Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 5, pp. 1511-1528

Title:

On a p-Laplacian system and a generaliza-
tion of the Landesman-Lazer type condition

Author(s):

B.Q. Hung and H.Q. Toan

Published by the Iranian Mathematical Society http://bims.ims.ir

ON A P-LAPLACIAN SYSTEM AND A GENERALIZATION OF THE LANDESMAN-LAZER TYPE CONDITION

B.Q. HUNG* AND H.Q. TOAN

(Communicated by Asadollah Aghajani)

Abstract

This article shows the existence of weak solutions of a resonance problem for nonuniformly p-Laplacian system in a bounded domain in \mathbb{R}^{N}. Our arguments are based on the minimum principle and rely on a generalization of the Landesman-Lazer type condition. Keywords: Semilinear elliptic equation, non-uniform, Landesman-Lazer condition, minimum principle. MSC(2010): Primary: 35J20, Secondary: 35J60, 58E05.

1. Introduction and preliminaries

Let Ω be a bounded domain in \mathbb{R}^{N}, with smooth boundary $\partial \Omega$. In the present paper we consider the existence of weak solutions of the following Dirichlet problem at resonance for nonuniformly p-Laplacian system:

$$
\left\{\begin{array}{cc}
-\operatorname{div}\left(h_{1}(x)|\nabla u|^{p-2} \nabla u\right)=\lambda_{1}|u|^{\alpha-1}|v|^{\beta-1} v+f(x, u, v)-k_{1}(x), & \text { in } \Omega \tag{1.1}\\
-\operatorname{div}\left(h_{2}(x)|\nabla v|^{p-2} \nabla v\right)=\lambda_{1}|u|^{\alpha-1}|v|^{\beta-1} u+g(x, u, v)-k_{2}(x), & \text { in } \Omega \\
u=0 ; \quad v=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where

$$
\begin{equation*}
p \geq 2, \alpha \geq 1, \beta \geq 1, \alpha+\beta=p \tag{1.2}
\end{equation*}
$$

and $f, g: \Omega \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ are Carathéodory functions which will be specified later,

$$
\begin{gather*}
h_{i}(x) \in L_{l o c}^{1}(\Omega), \quad h_{i}(x) \geq 1, \quad \text { for a.e } x \in \Omega, i=1,2 \tag{1.3}\\
k_{i}(x) \in L^{p^{\prime}}(\Omega), p^{\prime}=\frac{p}{p-1}, k_{i}(x)>0, \text { for a.e } x \in \bar{\Omega}, i=1,2
\end{gather*}
$$

λ_{1} denotes the first eigenvalue of the problem:

[^0]\[

\left\{$$
\begin{array}{l}
-\Delta_{p} u=\lambda|u|^{\alpha-1}|v|^{\beta-1} v, \tag{1.4}\\
-\Delta_{p} v=\lambda|u|^{\alpha-1}|v|^{\beta-1} u,
\end{array}
$$\right.
\]

and $(u, v) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega), p>2, \alpha>1, \beta>1, \alpha+\beta=p$.
It is well-known that the principle eigenvalue $\lambda_{1}=\lambda_{1}(p)$ of (1.4) is obtained using the Ljusternick-Schnirelmann theory by minimizing the functional

$$
J(u, v)=\frac{\alpha}{p} \int_{\Omega}|\nabla u|^{p} d x+\frac{\beta}{p} \int_{\Omega}|\nabla v|^{p} d x
$$

on C^{1} - manifold:

$$
S=\left\{(u, v) \in X=W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega): \wedge(u, v)=1\right\}
$$

where

$$
\wedge(u, v)=\int_{\Omega}|u|^{\alpha-1}|v|^{\beta-1} u \cdot v d x
$$

that is $\lambda_{1}=\lambda_{1}(p)$ can be variational characterized as

$$
\begin{equation*}
\lambda_{1}=\lambda_{1}(p)=\inf _{\wedge(u, v)>0} \frac{J(u, v)}{\wedge(u, v)}=\inf _{(u, v) \in X: u v>0} \frac{\frac{\alpha}{p} \int_{\Omega}|\nabla u|^{p} d x+\frac{\beta}{p} \int_{\Omega}|\nabla v|^{p} d x}{\int_{\Omega}|u|^{\alpha-1}|v|^{\beta-1} u v d x} \tag{1.5}
\end{equation*}
$$

Moreover the eigenpair $\left(\varphi_{1}, \varphi_{2}\right)$ associated with λ_{1} is componentwise positive and unique (up to multiplication by nonzero scalar) (see [1, Theorem 2.2] and [15, Remark 5.4]).

We firstly make some comments on the problem (1.1). Observe that the existence of weak solutions of (p, q)-Laplacian systems at resonance in bounded domains with Dirichlet boundary condition, was first considered by Zographopoulos in [20]. Later in [10] Kandilakis and Magiropoulos have studied a quasilinear elliptic system with resonance part and nonlinear boundary condition in an unbounded domain by assuming the nonlinearities f and g depending only on variable u or v. In [14], Ou and Tang have considered the same system as in [10] with Dirichlet condition in a bounded domain. In these papers, the existence of weak solutions is obtained by critical point theory under a Landesman-Lazer type condition. At the same time for nonuniformly nonlinear elliptic equations involving p-Laplacian $(p \geq 2)$ at resonance we refer the reader to $[12,13,18]$.

