On a p-Laplacian system and a generalization of the Landesman-Lazer type condition

B.Q. Hung and H.Q. Toan
ON A P-LAPLACIAN SYSTEM AND A GENERALIZATION OF THE LANDESMAN-LAZER TYPE CONDITION

B.Q. HUNG* AND H.Q. TOAN

(Communicated by Asadollah Aghajani)

Abstract. This article shows the existence of weak solutions of a resonance problem for nonuniformly p-Laplacian system in a bounded domain in \mathbb{R}^N. Our arguments are based on the minimum principle and rely on a generalization of the Landesman-Lazer type condition.

Keywords: Semilinear elliptic equation, non-uniform, Landesman-Lazer condition, minimum principle.

1. Introduction and preliminaries

Let Ω be a bounded domain in \mathbb{R}^N, with smooth boundary $\partial \Omega$. In the present paper we consider the existence of weak solutions of the following Dirichlet problem at resonance for nonuniformly p-Laplacian system:

\begin{align*}
-\text{div}(h_1(x)|\nabla u|^{p-2}\nabla u) &= \lambda_1|u|^\alpha - 1|v|^\beta - 1 v + f(x, u, v) - k_1(x), &\text{in } \Omega \\
-\text{div}(h_2(x)|\nabla v|^{p-2}\nabla v) &= \lambda_1|u|^\alpha - 1|v|^\beta - 1 u + g(x, u, v) - k_2(x), &\text{in } \Omega \\
u &= 0, &v &= 0 &\text{on } \partial \Omega,
\end{align*}

where

\begin{align*}
p &\geq 2, \quad \alpha \geq 1, \quad \beta \geq 1, \quad \alpha + \beta = p.
\end{align*}

and $f, g : \Omega \times \mathbb{R}^2 \to \mathbb{R}$ are Carathéodory functions which will be specified later,

\begin{align*}
h_i(x) &\in L^1_{\text{loc}}(\Omega), \quad h_i(x) \geq 1, \quad \text{for a.e } x \in \Omega, \quad i = 1, 2, \\
k_i(x) &\in L^{p'}(\Omega), \quad p' = \frac{p}{p-1}, \quad k_i(x) > 0, \quad \text{for a.e } x \in \Omega, \quad i = 1, 2.
\end{align*}

λ_1 denotes the first eigenvalue of the problem:
A generalization of the Landesman-Lazer condition

\begin{equation}
\begin{aligned}
-\Delta_p u &= \lambda |u|^{\alpha-1}|v|^\beta v, \\
-\Delta_p v &= \lambda |u|^\alpha |v|^{\beta-1} u,
\end{aligned}
\end{equation}

and \((u, v) \in W^{1,p}_0(\Omega) \times W^{1,p}_0(\Omega), \ p > 2, \alpha > 1, \beta > 1, \alpha + \beta = p.\)

It is well-known that the principle eigenvalue \(\lambda_1 = \lambda_1(p)\) of (1.4) is obtained using the Ljusternick-Schnirelmann theory by minimizing the functional

\[J(u, v) = \frac{\alpha}{p} \int_\Omega |\nabla u|^p dx + \frac{\beta}{p} \int_\Omega |\nabla v|^p dx, \]

on \(C^1\) - manifold:

\[S = \left\{ (u, v) \in X = W^{1,p}_0(\Omega) \times W^{1,p}_0(\Omega) : \wedge(u, v) = 1 \right\}, \]

where

\[\wedge(u, v) = \int_\Omega |u|^{\alpha-1}|v|^{\beta-1} u.v dx, \]

that is \(\lambda_1 = \lambda_1(p)\) can be variational characterized as

\begin{equation}
\lambda_1 = \lambda_1(p) = \inf_{\wedge(u, v) > 0} \inf_{(u, v) \in X : u.v > 0} \frac{\frac{\alpha}{p} \int_\Omega |\nabla u|^p dx + \frac{\beta}{p} \int_\Omega |\nabla v|^p dx}{\int_\Omega |u|^{\alpha-1}|v|^{\beta-1} u.v dx}.
\end{equation}

Moreover the eigenpair \((\varphi_1, \varphi_2)\) associated with \(\lambda_1\) is componentwise positive and unique (up to multiplication by nonzero scalar) (see [1, Theorem 2.2] and [15, Remark 5.4]).

We firstly make some comments on the problem (1.1). Observe that the existence of weak solutions of \((p, q)\)-Laplacian systems at resonance in bounded domains with Dirichlet boundary condition, was first considered by Zographopoulos in [20]. Later in [10] Kandilakis and Magiropoulos have studied a quasilinear elliptic system with resonance part and nonlinear boundary condition in an unbounded domain by assuming the nonlinearities \(f\) and \(g\) depending only on variable \(u\) or \(v\). In [14], Ou and Tang have considered the same system as in [10] with Dirichlet condition in a bounded domain. In these papers, the existence of weak solutions is obtained by critical point theory under a Landesman-Lazer type condition. At the same time for nonuniformly nonlinear elliptic equations involving \(p\)-Laplacian \((p \geq 2)\) at resonance we refer the reader to [12, 13, 18].

In this paper by introducing a generalization of Landesman-Lazer type condition we shall prove an existence result for a \(p\)-Laplacian system on resonance in bounded domain with the nonlinearities \(f\) and \(g\) to be functions depending on both variables \(u\) and \(v\).

Note that in [9] we considered system (1.1) in the case \(h_1(x) = h_2(x) = 1\) and shows the existence of weak solutions of (1.1) in \(W^{1,p}_0 \times W^{1,p}_0\). Our arguments are based on the saddle point theorem and rely on a generalization of the Landesman-Lazer type condition.
Recall that due to $h_i(x) \in L^1_{loc}(\Omega)$, $i = 1, 2$, the problem (1.1) now is nonuniformly in sense that the Euler-Lagrange functional associated to the problem may be infinity at some $w_0 = (u_0, v_0) \in X = W_0^{1,p}(\Omega) \times W_0^{1,p}(\Omega)$. Hence we must consider the problem (1.1) in some suitable subspace of $W_0^{1,p}(\Omega) \times W_0^{1,p}(\Omega)$.

As usually $W_0^{1,p}(\Omega)$ denotes the Sobolev space which can be defined as the completion of $C_0^\infty(\Omega)$ under the norm:

$$
\|u\| = \left(\int_\Omega |\nabla u|^p dx \right)^{\frac{1}{p}}.
$$

Now we define the following subspaces E_i, $i = 1, 2$, of $W_0^{1,p}(\Omega)$ by:

$$
E_i = \left\{ u \in W_0^{1,p}(\Omega) : \int_\Omega h_i(x)|\nabla u|^p dx < +\infty \right\},
$$

where $h_i(x)$, $i = 1, 2$, satisfy condition (1.2). E_i can be endowed with the norm

$$
\|u\|_{E_i} = \left(\int_\Omega h_i(x)|\nabla u|^p dx \right)^{\frac{1}{p}}.
$$

Applying the arguments as those used in the proof of [8, Proposition 1.1] we can prove the following proposition.

Proposition 1.1. For each $i = 1, 2$, E_i is a Banach space and the embeddings E_i into $W_0^{1,p}(\Omega)$ are continuous.

