵ, k = 1, 2, . . . .

Recalling the Clarkson’s inequality∣∣∣∣s+ t

2

∣∣∣∣p + ∣∣∣∣s− t

2

∣∣∣∣p ≤ 1

2
(|s|p + |t|p) ,s, t ∈ R,

we deduce that

1

2
J(wmk

) +
1

2
J(w0)− J

(
wmk

+ w0

2

)
≥ J

(
wmk

− w0

2

)
, k = 1, 2, . . . .

Observe that

J

(
wmk

− w0

2

)
=

α

p

1

2p
∥umk

− u0∥pE1
+

β

p

1

2p
∥vmk

− v0∥pE2

≥ 1

p2p
min (α, β) ∥wmk

− w0∥pE ≥ min (α, β)

p

ϵp

2p
> 0.

Hence

1

2
J (wmk

) +
1

2
J(w0)− J

(
wmk

+ w0

2

)
≥ min (α, β)

p

ϵp

2p
> 0 , k = 1, 2, . . . .

Letting limk→+∞ inf we obtain

J(w0)− lim inf
k→+∞

J

(
wmk

+ w0

2

)
≥ min (α, β)

p

ϵp

2p
> 0.
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Again instead of the remark that since
{

wmk
+w0

2

}
converges weakly to w0 in

X, by Proposition 2.6 we have

J(w0) ≤ lim inf
k→+∞

J

(
wmk

+ w0

2

)
.

Hence we get a contradiction:

0 ≥ min (α, β)

p

ϵp

2p
> 0.

Therefore {wm} converges strongly to w0 in E. The Proposition 2.7 is proved.
□

Proposition 2.8. Assume that hypothesis (H1) and (H2) are fulfilled. The
functional I : E → R given by (2.1) satisfies the Palais-Smale condition on E.

Proof. Let {wm = (um, vm)} be a Palais-Smale sequence in E, i.e:

(2.8) |I(wm)| ≤ c, c is positive constant.

(2.9) I ′(wm) → 0 in E∗ as m → +∞.

First we shall prove that {wm} is bounded in E. We suppose, by contradic-
tion, that {wm} is not bounded in E. Without loss of generality we assume
that

∥wm∥E → +∞ as m → +∞
Let ŵm = wm

∥wm∥E
= (ûm, v̂m) that is ûm = um

∥wm∥E
and v̂m = vm

∥wm∥E
. Thus

ŵm is bounded in E, hence ŵm is also bounded in X = W 1,p
0 × W 1,p

0 . Then
there exists a subsequence {ŵmk

= (ûmk
, v̂mk

)}k which converges weakly to

some ŵ = (û, v̂) in X. Since the embedding W 1,p
0 (Ω) into Lp(Ω) is compact,

the sequences {ûmk
} and {v̂mk

} converge strongly to û and v̂, respectively, in
Lp(Ω).

From (2.8) we have
(2.10)
α

p

∫
Ω

h1(x)|∇ûmk |
pdx+

β

p

∫
Ω

h2(x) |∇v̂mk |
p dx− λ1

∫
Ω

|ûmk |
α−1 |v̂mk |

β−1ûmk v̂mkdx

−
∫
Ω

H(x,wmk )

∥wmk∥
p
E

dx+

∫
Ω

αk1ûmk + βk2v̂mk

∥wmk∥
p−1
E

dx ≤ c

∥wmk∥
p
E

.

From this, remark that h1(x) ≥ 1, h2(x) ≥ 1 for a.e x ∈ Ω, we get
(2.11)

lim
k→+∞

sup

{
α

p

∫
Ω

|∇ûmk |
pdx+

β

p

∫
Ω

|∇v̂mk |
pdx− λ1

∫
Ω

|ûmk |
α−1|v̂mk |

β−1ûmk v̂mkdx

−
∫
Ω

H(x,wmk)

∥wmk∥
p
E

dx+

∫
Ω

αk1(x)ûmk + βk2(x)v̂mk

||wmk ||
p−1
E

dx

}
≤ 0.
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By hypothesis (H1) on the functions f, g, hi(x), ki(x), i = 1, 2, we deduce that

(2.12) lim sup
k→+∞

∫
Ω

H(x,wmk
)

∥wmk
∥pE

dx = 0,

(2.13) lim
k→+∞

∫
Ω

αk1(x)ûmk
+ βk2(x)v̂mk

∥wmk
∥p−1
E

dx = 0.

Moreover by Remark 2.4, we infer

(2.14) lim
k→+∞

∫
Ω

|ûmk
|α−1|v̂mk

|β−1ûmk
v̂mk

dx =

∫
Ω

|û|α−1|v̂|β−1ûv̂dx.