In this paper by introducing a generalization of Landesman-Lazer type condition we shall prove an existence result for a p-Laplacian system on resonance in bounded domain with the nonlinearities f and g to be functions depending on both variables u and v.

Note that in [9] we considered system (1.1) in the case $h_{1}(x)=h_{2}(x)=1$ and shows the existence of weak solutions of (1.1) in $W_{0}^{1, p} \times W_{0}^{1, p}$. Our arguments are based on the saddle point theorem and rely on a generalization of the Landesman-Lazer type condition.

Recall that due to $h_{i}(x) \in L_{l o c}^{1}(\Omega), i=1,2$, the problem (1.1) now is nonuniformly in sense that the Euler-Lagrange functional associated to the problem may be infinity at some $w_{0}=\left(u_{0}, v_{0}\right) \in X=W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$. Hence we must consider the problem (1.1) in some suitable subspace of $W_{0}^{1, p}(\Omega) \times$ $W_{0}^{1, p}(\Omega)$.

As usually $W_{0}^{1, p}(\Omega)$ denotes the Sobolev space which can be defined as the completion of $C_{0}^{\infty}(\Omega)$ under the norm:

$$
\|u\|=\left(\int_{\Omega}|\nabla u|^{p} d x\right)^{\frac{1}{p}}
$$

Now we define the following subspaces $E_{i}, i=1,2$, of $W_{0}^{1, p}(\Omega)$ by:

$$
E_{i}=\left\{u \in W_{0}^{1, p}(\Omega): \int_{\Omega} h_{i}(x)|\nabla u|^{p} d x<+\infty\right\}
$$

where $h_{i}(x), i=1,2$, satisfy condition (1.2). E_{i} can be endowed with the norm

$$
\|u\|_{E_{i}}=\left(\int_{\Omega} h_{i}(x)|\nabla u|^{p} d x\right)^{\frac{1}{p}}
$$

Applying the arguments as those used in the proof of [8, Proposition 1.1] we can prove the following proposition.

Proposition 1.1. For each $i=1,2, E_{i}$ is a Banach space and the embeddings E_{i} into $W_{0}^{1, p}(\Omega)$ are continuous.

Proof. It is clear that E_{i} is a normed space. Let $\left\{u_{m}\right\}$ be a Cauchy sequence in E_{i}. Then

$$
\lim _{m, k \rightarrow+\infty}\left\|u_{m}-u_{k}\right\|_{E_{i}}^{p}=\lim _{m, k \rightarrow+\infty} \int_{\Omega} h_{i}(x)\left|\nabla u_{m}-\nabla u_{k}\right|^{p} d x=0
$$

and $\left\{\left\|u_{m}\right\|_{E_{i}}\right\}$ is bounded. By (1.3): $\left\|u_{m}-u_{k}\right\|_{W_{0}^{1, p}(\Omega)} \leq\left\|u_{m}-u_{k}\right\|_{E_{i}}$ for $m, k=1,2, \ldots$. Hence the sequence $\left\{u_{m}\right\}$ is also a Cauchy sequence in $W_{0}^{1, p}(\Omega)$ and it converges to some u in $W_{0}^{1, p}(\Omega)$, i.e:

$$
\lim _{m \rightarrow+\infty} \int_{\Omega}\left|\nabla u_{m}-\nabla u\right|^{p} d x=0 .
$$

It follows that $\nabla u_{m} \rightarrow \nabla u$ in $L^{p}(\Omega)$ and there exists a subsequence $\left\{\nabla u_{m_{k}}\right\}$ converging to ∇u a.e $x \in \Omega$. Applying Fatou's lemma we get

$$
\int_{\Omega} h_{i}(x)|\nabla u|^{p} d x \leq \liminf _{k \rightarrow+\infty} \int_{\Omega} h_{i}(x)\left|\nabla u_{m_{k}}\right|^{p} d x<+\infty
$$

Hence $u \in E_{i}$. Applying again Fatou's lemma we get

$$
\begin{aligned}
0 & \leq \lim _{k \rightarrow+\infty} \int_{\Omega} h_{i}(x)\left|\nabla u_{m_{k}}-\nabla u\right|^{p} d x \\
& \leq \lim _{k \rightarrow+\infty}\left\{\lim _{l \rightarrow+\infty} \int_{\Omega} h_{i}(x)\left|\nabla u_{m_{k}}-\nabla u_{m_{l}}\right|^{p} d x\right\}=0
\end{aligned}
$$

Hence $\left\{u_{m_{k}}\right\}$ converges to u in E_{i}. From this, it implies the sequence $\left\{u_{m}\right\}$ converges to u in $E_{i}, i=1,2$. Thus E_{i} is a Banach space and the continuous embedding E_{i} into $W_{0}^{1, p}$ holds true. Proposition 1.1 is proved.

Remark 1.2. Since the embedding $W_{0}^{1, p}(\Omega)$ to $L^{p}(\Omega)$ is compact, hence $E_{i} \hookrightarrow$ $L^{p}(\Omega)$ compactly.