Proof. It is clear that E_i is a normed space. Let $\{u_m\}$ be a Cauchy sequence in E_i. Then

$$
\lim_{m,k \to +\infty} \|u_m - u_k\|_{E_i}^p = \lim_{m,k \to +\infty} \int_\Omega h_i(x)|\nabla u_m - \nabla u_k|^p dx = 0,
$$

and $\{\|u_m\|_{E_i}\}$ is bounded. By (1.3) : $\|u_m - u_k\|_{W_0^{1,p}(\Omega)} \leq \|u_m - u_k\|_{E_i}$ for $m, k = 1, 2, \ldots$. Hence the sequence $\{u_m\}$ is also a Cauchy sequence in $W_0^{1,p}(\Omega)$ and it converges to some u in $W_0^{1,p}(\Omega)$, i.e:

$$
\lim_{m \to +\infty} \int_\Omega |\nabla u_m - \nabla u|^p dx = 0.
$$

It follows that $\nabla u_m \to \nabla u$ in $L^p(\Omega)$ and there exists a subsequence $\{\nabla u_{m_k}\}$ converging to ∇u a.e $x \in \Omega$. Applying Fatou’s lemma we get

$$
\int_\Omega h_i(x)|\nabla u|^p dx \leq \liminf_{k \to +\infty} \int_\Omega h_i(x)|\nabla u_{m_k}|^p dx < +\infty
$$
A generalization of the Landesman-Lazer condition

Hence \(u \in E_i \). Applying again Fatou’s lemma we get

\[
0 \leq \lim_{k \to +\infty} \int_{\Omega} h_i(x)|\nabla u_{m_k} - \nabla u|^p dx
\leq \lim_{k \to +\infty} \left\{ \lim_{i \to +\infty} \int_{\Omega} h_i(x)|\nabla u_{m_k} - \nabla u_{m_i}|^p dx \right\} = 0.
\]

Hence \(\{u_{m_k}\} \) converges to \(u \) in \(E_i \). From this, it implies the sequence \(\{u_m\} \) converges to \(u \) in \(E_i, i = 1, 2 \). Thus \(E_i \) is a Banach space and the continuous embedding \(E_i \) into \(W^{1,p}_0 \) holds true. Proposition 1.1 is proved. \(\square \)

Remark 1.2. Since the embedding \(W^{1,p}_0(\Omega) \) to \(L^p(\Omega) \) is compact, hence \(E_i \to L^p(\Omega) \) compactly.

Set \(E = E_1 \times E_2 \) and for \(w = (u, v) \in E \):

\[
\|w\|_E = \left(\|u\|_{E_1}^p + \|v\|_{E_2}^p \right)^{\frac{1}{p}}.
\]

Moreover for simplicity of notation denotes by \(X = W^{1,p}_0(\Omega) \times W^{1,p}_0(\Omega) \). Then we have \(\|w\|_X \leq \|w\|_E, \forall w = (u, v) \in E \).

Definition 1.3. Function \(w = (u, v) \in E \) is called a weak solution of the problem (1.1) if and only if

\[
\alpha \int_{\Omega} h_1(x)\nabla u \nabla \tilde{u} dx + \beta \int_{\Omega} h_2(x)\nabla v \nabla \tilde{v} dx
\]

\[
- \lambda_1 \int_{\Omega} \left(\alpha |u|^{a-1} |v|^{\beta-1} \tilde{v} + \beta |u|^{a-1} |v|^{\beta-1} \tilde{u} \right) dx
\]

\[
- \int_{\Omega} \left(\alpha f(x, u, v) \tilde{u} + \beta g(x, u, v) \tilde{v} \right) dx
\]

\[
+ \int_{\Omega} \left(\alpha k_1(x) \tilde{u} + \beta k_2(x) \tilde{v} \right) dx = 0, \quad \forall \tilde{w} = (\tilde{u}, \tilde{v}) \in E.
\]

Let us introduce the following some conditions on nonlinearities of system (1.1):

(H₁)

(i) \(f, g : \Omega \times \mathbb{R}^2 \to \mathbb{R} \) are Carathéodory functions: \(f(x, 0, 0) = 0, \; g(x, 0, 0) = 0 \).

(ii) There exists function \(\tau(x) \in L^{p'}(\Omega), \; p' = \frac{p}{p-1} \) such that:

\[
|f(x, s, t)| \leq \tau(x), \; |g(x, s, t)| \leq \tau(x), \; \text{for a.e } x \in \Omega, (s, t) \in \mathbb{R}^2.
\]

(iii) For \((s, t) \in \mathbb{R}^2 \):

\[
(1.6) \quad \alpha \frac{\partial f(x, s, t)}{\partial t} = \beta \frac{\partial g(x, s, t)}{\partial s} \quad \text{for a.e } x \in \Omega.
\]

\[
\frac{\partial f(x, s, t)}{\partial t} = \frac{\partial g(x, s, t)}{\partial s} \quad \text{for a.e } x \in \Omega.
\]

\[
\frac{\partial f(x, s, t)}{\partial t} = \frac{\partial g(x, s, t)}{\partial s} \quad \text{for a.e } x \in \Omega.
\]
Denotes, for \((u, v) \in \mathbb{R}^2\)

\begin{equation}
H(x, u, v) = \frac{\alpha}{2} \int_0^u (f(x, s, v) + f(x, s, 0)) \, ds + \frac{\beta}{2} \int_0^v (g(x, u, t) + g(x, 0, t)) \, dt, \quad \text{for a.e } x \in \Omega.
\end{equation}

Remark 1.4. By hypothesis (1.6), from (1.7) with some simple computations we deduce that:

\begin{equation}
\frac{\partial H(x, s, t)}{\partial s} = \alpha f(x, s, t), \quad \frac{\partial H(x, s, t)}{\partial t} = \beta g(x, s, t), \quad \text{a.e } x \in \Omega, \forall (s, t) \in \mathbb{R}^2.
\end{equation}

Now we define, for \(i, j = 1, 2\):

\begin{equation}
F_i(x) = \limsup_{\tau \to +\infty} \frac{\alpha}{\tau} \int_0^\tau \left(f \left(x, (-1)^{1+i}y\varphi_1, (-1)^{1+i}y\varphi_2 \right) + f \left(x, (-1)^{1+i}y\varphi_1, 0 \right) \right) \, dy,
\end{equation}

\begin{equation}
G_j(x) = \limsup_{\tau \to +\infty} \frac{\beta}{\tau} \int_0^\tau \left(g \left(x, (-1)^{1+j}y\varphi_1, (-1)^{1+j}y\varphi_2 \right) + g \left(x, 0, (-1)^{1+j}y\varphi_2 \right) \right) \, dy.
\end{equation}

Assume that

\begin{equation}
(H_2)
\end{equation}

\begin{equation}
\int_\Omega (F_1(x)\varphi_1(x) + G_1(x)\varphi_2(x)) \, dx < 2 \int_\Omega (\alpha k_1(x)\varphi_1(x) + \beta k_2(x)\varphi_2(x)) \, dx < \int_\Omega (F_2(x)\varphi_1(x) + G_2(x)\varphi_2(x)) \, dx.
\end{equation}

Remark 1.5. For example, we can take functions \(f(x, u, v), g(x, u, v)\) as following:

\begin{align*}
f(x, u, v) &= \tau_1(x) \sin \left(\frac{u}{\beta} + \frac{v}{\alpha} \right) + \eta_1(x) \frac{u}{\sqrt{1 + u^2}}, \\
g(x, u, v) &= \tau_1(x) \sin \left(\frac{u}{\beta} + \frac{v}{\alpha} \right) + \eta_2(x) \frac{v}{\sqrt{1 + v^2}},
\end{align*}

where \(\tau_1(x), \eta_1(x), \eta_2(x)\) are functions in \(L^p(\Omega)\) and \(\eta_1(x) < 0, \eta_2(x) < 0\) for \(x \in \Omega\).