From (2.11) with (2.12), (2.13) and (2.14) we arrive at

lim sup
k→+∞

{
α

p

∫
Ω

|∇ûmk
|pdx+

β

p

∫
Ω

|∇v̂mk
|pdx

}
≤ λ1

∫
Ω

|û|α−1|v̂|β−1ûv̂dx.

By Proposition 2.6 and the variational characterization of λ1 we get

λ1

∫
Ω

|û|α−1|v̂|β−1ûv̂dx ≤ α

p

∫
Ω

|∇û|pdx+
β

p

∫
Ω

|∇v̂|pdx

≤ lim inf
k→+∞

{
α

p

∫
Ω

|∇ûmk
|pdx+

β

p

∫
Ω

|∇v̂mk
|pdx

}
≤ lim sup

k→+∞

{
α

p

∫
Ω

|∇ûmk
|pdx+

β

p

∫
Ω

|∇v̂mk
|pdx

}
≤ λ1

∫
Ω

|û|α−1|v̂|β−1ûv̂dx.

Thus theses inequalities are indeed equalities and we have

(2.15)

lim
k→+∞

{
α

p

∫
Ω

|∇ûmk
|pdx +

β

p

∫
Ω

|∇v̂mk
|pdx

}
=

α

p

∫
Ω

|∇û|pdx+
β

p

∫
Ω

|∇v̂|pdx

= λ1

∫
Ω

|û|α−1|v̂|β−1ûv̂dx.

We shall prove that û ̸= 0 and v̂ ̸= 0.
By contradiction suppose that û = 0, thus ûmk

→ 0 in Lp(Ω) as k → +∞.
Then from the fact that

|∧(ûmk
, v̂mk

)| =
∣∣∣∣∫

Ω

|ûmk
|α−1 |v̂mk

|β−1
ûmk

v̂mk
dx

∣∣∣∣
≤ ∥ûmk

∥αLp(Ω)∥v̂mk
∥βLp(Ω).

Letting k → +∞ since ∥ûmk
∥Lp(Ω) → 0, we deduce that

(2.16) lim
k→+∞

∧ (ûmk
, v̂mk

) = 0.

From (2.10) taking limk→+∞ sup with (2.12), (2.13) and (2.16) we arrive at
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(2.17) lim sup
k→+∞

{
α

p

∫
Ω

h1(x)|∇ûmk
|pdx+

β

p

∫
Ω

h2(x)|∇v̂mk
|pdx

}
= 0.

On the other hand, since ∥ŵmk
∥E = 1 and

α

p

∫
Ω

h1(x)|∇ûmk |
pdx+

β

p

∫
Ω

h2(x)|∇v̂mk |
pdx ≥min

(
α

p
,
β

p

)
∥ŵmk∥E =min

(
α

p
,
β

p

)
>0,

which contradicts (2.17). Thus û ̸= 0. Similary we have v̂ ̸= 0.
By again the definition of λ1 from (2.15) we deduce that ŵ = (û, v̂) = (φ1, φ2)
or ŵ = (û, v̂) = (−φ1,−φ2), where (φ1, φ2) is eigenpair associated with λ1 of
the problem (1.4).

Next we shall consider following two cases:
Assume that ûmk

→ φ1, v̂mk
→ φ2 in Lp(Ω) as k → +∞. Observe that by the

variational characterization of λ1 we have

α

p

∫
Ω

|∇ûmk |
pdx+

β

p

∫
Ω

|∇v̂mk |
pdx− λ1

∫
Ω

|umk |
α−1|vmk |

β−1umkvmkdx ≥ 0.

From this, note that h1(x) ≥ 1, h2(x) ≥ 1 a.e x ∈ Ω, we have

α

p

∫
Ω

h1(x)|∇ûmk |
pdx+

β

p

∫
Ω

h2(x)|∇v̂mk |
pdx−λ1

∫
Ω

|umk |
α−1|vmk |

β−1umkvmkdx ≥ 0.

Then from (2.8) it implies:

−
∫
Ω

H(x, umk
, vmk

)dx+

∫
Ω

(αk1(x)umk
+ βk2(x)vmk

) dx ≤ c, k = 1, 2, . . . .

After dividing by ∥wmk
∥E taking limk→+∞ sup and remark that

lim
k→+∞

∫
Ω

(αk1(x)ûmk
+ βk2(x)v̂mk

) dx =

∫
Ω

(αk1(x)φ1 + βk2(x)φ2) dx,

we arrive at

(2.18) lim sup
k→+∞

∫
Ω

H(x,wmk
)

∥wmk
∥E

dx ≥
∫
Ω

(αk1(x)φ1 + βk2(x)φ2) dx.