Set $E=E_{1} \times E_{2}$ and for $w=(u, v) \in E$:

$$
\|w\|_{E}=\left(\|u\|_{E_{1}}^{p}+\|v\|_{E_{2}}^{p}\right)^{\frac{1}{p}}
$$

Moreover for simplicity of notation denotes by $X=W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$. Then we have $\|w\|_{X} \leq\|w\|_{E}, \forall w=(u, v) \in E$.

Definition 1.3. Function $w=(u, v) \in E$ is called a weak solution of the problem (1.1) if and only if

$$
\begin{aligned}
\alpha \int_{\Omega} h_{1}(x) & \nabla u \nabla \bar{u} d x+\beta \int_{\Omega} h_{2}(x) \nabla v \nabla \bar{v} d x \\
& -\lambda_{1} \int_{\Omega}\left(\alpha|u|^{\alpha-1}|v|^{\beta-1} v \bar{u}+\beta|u|^{\alpha-1}|v|^{\beta-1} u \bar{v}\right) d x \\
& -\int_{\Omega}(\alpha f(x, u, v) \bar{u}+\beta g(x, u, v) \bar{v}) d x \\
& +\int_{\Omega}\left(\alpha k_{1}(x) \bar{u}+\beta k_{2}(x) \bar{v}\right) d x=0, \quad \forall \bar{w}=(\bar{u}, \bar{v}) \in E
\end{aligned}
$$

Let us introduce the following some conditions on nonlinearities of system (1.1):
$\left(\mathrm{H}_{1}\right)$
(i) $f, g: \Omega \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ are Carathéodory functions: $f(x, 0,0)=0, g(x, 0,0)=0$.
(ii) There exists function $\tau(x) \in L^{p^{\prime}}(\Omega), p^{\prime}=\frac{p}{p-1}$ such that:

$$
|f(x, s, t)| \leq \tau(x),|g(x, s, t)| \leq \tau(x), \text { for a.e } x \in \Omega,(s, t) \in \mathbb{R}^{2}
$$

(iii) $\operatorname{For}(s, t) \in \mathbb{R}^{2}$:

$$
\begin{equation*}
\alpha \frac{\partial f(x, s, t)}{\partial t}=\beta \frac{\partial g(x, s, t)}{\partial s} \quad \text { for a.e } x \in \Omega \tag{1.6}
\end{equation*}
$$

Denotes, for $(u, v) \in \mathbb{R}^{2}$
$H(x, u, v)=\frac{\alpha}{2} \int_{0}^{u}(f(x, s, v)+f(x, s, 0)) d s+\frac{\beta}{2} \int_{0}^{v}(g(x, u, t)+g(x, 0, t)) d t$, for a.e $x \in \Omega$.
Remark 1.4. By hypothesis (1.6), from (1.7) with some simple computations we deduce that:

(1.8)

$$
\frac{\partial H(x, s, t)}{\partial s}=\alpha f(x, s, t), \frac{\partial H(x, s, t)}{\partial t}=\beta g(x, s, t), \text { a.e } x \in \Omega, \forall(s, t) \in \mathbb{R}^{2}
$$

Now we define, for $i, j=1,2$:

$$
\begin{align*}
& F_{i}(x)=\limsup _{\tau \rightarrow+\infty} \frac{\alpha}{\tau} \int_{0}^{\tau}\left(f\left(x,(-1)^{1+i} y \varphi_{1},(-1)^{1+i} \tau \varphi_{2}\right)+f\left(x,(-1)^{1+i} y \varphi_{1}, 0\right)\right) d y \tag{1.9}\\
& G_{j}(x)=\limsup _{\tau \rightarrow+\infty} \frac{\beta}{\tau} \int_{0}^{\tau}\left(g\left(x,(-1)^{1+j} \tau \varphi_{1},(-1)^{1+j} y \varphi_{2}\right)+g\left(x, 0,(-1)^{1+j} y \varphi_{2}\right)\right) d y
\end{align*}
$$

Assume that

$$
\begin{align*}
\int_{\Omega}\left(F_{1}(x) \varphi_{1}(x)+G_{1}(x) \varphi_{2}(x)\right) d x & <2 \int_{\Omega}\left(\alpha k_{1}(x) \varphi_{1}(x)+\beta k_{2}(x) \varphi_{2}(x)\right) d x \tag{1.10}\\
& <\int_{\Omega}\left(F_{2}(x) \varphi_{1}(x)+G_{2}(x) \varphi_{2}(x)\right) d x
\end{align*}
$$

Remark 1.5. For example, we can take functions $f(x, u, v), g(x, u, v)$ as following:

$$
\begin{aligned}
& f(x, u, v)=\tau_{1}(x) \sin \left(\frac{u}{\beta}+\frac{v}{\alpha}\right)+\eta_{1}(x) \frac{u}{\sqrt{1+u^{2}}} \\
& g(x, u, v)=\tau_{1}(x) \sin \left(\frac{u}{\beta}+\frac{v}{\alpha}\right)+\eta_{2}(x) \frac{v}{\sqrt{1+v^{2}}}
\end{aligned}
$$

where $\tau_{1}(x), \eta_{1}(x), \eta_{2}(x)$ are functions in $L^{p^{\prime}}(\Omega)$ and $\eta_{1}(x)<0, \eta_{2}(x)<0$ for $x \in \Omega$.