By some simple computations we get:

\begin{align*}
F_1(x) &= 2\alpha \eta_1(x), \\
F_2(x) &= -2\alpha \eta_1(x), \\
G_1(x) &= 2\beta \eta_2(x), \\
G_2(x) &= -2\beta \eta_2(x).
\end{align*}

Therefore, hypothesis (1.10) is satisfied whenever

\begin{align*}
-\eta_1(x) > k_1(x) \quad \text{and} \quad -\eta_2(x) > k_2(x).
\end{align*}

Our main result is given by the following theorem:
Theorem 1.1. Assume that the conditions (H1) and (H2) are fulfilled. Then the problem (1.1) has at least a nontrivial weak solution in E.

Proof of Theorem 1.1 is based on variational techniques and the Minimum Principle.

2. Proof of the main result

We define the Euler-Lagrange functional associated to the problem (1.1) by

\[I(w) = \frac{\alpha}{p} \int_{\Omega} h_1(x)|\nabla u|^p dx + \frac{\beta}{p} \int_{\Omega} h_2(x)|\nabla v|^p dx - \lambda_1 \int_{\Omega} |v|^{\alpha-1}|v|^{\beta-1}uv dx \\
- \int_{\Omega} H(x,u,v) dx + \int_{\Omega} (\alpha k_1(x)u + \beta k_2(x)v) dx \]

(2.1)

= J(w) + T(w), \quad \forall w = (u,v) \in E,

where

\[J(w) = \frac{\alpha}{p} \int_{\Omega} h_1(x)|\nabla u|^p dx + \frac{\beta}{p} \int_{\Omega} h_2(x)|\nabla v|^p dx, \]

(2.2)

\[T(w) = -\lambda_1 \int_{\Omega} |v|^{\alpha-1}|v|^{\beta-1}uv dx - \int_{\Omega} H(x,u,v) dx + \int_{\Omega} (\alpha k_1(x)u + \beta k_2(x)v) dx. \]

(2.3)

Firstly we note that due to \(h_i(x) \in L^1_{\text{loc}}(\Omega), \) \(i = 1, 2, \) in general the functional \(J(w) \) may not belong to \(C^1(E) \). Therefore we need some modifications in order to apply the critical point theory to our problem.

Definition 2.1. (see [6, Definition 2.1]) Let \(I \) be a map from a Banach space \(X \) to \(R \). We say that \(I \) is weakly continuously differentiable on \(X \) if the following conditions are satisfied:

(i) \(I \) is continuous on \(X \)

(ii) For any \(u \in X \) there exists a linear map \(I'(u) \) from \(X \) into \(R \) such that:

\[\lim_{t \to 0} \frac{I(u + tv) - I(u)}{t} = (I'(u), v), \quad \forall v \in X. \]

(iii) For any \(v \in X \) the map \(u \to (I'(u), v) \) is continuous on \(X \).

Denotes by \(C^1_w(X) \) the set of weakly continuously differentiable functionals on \(X \). It is clear that \(C^1(X) \subset C^1_w(X) \), where we denote by \(C^1(X) \) the set of all continuously Fréchet differentiable functionals on \(X \).

Let \(I \in C^1_w(X) \) we put:

\[||I'(u)|| = \sup \{ |(I'(u),h)| : h \in X : ||h|| = 1 \}, \quad \forall u \in X \]
We say that $I \in C^1_w(X)$ satisfies the Palais-Smale condition on X if any sequence $\{u_m\} \subset X$ for which $\{I(u_m)\}$ is bounded and $\lim_{m \to +\infty} \|I'(u_m)\|_{X^*} = 0$ has a convergent subsequence in X.

Theorem 2.2 (The minimum Principle, see in [12,13, Theorem 2.3]). Let X be a Banach space and $I \in C^1_w(X)$. Assume that:

(i) I is bounded from below, $c = \inf_X I(u)$

(ii) I satisfies the Palais-Smale condition on X.

Then there exists $u_0 \in X$ such that $I(u_0) = c$.

The following proposition concerns the smoothness of the functional $I = J + T$ given by (2.1).

Proposition 2.3. Assuming hypothesis (H$_1$) and (H$_2$) are fulfilled. We assert that:

(i) The functional $T(w), w \in E$ given by (2.3) is continuous on E. Moreover, T is weakly continuously differentiable on E and

$$
(T'(w), \bar{w}) = -\lambda_1 \int_{\Omega} \left(\alpha |u|^{{\alpha}-1}|v|^{{\beta}-1}v\bar{u} + \beta |u|^{{\alpha}-1}|v|^{{\beta}-1}u\bar{v} \right) dx
$$

$$
- \int_{\Omega} (\alpha f(x,w)\bar{u} + \beta g(x,w)\bar{v}) dx
$$

$$
+ \int_{\Omega} (\alpha k_1(x)\bar{u} + \beta k_2(x)\bar{v}) dx, \quad \forall w = (u,v); \quad \bar{w} = (\bar{u},\bar{v}) \in E.
$$

(ii) The functional $J(w), w \in E$ given by (2.2) is weakly continuously differentiable on E and we have: $\forall w = (u,v), \bar{w} = (\bar{u},\bar{v}) \in E$

$$
(J'(w), \bar{w}) = \alpha \int_{\Omega} h_1(x)|\nabla u|^{\alpha-1}\nabla u\nabla \bar{u} dx + \beta \int_{\Omega} h_2(x)|\nabla v|^{\alpha-1}\nabla v\nabla \bar{v} dx.
$$

Thus $I = J + T$ is weakly continuously differentiable on E and

$$
(I'(w), \bar{w}) = (J'(w), \bar{w}) + (T'(w), \bar{w}), \quad \forall w = (u,v); \quad \bar{w} = (\bar{u},\bar{v}) \in E.
$$

In the proof of the Proposition 2.3 we need the following remarks:

Remark 2.4. By similar arguments as those used in the proof of [21, Lemma 2.3] and [10, Lemma 5] we infer that the functional $\wedge : E \to \mathbb{R}$ and operator $\Gamma : E \to E^*$ given by

$$
\wedge(u,v) = \int_{\Omega} |u|^{{\alpha}-1}|v|^{{\beta}-1}uv dx, \quad (u,v) \in E,
$$

and

$$
\langle \Gamma(u,v), (\bar{u},\bar{v}) \rangle = \int_{\Omega} |u|^{{\alpha}-1}|v|^{{\beta}-1}\bar{u}\bar{v} dx + \int_{\Omega} |u|^{{\alpha}-1}|v|^{{\beta}-1}u\bar{v} dx, (u,v); (\bar{u},\bar{v}) \in E,
$$

are compact.
Proof. (i) By the Theorem 2.1 in [16, p. 248] and the Remark 2.4 with some standard arguments we infer that \(T \in C^1(X) \) where \(X = W_0^{1,p} \times W_0^{1,p} \). Moreover since the embedding \(E \rightarrow X \) is continuous, we have \(T \in C^1(E) \) and hence \(T \in C_w^1(E) \) and

\[
(T'(w), \bar{w}) = -\lambda_1 \int_{\Omega} \left(\alpha |u|^\alpha |v|^\beta - 1 \beta \beta u v + \beta |u|^\alpha |v|^\beta \beta \bar{u} \right) dx - \int_{\Omega} \left(\alpha f(x, w) u + \beta g(x, w) v \right) dx + \int_{\Omega} \left(\alpha k_1(x) u + \beta k_2(x) \bar{v} \right) dx, \quad \forall w = (u, v); \bar{w} = (\bar{u}, \bar{v}) \in E.
\]

(ii) By similar arguments used in the proof of [8, Proposition 2.1], we deduce that \(J \in C_w^1(E) \) and (2.5), (2.6) hold true. The proof of Proposition 2.3 is complete. \(\square \)

Remark 2.5. From Proposition 2.3, it implies that the critical points of the functional \(I \) given by (2.1) correspond to the weak solutions of the problem (1.1)

Proposition 2.6. Suppose that the sequence \(\{w_m = (u_m, v_m)\}_m \) converges weakly to \(w_0 = (u_0, v_0) \) in \(X = W_0^{1,p} (\Omega) \times W_0^{1,p} (\Omega) \). Then we have

\[
J(w_0) \leq \liminf_{m \rightarrow +\infty} J(w_m).
\]

Proof. The sequence \(\{w_m = (u_m, v_m)\} \) converges weakly to \(w_0 \in X \). Hence for all bounded \(\Omega' \subset \Omega \), \(\{w_m\} \) is also weakly converging in \(X \). By compactness of the embedding \(W_0^{1,p} (\Omega') \) into \(L^p (\Omega') \), the sequence \(\{w_m\} \) converges strongly in \(L^p (\Omega') \times L^p (\Omega') \). Then the sequences \(\{u_m\} \) and \(\{v_m\} \) converge strongly in \(L^1 (\Omega') \). Applying [16, Theorem 1.6, p9] we deduce that

\[
J(w_0) \leq \liminf_{m \rightarrow +\infty} J(w_m).
\]

The proof of Proposition 2.6 is complete. \(\square \)

Proposition 2.7. Let \(\{w_m = (u_m, v_m)\} \) be a sequence in \(E \) such that:

(i) \(|I(w_m)| \leq c, \ (m = 1, 2, \ldots), \ c \) is positive constant

\[
I'(w_m) \rightarrow 0 \quad \text{in} \ E^* \quad \text{as} \ m \rightarrow +\infty.
\]

(ii) \(\{w_m\} \) converges weakly to \(w_0 = (u_0, v_0) \) in \(X = W_0^{1,p} (\Omega) \times W_0^{1,p} (\Omega) \). Then \(w_0 \in E \) and the sequence \(\{w_m\} \) converges strongly to \(w_0 \) in \(E \).

Proof. Since \(\{w_m\} \) converges weakly to \(w_0 = (u_0, v_0) \) in \(X \) and the embedding \(W_0^{1,p} \) into \(L^p (\Omega) \) is compact hence the sequences \(\{u_m\} \) and \(\{v_m\} \) converge strongly in \(L^p (\Omega) \) to \(u_0 \) and \(v_0 \), respectively.
By hypothesis (H₁) and (1.7), applying Hölder’s inequality, we obtain
\[
|T(w_m)| \leq \lambda_1 \int_{\Omega} |u_m|^\alpha |v_m|^\beta \ dx + \int_{\Omega} |H(x, u_m, v_m)| \ dx \\
+ \int_{\Omega} (\alpha k_1(x)|u_m| + \beta k_2(x)|v_m|) \ dx \\
\leq \lambda_1 \|u_m\|_{L^p(\Omega)}^\alpha \|v_m\|_{L^p(\Omega)}^\beta + \|\tau\|_{L^{p'}(\Omega)} (\alpha \|u_m\|_{L^p(\Omega)} + \beta \|v_m\|_{L^p(\Omega)}) \\
+ \alpha \|k_1\|_{L^{p'}(\Omega)} \|u_m\|_{L^p(\Omega)} + \beta \|k_2\|_{L^{p'}(\Omega)} \|v_m\|_{L^p(\Omega)}.
\]
Since \(\{u_m\} \) and \(\{v_m\} \) are bounded in \(L^p(\Omega) \), there exists \(M > 0 \) such that:
\[
|T(w_m)| \leq M, \ m = 1, 2, \ldots
\]
Moreover by Proposition 2.6
\[
J(w_0) \leq \liminf_{m \to +\infty} J(w_m) = \liminf_{m \to +\infty} \{I(w_m) - T(w_m)\} \\
\leq \limsup_{m \to +\infty} \{ |I(w_m)| + |T(w_m)| \} \leq C + M < +\infty,
\]
which implies
\[
\int_{\Omega} h_1(x) \nabla u_0 |^p \ dx < +\infty; \int_{\Omega} h_2(x) \nabla v_0 |^p \ dx < +\infty.
\]
Hence \(w_0 = (u_0, v_0) \in E \). Now from (2.4) and hypothesis (H₁) we have:
\[
|(T'(w_m), (w_m - w_0))| \\
\leq \lambda_1 \left\{ \int_{\Omega} \alpha |u_m|^{\alpha-1} |v_m|^\beta |u_m - u_0| \ dx \\
+ \int_{\Omega} \beta |u_m|^{\alpha} |v_m|^{\beta-1} |v_m - v_0| \ dx \\
+ \int_{\Omega} \{ \alpha |f(x, u_m)||u_m - u_0| + \beta |g(x, w_m)||v_m - v_0| \} \ dx \\
+ \int_{\Omega} \{ \alpha k_1(x) |u_m - u_0| + \beta k_2(x) |v_m - v_0| \} \ dx \right\} \\
\leq \lambda_1 \left\{ \alpha \|u_m\|_{L^p(\Omega)}^{\alpha-1} \|v_m\|_{L^p(\Omega)}^\beta \|u_m - u_0\|_{L^p(\Omega)} \\
+ \beta \|u_m\|_{L^p(\Omega)}^{\alpha} \|v_m\|_{L^p(\Omega)}^{\beta-1} \|v_m - v_0\|_{L^p(\Omega)} \right\} \\
+ \{ \|\tau\|_{L^{p'}(\Omega)} (\alpha \|u_m - u_0\|_{L^p(\Omega)} + \beta \|v_m - v_0\|_{L^p(\Omega)}) \\
+ \alpha \|k_1\|_{L^{p'}(\Omega)} \|u_m - u_0\|_{L^p(\Omega)} + \beta \|k_2\|_{L^{p'}(\Omega)} \|v_m - v_0\|_{L^p(\Omega)} \}
\]
Letting \(m \to +\infty \) and remark that
\[
\|u_m - u_0\|_{L^p(\Omega)} \to 0; \quad \|v_m - v_0\|_{L^p(\Omega)} \to 0 \quad \text{as} \quad m \to +\infty,
\]
we deduce that
\[
\lim_{m \to +\infty} (T'(w_m), (w_m - w_0)) = 0.
\]
A generalization of the Landesman-Lazer condition