We need the following lemma

Lemma 2.9. Assume that the hypothesis (H1) is true. Then

(2.19) lim sup
k→+∞

∫
Ω

H(x,wmk
)

∥wmk
∥E

dx =
1

2

∫
Ω

(F1(x)φ1 +G1(x)φ2) dx,

where F1(x), G1(x) are given by (1.9).

Proof. By (1.7), we have

H(x,wmk ) =(2.20)

α

2

∫ umk

0

(f(x, s, vmk ) + f(x, s, 0)) ds+
β

2

∫ vmk

0

(g(x, umk , t) + g(x, 0, t)) dt.
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Set lk = ∥wmk
∥E → +∞ as k → +∞. Observe that by hypothesiss (H1) on

f(x,w), g(x,w) we have∣∣∣∣α ∫ umk

0

f(x, s, vmk)ds− α

∫ lkφ1

0

f(x, s, lkφ2)ds

∣∣∣∣
≤ α

∣∣∣∣∫ umk

0

(f(x, s, vmk )− f(x, s, lkφ2)) ds

∣∣∣∣+ α

∣∣∣∣∫ umk

lkφ1

f(x, s, lkφ2)ds

∣∣∣∣
≤

∣∣∣∣∫ umk

0

α
∂f

∂t
(x, s, lkφ2 + δ(vmk − lkφ2)) (vmk − lkφ2) ds

∣∣∣∣
+ ατ(x) |umk − lkφ1|

≤
∣∣∣∣∫ umk

0

β
∂g

∂s
(x, s, lkφ2 + δ(vmk − lkφ2)) ds (vmk − lkφ2)

∣∣∣∣
+ ατ(x) |umk − lkφ1|

≤ 2βτ(x)|vmk − lkφ2|+ ατ(x)|umk − lkφ1| , δ ∈ (0, 1).

From this and remark that ûmk
=

umk

lk
, v̂mk

=
vmk

lk
, we get:∣∣∣∣α 1

lk

∫ umk

0

f(x, s, vmk
)ds− α

1

lk

∫ lkφ1

0

f(x, s, lkφ2)ds

∣∣∣∣∣
≤ 2βτ(x) |v̂mk

− φ2|+ ατ(x) |ûmk
− φ1| .(2.21)

Similarly,

(2.22)

∣∣∣∣∣ αlk
∫ umk

0

f(x, s, 0)ds− α

lk

∫ lkφ1

0

f(x, s, 0)ds

∣∣∣∣∣ ≤ ατ(x) |ûmk
− φ1| .

Combining (2.21) and (2.22) we infer that∣∣∣∣∫
Ω

{
α

lk

∫ umk

0

(f(x, s, vmk) + f(x, s, 0)) ds− α

lk

∫ lkφ1

0

(f(x, s, lkφ2) + f(x, s, 0)) ds

}
dx

∣∣∣∣
≤

∫
Ω

{2βτ(x) |(v̂mk − φ2)|+ 2ατ(x) |ûmk − φ1|} dx

≤ 2β∥τ(x)∥Lp′ (Ω)∥v̂mk − φ2∥Lp(Ω) + 2α∥τ(x)∥Lp′ (Ω)∥ûmk − φ1∥Lp(Ω).

Letting k → +∞, since:

lim
k→+∞

∥v̂mk
− φ2∥L2(Ω) = 0 , lim

k→+∞
∥ûmk

− φ1∥L2(Ω) = 0,

we deduce that

lim sup
k→+∞

∫
Ω

{
α

lk

∫ umk

0

(f(x, s, vmk
) + f(x, s, 0)) ds

}
dx

= lim sup
k→+∞

∫
Ω

{
α

lk

∫ lkφ1

0

(f(x, s, lkφ2) + f(x, s, 0)) ds

}
dx.
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Set s = yφ1(x), ds = φ1(x)dy, we get∫ lkφ1

0

(f(x, s, lkφ2) + f(x, s, 0)) ds =

∫ lk

0

(f (x, yφ1, lkφ2) + f(x, yφ1, 0))φ1dy.