By some simple computations we get:

$$
\begin{array}{ll}
F_{1}(x)=2 \alpha \eta_{1}(x), & F_{2}(x)=-2 \alpha \eta_{1}(x) \\
G_{1}(x)=2 \beta \eta_{2}(x), & G_{2}(x)=-2 \beta \eta_{2}(x)
\end{array}
$$

Therefore, hypothesis (1.10) is satisfied whenever

$$
-\eta_{1}(x)>k_{1}(x) \quad \text { and } \quad-\eta_{2}(x)>k_{2}(x)
$$

Our main result is given by the following theorem:

Theorem 1.1. Assume that the conditions $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ are fulfilled. Then the problem (1.1) has at least a nontrivial weak solution in E.

Proof of Theorem 1.1 is based on variational techniques and the Minimum Principle.

2. Proof of the main result

We define the Euler-Lagrange functional associated to the problem (1.1) by

$$
\begin{align*}
I(w)= & \frac{\alpha}{p} \int_{\Omega} h_{1}(x)|\nabla u|^{p} d x+\frac{\beta}{p} \int_{\Omega} h_{2}(x)|\nabla v|^{p} d x-\lambda_{1} \int_{\Omega}|u|^{\alpha-1}|v|^{\beta-1} u v d x \\
& -\int_{\Omega} H(x, u, v) d x+\int_{\Omega}\left(\alpha k_{1}(x) u+\beta k_{2}(x) v\right) d x \tag{2.1}\\
2.1) & \\
= & J(w)+T(w), \quad \forall w=(u, v) \in E
\end{align*}
$$

where

$$
\begin{equation*}
J(w)=\frac{\alpha}{p} \int_{\Omega} h_{1}(x)|\nabla u|^{p} d x+\frac{\beta}{p} \int_{\Omega} h_{2}(x)|\nabla v|^{p} d x \tag{2.2}
\end{equation*}
$$

$T(w)=-\lambda_{1} \int_{\Omega}|u|^{\alpha-1}|v|^{\beta-1} u v d x-\int_{\Omega} H(x, u, v) d x+\int_{\Omega}\left(\alpha k_{1}(x) u+\beta k_{2}(x) v\right) d x$.
Firstly we note that due to $h_{i}(x) \in L_{l o c}^{1}(\Omega), i=1,2$, in general the functional $J(w)$ may not belong to $C^{1}(E)$. Therefore we need some modifications in order to apply the critical point theory to our problem.

Definition 2.1. (see [6, Definition 2.1]) Let I be a map from a Banach space X to R. We say that I is weakly continuously differentiable on X if the following conditions are satisfied:
(i) I is continuous on X
(ii) For any $u \in X$ there exists a linear map $I^{\prime}(u)$ from X into R such that:

$$
\lim _{t \rightarrow 0} \frac{I(u+t v)-I(u)}{t}=\left(I^{\prime}(u), v\right) \quad, \forall v \in X
$$

(iii) For any $v \in X$ the map $u \rightarrow\left(I^{\prime}(u), v\right)$ is continuous on X.

Denotes by $C_{w}^{1}(X)$ the set of weakly continuously differentiable functionals on X. It is clear that $C^{1}(X) \subset C_{w}^{1}(X)$, where we denote by $C^{1}(X)$ the set of all continuously Fréchet differentiable functionals on X.

Let $I \in C_{w}^{1}(X)$ we put:

$$
\left\|I^{\prime}(u)\right\|=\operatorname{Sup}\left\{\left|<I^{\prime}(u), h>\right|: h \in X:\|h\|=1\right\}, \quad \forall u \in X
$$

We say that $I \in C_{w}^{1}(X)$ satisfies the Palais-Smale condition on X if any sequence $\left\{u_{m}\right\} \subset X$ for which $\left\{I\left(u_{m}\right)\right\}$ is bounded and $\lim _{m \rightarrow+\infty}\left\|I^{\prime}\left(u_{m}\right)\right\|_{X *}=$ 0 has a convergent subsequence in X.

Theorem 2.2 (The minimum Principle, see in [12,13, Theorem 2.3]). Let X be a Banach space and $I \in C_{w}^{1}(X)$. Assume that:
(i) I is bounded from below, $c=\inf _{X} I(u)$
(ii) I satisfies the Palais-Smale condition on X.

Then there exists $u_{0} \in X$ such that $I\left(u_{0}\right)=c$.
The following proposition concerns the smoothness of the functional $I=$ $J+T$ given by (2.1).

Proposition 2.3. Assuming hypothesis $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ are fulfilled. We assert that:
(i) The functional $T(w), w \in E$ given by (2.3) is continuous on E. Moreover, T is weakly continuously differentiable on E and

$$
\begin{align*}
\left(T^{\prime}(w), \bar{w}\right)= & -\lambda_{1} \int_{\Omega}\left(\alpha|u|^{\alpha-1}|v|^{\beta-1} v \bar{u}+\beta|u|^{\alpha-1}|v|^{\beta-1} u \bar{v}\right) d x \tag{2.4}\\
& -\int_{\Omega}(\alpha f(x, w) \bar{u}+\beta g(x, w) \bar{v}) d x \\
& +\int_{\Omega}\left(\alpha k_{1}(x) \bar{u}+\beta k_{2}(x) \bar{v}\right) d x, \quad \forall w=(u, v) ; \bar{w}=(\bar{u}, \bar{v}) \in E
\end{align*}
$$