From this we arrive at
\[
\lim_{m \to +\infty} (J'(w_m), (w_m - w_0)) = \lim_{m \to +\infty} (I'(w_m) - T'(w_m), w_m - w_0) = 0.
\]
Moreover, since \(J \) is convex we have
\[
J(w_0) - J(w_m) \geq (J'(w_m), (w_0 - w_m)).
\]
Letting \(m \to +\infty \) we obtain that
\[
J(w_0) \geq \lim_{m \to +\infty} J(w_m).
\]
On the other hand, by Proposition 2.6 we have
\[
J(w_0) \leq \lim \inf_{m \to +\infty} J(w_m).
\]
This implies that
\[
J(w_0) = \lim_{m \to +\infty} J(w_m).
\]
Next we suppose, by contradiction, that \(\{w_m\} \) does not converge to \(w_0 = (u_0, v_0) \). Then there exists a subsequence \(\{w_{m_k} = (u_{m_k}, v_{m_k})\} \) of \(\{w_m\} \) and \(\epsilon > 0 \) such that
\[
\|w_{m_k} - w_0\|_E \geq \epsilon, \quad k = 1, 2, \ldots.
\]
Recalling the Clarkson’s inequality
\[
\left| \frac{s + t}{2} \right|^p + \left| \frac{s - t}{2} \right|^p \leq \frac{1}{2} (|s|^p + |t|^p), s, t \in \mathbb{R},
\]
we deduce that
\[
\frac{1}{2} J(w_{m_k}) + \frac{1}{2} J(w_0) - J\left(\frac{w_{m_k} + w_0}{2}\right) \geq J\left(\frac{w_{m_k} - w_0}{2}\right), \quad k = 1, 2, \ldots.
\]
Observe that
\[
J\left(\frac{w_{m_k} - w_0}{2}\right) = \alpha \frac{1}{p} 2^p \|u_{m_k} - u_0\|_{E_1}^{p} + \beta \frac{1}{p} 2^p \|v_{m_k} - v_0\|_{E_2}^{p} \\
\geq \frac{1}{p2^p} \min (\alpha, \beta) \|w_{m_k} - w_0\|_E^{p} \geq \frac{\min (\alpha, \beta) \epsilon^{p}}{p2^p} > 0.
\]
Hence
\[
\frac{1}{2} J(w_{m_k}) + \frac{1}{2} J(w_0) - J\left(\frac{w_{m_k} + w_0}{2}\right) \geq \frac{\min (\alpha, \beta) \epsilon^{p}}{p2^p} > 0, \quad k = 1, 2, \ldots.
\]
Letting \(\lim_{k \to +\infty} \inf \) we obtain
\[
J(w_0) - \lim \inf_{k \to +\infty} J\left(\frac{w_{m_k} + w_0}{2}\right) \geq \frac{\min (\alpha, \beta) \epsilon^{p}}{p2^p} > 0.
\]
Again instead of the remark that since \(\left\{ \frac{w_{m_k} + w_0}{2} \right\} \) converges weakly to \(w_0 \) in \(X \), by Proposition 2.6 we have
\[
J(w_0) \leq \lim\inf_{k \to +\infty} J\left(\frac{w_{m_k} + w_0}{2} \right).
\]
Hence we get a contradiction:
\[
0 \geq \min \frac{(\alpha, \beta)}{\frac{2p}{p}} > 0.
\]
Therefore \(\{w_m\} \) converges strongly to \(w_0 \) in \(E \). The Proposition 2.7 is proved.

Proposition 2.8. Assume that hypothesis \((H_1)\) and \((H_2)\) are fulfilled. The functional \(I : E \to \mathbb{R} \) given by (2.1) satisfies the Palais-Smale condition on \(E \).

Proof. Let \(\{w_m = (u_m, v_m)\} \) be a Palais-Smale sequence in \(E \), i.e:
\[
|I(w_m)| \leq c, \ c \text{ is positive constant.}
\]
(2.8)
\[
I'(w_m) \to 0 \text{ in } E^* \text{ as } m \to +\infty.
\]
(2.9)

First we shall prove that \(\{w_m\} \) is bounded in \(E \). We suppose, by contradiction, that \(\{w_m\} \) is not bounded in \(E \). Without loss of generality we assume that
\[
\|w_m\|_E \to +\infty \text{ as } m \to +\infty.
\]
Let \(\hat{w}_m = \frac{w_m}{\|w_m\|_E} = (\hat{u}_m, \hat{v}_m) \) that is \(\hat{u}_m = \frac{u_m}{\|w_m\|_E} \) and \(\hat{v}_m = \frac{v_m}{\|w_m\|_E} \). Thus \(\hat{w}_m \) is bounded in \(E \), hence \(\hat{w}_m \) is also bounded in \(X = W_0^{1,p} \times W_0^{1,p} \). Then there exists a subsequence \(\{\hat{w}_{m_k} = (\hat{u}_{m_k}, \hat{v}_{m_k})\}_k \) which converges weakly to some \(\hat{w} = (\hat{u}, \hat{v}) \) in \(X \). Since the embedding \(W_0^{1,p}(\Omega) \) into \(L^p(\Omega) \) is compact, the sequences \(\{\hat{u}_{m_k}\} \) and \(\{\hat{v}_{m_k}\} \) converge strongly to \(\hat{u} \) and \(\hat{v} \), respectively, in \(L^p(\Omega) \).