Remark that lk = ||wmk
||E → +∞ as k → +∞, we derive that

lim sup
k→+∞

∫
Ω

{
α

lk

∫ umk

0

(f(x, s, vmk
) + f(x, s, 0)) ds

}
dx

= lim sup
k→+∞

∫
Ω

{
α

lk

∫ lk

0

(f(x, yφ1, lkφ2) + f(x, yφ1, 0)) dy

}
φ1dx

=

∫
Ω

F1(x)φ1(x)dx.(2.23)

Similarly, we also derive that

lim sup
k→+∞

∫
Ω

{
β

lk

∫ vmk

0

(g(x, umk
, t) + g(x, 0, t)) ds

}
dx =

∫
Ω

G1(x)φ2(x)dx,

(2.24)

where F1(x) and G1(x) are given in (1.9). Combining (2.23), (2.24) we obtain:

lim sup
k→+∞

∫
Ω

H(x,wmk
)

∥wmk
∥E

dx =
1

2

∫
Ω

(F1(x)φ1(x) +G1(x)φ2(x)) dx.(2.25)

Lemma 2.9 is proved. □
Now, by (2.19) from (2.18) we obtain

1

2

∫
Ω

(F1(x)φ1 +G1(x)φ2)dx ≥
∫
Ω

(αk1(x)φ1 + βk2(x)φ2) dx,

which contradicts (1.10).
If ûmk

→ −φ1(x) ,v̂mk
→ −φ2(x) in Lp(Ω) as k → +∞, by similar computa-

tions as above and remark that in this case:

lim sup
k→+∞

∫
Ω

H(x,wmk
)

∥wmk
∥E

dx = −1

2

∫
Ω

(F2(x)φ1 +G2(x)φ2) dx.

Hence from (2.18) we get

−1

2

∫
Ω

(F2(x)φ1 +G2(x)φ2) dx ≥ −
∫
Ω

(αk1(x)φ1 + βk2(x)φ2) dx,

which gives

1

2

∫
Ω

(F2(x)φ1 +G2(x)φ2) dx ≤
∫
Ω

(αk1(x)φ1 + βk2(x)φ2) dx.

Thus we get a contradiction with (1.10).

Hence the Palais-Smale sequence {wm} is bounded in E and it is also
bounded in X. Then there exists a subsequence {wmk

} which converges weakly
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to some w0 = (u0, v0) in X. From Proposition 2.7 we deduce that w0 ∈ E and
{wmk

} converges strongly to w0 in E. The proof of the Proposition 2.8 is
complete. □

Proposition 2.10. The functional I : E → R given by (2.1) is coercive on E
provided that hypotheses (H1) and (H2) hold.

Proof. By contradiction we suppose that I is not coercive in E. Then it is
possible to choose a sequence {wm = (um, vm)}m in E such that

∥wm∥E → +∞ and I(wm) ≤ c, c is positive constant.

Let ŵm = wm

∥wm∥E
= (ûm, v̂m). Hence the sequence {ŵm} is bounded in E and

then bounded in X = W 1,p
0 (Ω) × W 1,p

0 (Ω). Therefore it has a subsequence
ŵmk

= (ûmk
, v̂mk

) which converges weakly in X and converges strongly in
Lp(Ω) × Lp(Ω). Applying arguments used in the proof of Proposition 2.8,
we can proof that ŵmk

→ (φ1, φ2) or ŵmk
→ (−φ1,−φ2) in Lp(Ω) × Lp(Ω)

as k → +∞ where (φ1, φ2) is eigenpair associated with eigenvalue λ1 of the
problem (1.4). Assume that ŵmk

→ (φ1, φ2) in Lp(Ω)× Lp(Ω) as k → +∞.
By again the same arguments used in the proof of the Proposition 2.8 we arrive
at

1

2

∫
Ω

(F1(x)φ1 +G1(x)φ2)dx ≥
∫
Ω

(αk1(x)φ1 + βk2(x)φ2) dx,

which contradicts (1.10). If ŵm → (−φ1,−φ2) in Lp(Ω)× Lp(Ω) as k → +∞,
we get

1

2

∫
Ω

(F2(x)φ1 +G2(x)φ2) dx ≤
∫
Ω

(αk1(x)φ1 + βk2(x)φ2) dx.

This is in contradiction with (1.10). Thus I is coercive on E. □

Proof of Theorem 1.1. By Propositions 2.8 and Proposition 2.6, applying the
Minimum Principle (see Theorem 2.2), we deduce that the functional I at-
tains its proper infimum at some w0 = (u0, v0) ∈ E, so that the problem
(1.1) has at least a weak solution w0 ∈ E. Moreover by hypothesis (H1) on
f(x, s, t), g(x, s, t), k1(x), k2(x), it is clear that w0 is nontrivial and the proof of
Theorem 1.1 is complete. □
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