(ii) The functional $J(w), w \in E$ given by (2.2) is weakly continuously differentiable on E and we have: $\forall w=(u, v), \bar{w}=(\bar{u}, \bar{v}) \in E$

$$
\begin{equation*}
\left(J^{\prime}(w), \bar{w}\right)=\alpha \int_{\Omega} h_{1}(x)|\nabla u|^{p-1} \nabla u \nabla \bar{u} d x+\beta \int_{\Omega} h_{2}(x)|\nabla v|^{p-1} \nabla v \nabla \bar{v} d x \tag{2.5}
\end{equation*}
$$

Thus $I=J+T$ is weakly continuously differentiable on E and

$$
\begin{equation*}
\left(I^{\prime}(w), \bar{w}\right)=\left(J^{\prime}(w), \bar{w}\right)+\left(T^{\prime}(w), \bar{w}\right), \quad \forall w=(u, v) ; \bar{w}=(\bar{u}, \bar{v}) \in E \tag{2.6}
\end{equation*}
$$

In the proof of the Proposition 2.3 we need the following remarks:
Remark 2.4. By similar arguments as those used in the proof of [21, Lemma 2.3] and [10, Lemma 5] we infer that the functional $\wedge: E \rightarrow \mathbb{R}$ and operator $\Gamma: E \rightarrow E^{*}$ given by

$$
\wedge(u, v)=\int_{\Omega}|u|^{\alpha-1}|v|^{\beta-1} u v d x, \quad(u, v) \in E
$$

and
$\langle\Gamma(u, v),(\bar{u}, \bar{v})\rangle=\int_{\Omega}|u|^{\alpha-1}|v|^{\beta-1} v \bar{u} d x+\int_{\Omega}|u|^{\alpha-1}|v|^{\beta-1} u \bar{v} d x,(u, v) ;(\bar{u}, \bar{v}) \in E$, are compact.

Proof. (i) By the Theorem C_{1} in [16, p. 248] and the Remark 2.4 with some standard arguments we infer that $T \in C^{1}(X)$ where $X=W_{0}^{1, p} \times W_{0}^{1, p}$. Moreover since the embedding $E \rightarrow X$ is continuous, we have $T \in C^{1}(E)$ and hence $T \in C_{w}^{1}(E)$ and

$$
\begin{aligned}
\left(T^{\prime}(w), \bar{w}\right)= & -\lambda_{1} \int_{\Omega}\left(\alpha|u|^{\alpha-1}|v|^{\beta-1} v \bar{u}+\beta|u|^{\alpha-1}|v|^{\beta-1} u \bar{v}\right) d x \\
& -\int_{\Omega}(\alpha f(x, w) \bar{u}+\beta g(x, w) \bar{v}) d x \\
& +\int_{\Omega}\left(\alpha k_{1}(x) \bar{u}+\beta k_{2}(x) \bar{v}\right) d x, \quad \forall w=(u, v) ; \bar{w}=(\bar{u}, \bar{v}) \in E .
\end{aligned}
$$

(ii) By similar arguments used in the proof of [8, Proposition 2.1], we deduce that $J \in C_{w}^{1}(E)$ and (2.5), (2.6) hold true. The proof of Proposition 2.3 is complete.

Remark 2.5. From Proposition 2.3, it implies that the critical points of the functional I given by (2.1) correspond to the weak solutions of the problem (1.1)

Proposition 2.6. Suppose that the sequence $\left\{w_{m}=\left(u_{m}, v_{m}\right)\right\}_{m}$ converges weakly to $w_{0}=\left(u_{0}, v_{0}\right)$ in $X=W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$. Then we have

$$
\begin{equation*}
J\left(w_{0}\right) \leq \liminf _{m \rightarrow+\infty} J\left(w_{m}\right) \tag{2.7}
\end{equation*}
$$

Proof. The sequence $\left\{w_{m}=\left(u_{m}, v_{m}\right)\right\}$ converges weakly to $w_{0} \in X$. Hence for all bounded $\Omega^{\prime} \subset \Omega,\left\{w_{m}\right\}$ is also weakly converging in X. By compactness of the embedding $W_{0}^{1, p}\left(\Omega^{\prime}\right)$ into $L^{p}\left(\Omega^{\prime}\right)$, the sequence $\left\{w_{m}\right\}$ converges strongly in $L^{p}\left(\Omega^{\prime}\right) \times L^{p}\left(\Omega^{\prime}\right)$. Then the sequences $\left\{u_{m}\right\}$ and $\left\{v_{m}\right\}$ converge strongly in $L^{1}\left(\Omega^{\prime}\right)$. Applying [16, Theorem 1.6, p9] we deduce that

$$
J\left(w_{0}\right) \leq \liminf _{m \rightarrow+\infty} J\left(w_{m}\right)
$$

The proof of Proposition 2.6 is complete.
Proposition 2.7. Let $\left\{w_{m}=\left(u_{m}, v_{m}\right)\right\}$ be a sequence in E such that:
(i) $\left|I\left(w_{m}\right)\right| \leq c,(m=1,2, \ldots), c$ is positive constant $I^{\prime}\left(w_{m}\right) \rightarrow 0$ in E^{*} as $m \rightarrow+\infty$.
(ii) $\left\{w_{m}\right\}$ converges weakly to $w_{0}=\left(u_{0}, v_{0}\right)$ in $X=W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$.