From (2.8) we have
\[
\frac{\alpha}{p} \int_{\Omega} h_1(x)|\nabla \hat{u}_{m_k}|^p \, dx + \frac{\beta}{p} \int_{\Omega} h_2(x)|\nabla \hat{v}_{m_k}|^p \, dx - \lambda_1 \int_{\Omega} |\hat{u}_{m_k}|^{\alpha-1} |\hat{v}_{m_k}|^{\beta-1} \hat{u}_{m_k} \hat{v}_{m_k} \, dx
\]
(2.10)
\[
- \int_{\Omega} \frac{H(x, u_{m_k})}{\|w_{m_k}\|_E} \, dx + \int_{\Omega} \frac{\alpha k_1 \hat{u}_{m_k} + \beta k_2 \hat{v}_{m_k}}{\|w_{m_k}\|_E} \, dx \leq \frac{c}{\|w_{m_k}\|_E}.
\]
From this, remark that \(h_1(x) \geq 1, h_2(x) \geq 1 \) for a.e \(x \in \Omega \), we get
\[
\lim_{k \to +\infty} \sup \left\{ \frac{\alpha}{p} \int_{\Omega} |\nabla \hat{u}_{m_k}|^p \, dx + \frac{\beta}{p} \int_{\Omega} |\nabla \hat{v}_{m_k}|^p \, dx - \lambda_1 \int_{\Omega} |\hat{u}_{m_k}|^{\alpha-1} |\hat{v}_{m_k}|^{\beta-1} \hat{u}_{m_k} \hat{v}_{m_k} \, dx
\]
(2.11)
\[
- \int_{\Omega} \frac{H(x, u_{m_k})}{\|w_{m_k}\|_E} \, dx + \int_{\Omega} \frac{\alpha k_1 (x) \hat{u}_{m_k} + \beta k_2 (x) \hat{v}_{m_k}}{\|w_{m_k}\|_E} \, dx \right\} \leq 0.
\]
By hypothesis (H₁) on the functions \(f, g, h_i(x), k_i(x), i = 1, 2\), we deduce that
\[
\limsup_{k \to +\infty} \int_{\Omega} \frac{H(x, w_{mk})}{\|w_{mk}\|_E} \, dx = 0, \tag{2.12}
\]
\[
\lim_{k \to +\infty} \int_{\Omega} \frac{\alpha k_1(x) \hat{u}_{mk} + \beta k_2(x) \hat{v}_{mk}}{\|w_{mk}\|_{E}^{p-1}} \, dx = 0. \tag{2.13}
\]
Moreover by Remark 2.4, we infer
\[
\lim_{k \to +\infty} \int_{\Omega} |\hat{u}_{mk}|^{\alpha-1} |\hat{v}_{mk}|^{\beta-1} \hat{u}_{mk} \hat{v}_{mk} \, dx = \int_{\Omega} |\hat{u}|^{\alpha-1} |\hat{v}|^{\beta-1} \hat{u} \hat{v} \, dx. \tag{2.14}
\]
From (2.11) with (2.12), (2.13) and (2.14) we arrive at
\[
\limsup_{k \to +\infty} \left\{ \frac{\alpha}{p} \int_{\Omega} |\nabla \hat{u}_{mk}|^p \, dx + \frac{\beta}{p} \int_{\Omega} |\nabla \hat{v}_{mk}|^p \, dx \right\} \leq \lambda_1 \int_{\Omega} |\hat{u}|^{\alpha-1} |\hat{v}|^{\beta-1} \hat{u} \hat{v} \, dx.
\]
By Proposition 2.6 and the variational characterization of \(\lambda_1\) we get
\[
\lambda_1 \int_{\Omega} |\hat{u}|^{\alpha-1} |\hat{v}|^{\beta-1} \hat{u} \hat{v} \, dx \leq \alpha \int_{\Omega} |\nabla \hat{u}|^p \, dx + \beta \int_{\Omega} |\nabla \hat{v}|^p \, dx
\]
\[
\leq \liminf_{k \to +\infty} \left\{ \frac{\alpha}{p} \int_{\Omega} |\nabla \hat{u}_{mk}|^p \, dx + \frac{\beta}{p} \int_{\Omega} |\nabla \hat{v}_{mk}|^p \, dx \right\}
\]
\[
\leq \limsup_{k \to +\infty} \left\{ \frac{\alpha}{p} \int_{\Omega} |\nabla \hat{u}_{mk}|^p \, dx + \frac{\beta}{p} \int_{\Omega} |\nabla \hat{v}_{mk}|^p \, dx \right\} \leq \lambda_1 \int_{\Omega} |\hat{u}|^{\alpha-1} |\hat{v}|^{\beta-1} \hat{u} \hat{v} \, dx.
\]
Thus these inequalities are indeed equalities and we have
\[
\lim_{k \to +\infty} \left\{ \frac{\alpha}{p} \int_{\Omega} |\nabla \hat{u}_{mk}|^p \, dx + \frac{\beta}{p} \int_{\Omega} |\nabla \hat{v}_{mk}|^p \, dx \right\} = \frac{\alpha}{p} \int_{\Omega} |\nabla \hat{u}|^p \, dx + \frac{\beta}{p} \int_{\Omega} |\nabla \hat{v}|^p \, dx
\]
\[
= \lambda_1 \int_{\Omega} |\hat{u}|^{\alpha-1} |\hat{v}|^{\beta-1} \hat{u} \hat{v} \, dx. \tag{2.15}
\]
We shall prove that \(\hat{u} \neq 0\) and \(\hat{v} \neq 0\).
By contradiction suppose that \(\hat{u} = 0\), thus \(\hat{u}_{mk} \to 0\) in \(L^p(\Omega)\) as \(k \to +\infty\).
Then from the fact that
\[
|\hat{u}_{mk} \hat{v}_{mk}| = \left| \int_{\Omega} |\hat{u}_{mk}|^{\alpha-1} |\hat{v}_{mk}|^{\beta-1} \hat{u}_{mk} \hat{v}_{mk} \, dx \right|
\]
\[
\leq \|\hat{u}_{mk}\|^{\alpha}_{L^p(\Omega)} \|\hat{v}_{mk}\|^{\beta}_{L^p(\Omega)}.
\]
Letting \(k \to +\infty\) since \(\|\hat{u}_{mk}\|_{L^p(\Omega)} \to 0\), we deduce that
\[
\lim_{k \to +\infty} \hat{u}_{mk} \hat{v}_{mk} = 0. \tag{2.16}
\]
From (2.10) taking \(\lim_{k \to +\infty} \sup\) with (2.12), (2.13) and (2.16) we arrive at
(2.17) \[\limsup_{k \to +\infty} \left\{ \frac{\alpha}{p} \int_{\Omega} h_1(x)|\nabla \tilde{u}_{m_k}|^p dx + \frac{\beta}{p} \int_{\Omega} h_2(x)|\nabla \tilde{v}_{m_k}|^p dx \right\} = 0. \]

On the other hand, since \(\|\tilde{w}_{m_k}\|_E = 1 \) and
\[
\frac{\alpha}{p} \int_{\Omega} h_1(x)|\nabla \tilde{u}_{m_k}|^p dx + \frac{\beta}{p} \int_{\Omega} h_2(x)|\nabla \tilde{v}_{m_k}|^p dx \geq \min \left(\frac{\alpha}{p}, \frac{\beta}{p} \right) \|\tilde{w}_{m_k}\|_E = \min \left(\frac{\alpha}{p}, \frac{\beta}{p} \right) > 0,
\]
which contradicts (2.17). Thus \(\tilde{w} \neq 0 \). Similarly we have \(\tilde{v} \neq 0 \).

By again the definition of \(\lambda_1 \) from (2.15) we deduce that \(\tilde{w} = (\tilde{u}, \tilde{v}) = (\varphi_1, \varphi_2) \) or \(\tilde{w} = (\tilde{u}, \tilde{v}) = (-\varphi_1, -\varphi_2) \), where \((\varphi_1, \varphi_2) \) is eigenpair associated with \(\lambda_1 \) of the problem (1.4).