Then $w_{0} \in E$ and the sequence $\left\{w_{m}\right\}$ converges strongly to w_{0} in E.
Proof. Since $\left\{w_{m}\right\}$ converges weakly to $w_{0}=\left(u_{0}, v_{0}\right)$ in X and the embedding $W_{0}^{1, p}$ into $L^{p}(\Omega)$ is compact hence the sequences $\left\{u_{m}\right\}$ and $\left\{v_{m}\right\}$ converge strongly in $L^{p}(\Omega)$ to u_{0} and v_{0}, respectively.

By hypothesis $\left(\mathrm{H}_{1}\right)$ and (1.7), applying Hölder's inequality, we obtain

$$
\begin{aligned}
& \left|T\left(w_{m}\right)\right| \leq \lambda_{1} \int_{\Omega}\left|u_{m}\right|^{\alpha}\left|v_{m}\right|^{\beta} d x+\int_{\Omega}\left|H\left(x, u_{m}, v_{m}\right)\right| d x \\
& +\int_{\Omega}\left(\alpha k_{1}(x)\left|u_{m}\right|+\beta k_{2}(x)\left|v_{m}\right|\right) d x \\
& \leq \lambda_{1}\left\|u_{m}\right\|_{L^{p}(\Omega)}^{\alpha}\left\|v_{m}\right\|_{L^{p}(\Omega)}^{\beta}+\|\tau\|_{L^{p^{\prime}}(\Omega)}\left(\alpha\left\|u_{m}\right\|_{L^{p}(\Omega)}+\beta\left\|v_{m}\right\|_{L^{p}(\Omega)}\right) \\
& +\alpha\left\|k_{1}\right\|_{L^{p^{\prime}}(\Omega)}\left\|u_{m}\right\|_{L^{p}(\Omega)}+\beta\left\|k_{2}\right\|_{L^{p^{\prime}}(\Omega)}\left\|v_{m}\right\|_{L^{p}(\Omega)} .
\end{aligned}
$$

Since $\left\{u_{m}\right\}$ and $\left\{v_{m}\right\}$ are bounded in $L^{p}(\Omega)$, there exists $M>0$ such that:

$$
\left|T\left(w_{m}\right)\right| \leq M, m=1,2, \ldots
$$

Moreover by Proposition 2.6

$$
\begin{aligned}
J\left(w_{0}\right) & \leq \liminf _{m \rightarrow+\infty} J\left(w_{m}\right)=\liminf _{m \rightarrow+\infty}\left\{I\left(w_{m}\right)-T\left(w_{m}\right)\right\} \\
& \leq \limsup _{m \rightarrow+\infty}\left\{\left|I\left(w_{m}\right)\right|+\left|T\left(w_{m}\right)\right|\right\} \leq C+M<+\infty
\end{aligned}
$$

which implies

$$
\int_{\Omega} h_{1}(x)\left|\nabla u_{0}\right|^{p} d x<+\infty ; \int_{\Omega} h_{2}(x)\left|\nabla v_{0}\right|^{p} d x<+\infty
$$

Hence $w_{0}=\left(u_{0}, v_{0}\right) \in E$. Now from (2.4) and hypothesis $\left(\mathrm{H}_{1}\right)$ we have:

$$
\begin{aligned}
&\left|\left(T^{\prime}\left(w_{m}\right),\left(w_{m}-w_{0}\right)\right)\right| \\
& \leq \lambda_{1}\left\{\int_{\Omega} \alpha\left|u_{m}\right|^{\alpha-1}\left|v_{m}\right|^{\beta}\left|u_{m}-u_{0}\right| d x\right. \\
&\left.+\int_{\Omega} \beta\left|u_{m}\right|^{\alpha}\left|v_{m}\right|^{\beta-1}\left|v_{m}-v_{0}\right| d x\right\} \\
&+\int_{\Omega}\left\{\alpha\left|f\left(x, w_{m}\right)\left\|u_{m}-u_{0}|+\beta| g\left(x, w_{m}\right)\right\| v_{m}-v_{0}\right|\right\} d x \\
&+\int_{\Omega}\left\{\alpha k_{1}(x)\left|u_{m}-u_{0}\right|+\beta k_{2}(x)\left|v_{m}-v_{0}\right|\right\} d x \\
& \leq \lambda_{1}\left\{\alpha\left\|u_{m}\right\|_{L^{p}(\Omega)}^{\alpha-1} \mid\left\|v_{m}\right\|_{L^{p}(\Omega)}^{\beta}\left\|u_{m}-u_{0}\right\|_{L^{p}(\Omega)}\right. \\
&\left.+\beta\left\|u_{m}\right\|_{L^{p}(\Omega)}^{\alpha}\left\|v_{m}\right\|_{L^{p}(\Omega)}^{\beta-1}\left\|v_{m}-v_{0}\right\|_{L^{p}(\Omega)}\right\} \\
&+\|\tau\|_{L^{p^{\prime}(\Omega)}}\left(\alpha\left\|u_{m}-u_{0}\right\|_{L^{p}(\Omega)}+\beta\left\|v_{m}-v_{0}\right\|_{L^{p}(\Omega)}\right) \\
&+\alpha\left\|k_{1}\right\|_{L^{p^{\prime}}(\Omega)}\left\|u_{m}-u_{0}\right\|_{L^{p}(\Omega)}+\beta\left\|k_{2}\right\|_{L^{p^{\prime}}(\Omega)}\left\|v_{m}-v_{0}\right\|_{L^{p}(\Omega)}
\end{aligned}
$$

Letting $m \rightarrow+\infty$ and remark that

$$
\left\|u_{m}-u_{0}\right\|_{L^{p}(\Omega)} \rightarrow 0 ; \quad\left\|v_{m}-v_{0}\right\|_{L^{p}(\Omega)} \rightarrow 0 \quad \text { as } \quad m \rightarrow+\infty
$$

we deduce that

$$
\lim _{m \rightarrow+\infty}\left(T^{\prime}\left(w_{m}\right),\left(w_{m}-w_{0}\right)\right)=0
$$

From this we arrive at

$$
\lim _{m \rightarrow+\infty}\left(J^{\prime}\left(w_{m}\right),\left(w_{m}-w_{0}\right)\right)=\lim _{m \rightarrow+\infty}\left(I^{\prime}\left(w_{m}\right)-T^{\prime}\left(w_{m}\right), w_{m}-w_{0}\right)=0
$$

Moreover, since J is convex we have

$$
J\left(w_{0}\right)-J\left(w_{m}\right) \geq\left(J^{\prime}\left(w_{m}\right),\left(w_{0}-w_{m}\right)\right)
$$

Letting $m \rightarrow+\infty$ we obtain that

$$
J\left(w_{0}\right) \geq \lim _{m \rightarrow+\infty} J\left(w_{m}\right)
$$

On the other hand, by Proposition 2.6 we have

$$
J\left(w_{0}\right) \leq \liminf _{m \rightarrow+\infty} J\left(w_{m}\right)
$$

This implies that

$$
J\left(w_{0}\right)=\lim _{m \rightarrow+\infty} J\left(w_{m}\right)
$$

Next we suppose, by contradiction, that $\left\{w_{m}\right\}$ does not converge to $w_{0}=$ $\left(u_{0}, v_{0}\right)$. Then there exists a subsequence $\left\{w_{m_{k}}=\left(u_{m_{k}}, v_{m_{k}}\right)\right\}_{k}$ of $\left\{w_{m}\right\}$ and $\epsilon>0$ such that

$$
\left\|w_{m_{k}}-w_{0}\right\|_{E} \geq \epsilon, k=1,2, \ldots
$$

Recalling the Clarkson's inequality

$$
\left|\frac{s+t}{2}\right|^{p}+\left|\frac{s-t}{2}\right|^{p} \leq \frac{1}{2}\left(|s|^{p}+|t|^{p}\right), s, t \in \mathbb{R}
$$

we deduce that

$$
\frac{1}{2} J\left(w_{m_{k}}\right)+\frac{1}{2} J\left(w_{0}\right)-J\left(\frac{w_{m_{k}}+w_{0}}{2}\right) \geq J\left(\frac{w_{m_{k}}-w_{0}}{2}\right), k=1,2, \ldots
$$

Observe that

$$
\begin{aligned}
J\left(\frac{w_{m_{k}}-w_{0}}{2}\right) & =\frac{\alpha}{p} \frac{1}{2^{p}}\left\|u_{m_{k}}-u_{0}\right\|_{E_{1}}^{p}+\frac{\beta}{p} \frac{1}{2^{p}}\left\|v_{m_{k}}-v_{0}\right\|_{E_{2}}^{p} \\
& \geq \frac{1}{p 2^{p}} \min (\alpha, \beta)\left\|w_{m_{k}}-w_{0}\right\|_{E}^{p} \geq \frac{\min (\alpha, \beta)}{p} \frac{\epsilon^{p}}{2^{p}}>0
\end{aligned}
$$

Hence

$$
\frac{1}{2} J\left(w_{m_{k}}\right)+\frac{1}{2} J\left(w_{0}\right)-J\left(\frac{w_{m_{k}}+w_{0}}{2}\right) \geq \frac{\min (\alpha, \beta)}{p} \frac{\epsilon^{p}}{2^{p}}>0, k=1,2, \ldots
$$

Letting $\lim _{k \rightarrow+\infty}$ inf we obtain

$$
J\left(w_{0}\right)-\liminf _{k \rightarrow+\infty} J\left(\frac{w_{m_{k}}+w_{0}}{2}\right) \geq \frac{\min (\alpha, \beta)}{p} \frac{\epsilon^{p}}{2^{p}}>0
$$

Again instead of the remark that since $\left\{\frac{w_{m_{k}}+w_{0}}{2}\right\}$ converges weakly to w_{0} in X, by Proposition 2.6 we have

$$
J\left(w_{0}\right) \leq \liminf _{k \rightarrow+\infty} J\left(\frac{w_{m_{k}}+w_{0}}{2}\right)
$$

Hence we get a contradiction:

$$
0 \geq \frac{\min (\alpha, \beta)}{p} \frac{\epsilon^{p}}{2^{p}}>0
$$

Therefore $\left\{w_{m}\right\}$ converges strongly to w_{0} in E. The Proposition 2.7 is proved.