Next we shall consider following two cases:
Assume that \(\tilde{u}_{m_k} \to \varphi_1, \tilde{v}_{m_k} \to \varphi_2 \) in \(L^p(\Omega) \) as \(k \to +\infty \). Observe that by the variational characterization of \(\lambda_1 \) we have
\[
\frac{\alpha}{p} \int_{\Omega} |\nabla \tilde{u}_{m_k}|^p dx + \frac{\beta}{p} \int_{\Omega} |\nabla \tilde{v}_{m_k}|^p dx - \lambda_1 \int_{\Omega} |u_{m_k}|^{a-1}|v_{m_k}|^{\beta-1} u_{m_k} v_{m_k} dx \geq 0.
\]
From this, note that \(h_1(x) \geq 1, h_2(x) \geq 1 \) a.e \(x \in \Omega \), we have
\[
\frac{\alpha}{p} \int_{\Omega} h_1(x)|\nabla \tilde{u}_{m_k}|^p dx + \frac{\beta}{p} \int_{\Omega} h_2(x)|\nabla \tilde{v}_{m_k}|^p dx - \lambda_1 \int_{\Omega} |u_{m_k}|^{a-1}|v_{m_k}|^{\beta-1} u_{m_k} v_{m_k} dx \geq 0.
\]
Then from (2.8) it implies:
\[
- \int_{\Omega} H(x, u_{m_k}, v_{m_k}) dx + \int_{\Omega} (\alpha k_1(x) u_{m_k} + \beta k_2(x) v_{m_k}) dx \leq c, \quad k = 1, 2, \ldots
\]
After dividing by \(\|w_{m_k}\|_E \) taking \(\lim_{k \to +\infty} \sup \) and remark that
\[
\lim_{k \to +\infty} \int_{\Omega} (\alpha k_1(x) \tilde{u}_{m_k} + \beta k_2(x) \tilde{v}_{m_k}) dx = \int_{\Omega} (\alpha k_1(x) \varphi_1 + \beta k_2(x) \varphi_2) dx,
\]
we arrive at
\[
(2.18) \quad \limsup_{k \to +\infty} \int_{\Omega} \frac{H(x, w_{m_k})}{\|w_{m_k}\|_E} dx \geq \int_{\Omega} (\alpha k_1(x) \varphi_1 + \beta k_2(x) \varphi_2) dx.
\]

We need the following lemma

Lemma 2.9. Assume that the hypothesis \((H_1)\) is true. Then
\[
(2.19) \quad \limsup_{k \to +\infty} \int_{\Omega} \frac{H(x, w_{m_k})}{\|w_{m_k}\|_E} dx = \frac{1}{2} \int_{\Omega} (F_1(x) \varphi_1 + G_1(x) \varphi_2) dx,
\]
where \(F_1(x), G_1(x) \) are given by (1.9).

Proof. By (1.7), we have
\[
(2.20) \quad H(x, w_{m_k}) = \frac{\alpha}{2} \int_0^{\mu_k} (f(x, s, v_{m_k}) + f(x, s, 0)) ds + \frac{\beta}{2} \int_0^{\nu_k} (g(x, u_{m_k}, t) + g(x, 0, t)) dt.
\]
Set \(l_k = \|w_{mk}\|_E \to +\infty \) as \(k \to +\infty \). Observe that by hypothesis (H_1) on \(f(x, w, g(x, w)) \) we have

\[
\left| \alpha \int_0^{u_{mk}} f(x, s, v_{mk}) ds - \alpha \int_{l_k \psi_1}^{l_k \phi_2} f(x, s, l_k \phi_2) ds \right| \\
\leq \alpha \int_0^{u_{mk}} \left| f(x, s, v_{mk}) - f(x, s, l_k \phi_2) \right| ds + \alpha \int_{l_k \psi_1}^{l_k \phi_2} f(x, s, l_k \phi_2) ds \\
\leq \int_0^{u_{mk}} \frac{\partial f}{\partial s} (x, s, l_k \phi_2 + \delta(v_{mk} - l_k \phi_2)) (v_{mk} - l_k \phi_2) ds \\
+ \alpha \tau(x) \|u_{mk} - l_k \phi_1\| \\
\leq \int_0^{u_{mk}} \beta \frac{\partial g}{\partial s} (x, s, l_k \phi_2 + \delta(v_{mk} - l_k \phi_2)) ds (v_{mk} - l_k \phi_2) \\
+ \alpha \tau(x) \|u_{mk} - l_k \phi_1\| \\
\leq 2\beta \tau(x) |v_{mk} - l_k \phi_2| + \alpha \tau(x) |u_{mk} - l_k \phi_1|, \quad \delta \in (0, 1).
\]

From this and remark that \(\hat{u}_{mk} = \frac{u_{mk}}{l_k}, \hat{v}_{mk} = \frac{v_{mk}}{l_k} \), we get:

\[
\left| \frac{1}{l_k} \int_0^{u_{mk}} f(x, s, v_{mk}) ds - \frac{1}{l_k} \int_{l_k \psi_1}^{l_k \phi_2} f(x, s, l_k \phi_2) ds \right| \\
\leq 2\beta \tau(x) |\hat{v}_{mk} - \varphi_2| + \alpha \tau(x) |\hat{u}_{mk} - \varphi_1|.
\]

Similarly,

\[
(2.22) \quad \left| \frac{1}{l_k} \int_0^{u_{mk}} f(x, s, 0) ds - \frac{1}{l_k} \int_{l_k \psi_1}^{l_k \phi_2} f(x, s, 0) ds \right| \leq \alpha \tau(x) |\hat{u}_{mk} - \varphi_1|.
\]

Combining (2.21) and (2.22) we infer that

\[
\left| \int_{\Omega} \left\{ \frac{1}{l_k} \int_0^{u_{mk}} (f(x, s, v_{mk}) + f(x, s, 0)) ds - \frac{1}{l_k} \int_{l_k \psi_1}^{l_k \phi_2} (f(x, s, l_k \phi_2) + f(x, s, 0)) ds \right\} dx \right| \\
\leq 2\beta \tau(x) \|\hat{v}_{mk} - \varphi_2\|_{L^p(\Omega)} + 2\alpha \tau(x) \|\hat{u}_{mk} - \varphi_1\|_{L^p(\Omega)} + 2\alpha \tau(x) \|\hat{u}_{mk} - \varphi_1\|_{L^p(\Omega)}.
\]

Letting \(k \to +\infty \), since:

\[
\lim_{k \to +\infty} \|\hat{v}_{mk} - \varphi_2\|_{L^2(\Omega)} = 0, \quad \lim_{k \to +\infty} \|\hat{u}_{mk} - \varphi_1\|_{L^2(\Omega)} = 0,
\]

we deduce that

\[
\limsup_{k \to +\infty} \int_{\Omega} \left\{ \frac{1}{l_k} \int_0^{u_{mk}} (f(x, s, v_{mk}) + f(x, s, 0)) ds \right\} dx \\
= \limsup_{k \to +\infty} \int_{\Omega} \left\{ \frac{1}{l_k} \int_{l_k \psi_1}^{l_k \phi_2} (f(x, s, l_k \phi_2) + f(x, s, 0)) ds \right\} dx.
\]
Set $s = y\varphi_1(x)$, $ds = \varphi_1(x)dy$, we get

$$
\int_{l_k}\varphi_1 (f(x, s, l_k\varphi_2) + f(x, s, 0))\,ds = \int_{l_k} (f(x, y\varphi_1, l_k\varphi_2) + f(x, y\varphi_1, 0))\,\varphi_1 dy.
$$

Remark that $l_k = ||w_{mk}||_E \to +\infty$ as $k \to +\infty$, we derive that

$$
\limsup_{k \to +\infty} \int_{\Omega} \left\{ \frac{\alpha}{l_k} \int_{0}^{v_{mk}} (f(x, s, v_{mk}) + f(x, s, 0))\,ds \right\}dx
= \limsup_{k \to +\infty} \int_{\Omega} \left\{ \frac{\alpha}{l_k} \int_{0}^{l_k} (f(x, y\varphi_1, l_k\varphi_2) + f(x, y\varphi_1, 0))\,dy \right\} \varphi_1 dx
$$

(2.23) \quad = \int_{\Omega} F_1(x)\varphi_1(x)dx.

Similarly, we also derive that

$$
\limsup_{k \to +\infty} \int_{\Omega} \left\{ \frac{\beta}{l_k} \int_{0}^{v_{mk}} (g(x, u_{mk}, t) + g(x, 0, t))\,ds \right\}dx = \int_{\Omega} G_1(x)\varphi_2(x)dx,
$$

where $F_1(x)$ and $G_1(x)$ are given in (1.9). Combining (2.23), (2.24) we obtain:

$$
\limsup_{k \to +\infty} \int_{\Omega} \frac{H(x, w_{mk})}{||w_{mk}||_E}dx = \frac{1}{2} \int_{\Omega} (F_1(x)\varphi_1(x) + G_1(x)\varphi_2(x))\,dx.
$$

Lemma 2.9 is proved. \qed

Now, by (2.19) from (2.18) we obtain

$$
\frac{1}{2} \int_{\Omega} (F_1(x)\varphi_1 + G_1(x)\varphi_2)dx \geq \int_{\Omega} (\alpha k_1(x)\varphi_1 + \beta k_2(x)\varphi_2)dx,
$$

which contradicts (1.10).

If $u_{mk} \to -\varphi_1(x)$, $v_{mk} \to -\varphi_2(x)$ in $L^p(\Omega)$ as $k \to +\infty$, by similar computations as above and remark that in this case:

$$
\limsup_{k \to +\infty} \int_{\Omega} \frac{H(x, w_{mk})}{||w_{mk}||_E}dx = \frac{1}{2} \int_{\Omega} (F_2(x)\varphi_1 + G_2(x)\varphi_2)dx.
$$

Hence from (2.18) we get

$$
-\frac{1}{2} \int_{\Omega} (F_2(x)\varphi_1 + G_2(x)\varphi_2)dx \geq -\int_{\Omega} (\alpha k_1(x)\varphi_1 + \beta k_2(x)\varphi_2)dx,
$$

which gives

$$
\frac{1}{2} \int_{\Omega} (F_2(x)\varphi_1 + G_2(x)\varphi_2)dx \leq \int_{\Omega} (\alpha k_1(x)\varphi_1 + \beta k_2(x)\varphi_2)dx.
$$

Thus we get a contradiction with (1.10).

Hence the Palais-Smale sequence $\{w_m\}$ is bounded in E and it is also bounded in X. Then there exists a subsequence $\{w_{mk}\}$ which converges weakly.
to some \(w_0 = (u_0, v_0) \) in \(X \). From Proposition 2.7 we deduce that \(w_0 \in E \) and \(\{w_{m_k}\} \) converges strongly to \(w_0 \) in \(E \). The proof of the Proposition 2.8 is complete.

Proposition 2.10. The functional \(I : E \to \mathbb{R} \) given by (2.1) is coercive on \(E \) provided that hypotheses (H1) and (H2) hold.

Proof. By contradiction we suppose that \(I \) is not coercive in \(E \). Then it is possible to choose a sequence \(\{w_m = (u_m, v_m)\}_m \) in \(E \) such that

\[
\|w_m\|_E \to +\infty \quad \text{and} \quad I(w_m) \leq c, \; c \text{ is positive constant.}
\]

Let \(\tilde{w}_m = \frac{w_m}{\|w_m\|_E} = (\tilde{u}_m, \tilde{v}_m) \). Hence the sequence \(\{\tilde{w}_m\} \) is bounded in \(E \) and then bounded in \(X = W_0^{1, p}(\Omega) \times W_0^{1, p}(\Omega) \). Therefore it has a subsequence \(\tilde{w}_{m_k} = (\tilde{u}_{m_k}, \tilde{v}_{m_k}) \) which converges weakly in \(X \) and converges strongly in \(L^p(\Omega) \times L^p(\Omega) \). Applying arguments used in the proof of Proposition 2.8, we can prove that \(\tilde{w}_{m_k} \to (\varphi_1, \varphi_2) \) or \(\tilde{w}_{m_k} \to (-\varphi_1, -\varphi_2) \) in \(L^p(\Omega) \times L^p(\Omega) \) as \(k \to +\infty \) where \((\varphi_1, \varphi_2) \) is eigenpair associated with eigenvalue \(\lambda_1 \) of the problem (1.4). Assume that \(\tilde{w}_{m_k} \to (\varphi_1, \varphi_2) \) in \(L^p(\Omega) \times L^p(\Omega) \) as \(k \to +\infty \). By again the same arguments used in the proof of the Proposition 2.8 we arrive at

\[
\frac{1}{2} \int_{\Omega} (F_1(x)\varphi_1 + G_1(x)\varphi_2) dx \geq \int_{\Omega} (ak_1(x)\varphi_1 + \beta k_2(x)\varphi_2) dx,
\]

which contradicts (1.10). If \(\tilde{w}_m \to (-\varphi_1, -\varphi_2) \) in \(L^p(\Omega) \times L^p(\Omega) \) as \(k \to +\infty \), we get

\[
\frac{1}{2} \int_{\Omega} (F_2(x)\varphi_1 + G_2(x)\varphi_2) dx \leq \int_{\Omega} (ak_1(x)\varphi_1 + \beta k_2(x)\varphi_2) dx.
\]

This is in contradiction with (1.10). Thus \(I \) is coercive on \(E \).

Proof of Theorem 1.1. By Propositions 2.8 and Proposition 2.6, applying the Minimum Principle (see Theorem 2.2), we deduce that the functional \(I \) attains its proper infimum at some \(w_0 = (u_0, v_0) \in E \), so that the problem (1.1) has at least a weak solution \(w_0 \in E \). Moreover by hypothesis (H1) on \(f(x, s, t), g(x, s, t), k_1(x), k_2(x) \), it is clear that \(w_0 \) is nontrivial and the proof of Theorem 1.1 is complete.

Conflict of Interest Statement: The authors declare that they have no conflict of interest.

Acknowledgements

This research supported by the National Foundation for Science and Technology Development of Viet Nam (NAFOSTED under grant number 101.02-2014.03)
REFERENCES

A generalization of the Landesman-Lazer condition

(Bui Quoc Hung) Faculty of Information Technology, Le Quy Don Technical University, 236 Hoang Quoc Viet, Bac Tu Liem, Hanoi, Vietnam.
E-mail address: quochung2806@yahoo.com

(Hoang Quoc Toan) Department of Mathematics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Vietnam.
E-mail address: hq.toan@yahoo.com