Proposition 2.8. Assume that hypothesis $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ are fulfilled. The functional $I: E \rightarrow \mathbb{R}$ given by (2.1) satisfies the Palais-Smale condition on E.

Proof. Let $\left\{w_{m}=\left(u_{m}, v_{m}\right)\right\}$ be a Palais-Smale sequence in E, i.e:

$$
\begin{gather*}
\left|I\left(w_{m}\right)\right| \leq c, c \text { is positive constant. } \tag{2.8}\\
I^{\prime}\left(w_{m}\right) \rightarrow 0 \text { in } E^{*} \text { as } m \rightarrow+\infty \tag{2.9}
\end{gather*}
$$

First we shall prove that $\left\{w_{m}\right\}$ is bounded in E. We suppose, by contradiction, that $\left\{w_{m}\right\}$ is not bounded in E. Without loss of generality we assume that

$$
\left\|w_{m}\right\|_{E} \rightarrow+\infty \text { as } m \rightarrow+\infty
$$

Let $\widehat{w}_{m}=\frac{w_{m}}{\left\|w_{m}\right\|_{E}}=\left(\widehat{u}_{m}, \widehat{v}_{m}\right)$ that is $\widehat{u}_{m}=\frac{u_{m}}{\left\|w_{m}\right\|_{E}}$ and $\widehat{v}_{m}=\frac{v_{m}}{\left\|w_{m}\right\|_{E}}$. Thus \widehat{w}_{m} is bounded in E, hence \widehat{w}_{m} is also bounded in $X=W_{0}^{1, p} \times W_{0}^{1, p}$. Then there exists a subsequence $\left\{\widehat{w}_{m_{k}}=\left(\widehat{u}_{m_{k}}, \widehat{v}_{m_{k}}\right)\right\}_{k}$ which converges weakly to some $\widehat{w}=(\widehat{u}, \widehat{v})$ in X. Since the embedding $W_{0}^{1, p}(\Omega)$ into $L^{p}(\Omega)$ is compact, the sequences $\left\{\widehat{u}_{m_{k}}\right\}$ and $\left\{\widehat{v}_{m_{k}}\right\}$ converge strongly to \widehat{u} and \widehat{v}, respectively, in $L^{p}(\Omega)$.

From (2.8) we have
(2.10)

$$
\begin{gathered}
\frac{\alpha}{p} \int_{\Omega} h_{1}(x)\left|\nabla \widehat{u}_{m_{k}}\right|^{p} d x+\frac{\beta}{p} \int_{\Omega} h_{2}(x)\left|\nabla \widehat{v}_{m_{k}}\right|^{p} d x-\lambda_{1} \int_{\Omega}\left|\widehat{u}_{m_{k}}\right|^{\alpha-1}\left|\widehat{v}_{m_{k}}\right|^{\beta-1} \widehat{u}_{m_{k}} \widehat{v}_{m_{k}} d x \\
-\int_{\Omega} \frac{H\left(x, w_{m_{k}}\right)}{\left\|w_{m_{k}}\right\|_{E}^{p}} d x+\int_{\Omega} \frac{\alpha k_{1} \widehat{u}_{m_{k}}+\beta k_{2} \widehat{v}_{m_{k}}}{\left\|w_{m_{k}}\right\|_{E}^{p-1}} d x \leq \frac{c}{\left\|w_{m_{k}}\right\|_{E}^{p}}
\end{gathered}
$$

From this, remark that $h_{1}(x) \geq 1, h_{2}(x) \geq 1$ for a.e $x \in \Omega$, we get

$$
\begin{align*}
\lim _{k \rightarrow+\infty} \sup & \left\{\frac{\alpha}{p} \int_{\Omega}\left|\nabla \widehat{u}_{m_{k}}\right|^{p} d x+\frac{\beta}{p} \int_{\Omega}\left|\nabla \widehat{v}_{m_{k}}\right|^{p} d x-\lambda_{1} \int_{\Omega}\left|\widehat{u}_{m_{k}}\right|^{\alpha-1}\left|\widehat{v}_{m_{k}}\right|^{\beta-1} \widehat{u}_{m_{k}} \widehat{v}_{m_{k}} d x\right. \tag{2.11}\\
& \left.-\int_{\Omega} \frac{H\left(x, w_{m_{k}}\right)}{\left\|w_{m_{k}}\right\|_{E}^{p}} d x+\int_{\Omega} \frac{\alpha k_{1}(x) \widehat{u}_{m_{k}}+\beta k_{2}(x) \widehat{v}_{m_{k}}}{\left\|w_{m_{k}}\right\|_{E}^{p-1}} d x\right\} \leq 0
\end{align*}
$$

By hypothesis $\left(\mathrm{H}_{1}\right)$ on the functions $f, g, h_{i}(x), k_{i}(x), i=1,2$, we deduce that

$$
\begin{gather*}
\limsup _{k \rightarrow+\infty} \int_{\Omega} \frac{H\left(x, w_{m_{k}}\right)}{\left\|w_{m_{k}}\right\|_{E}^{p}} d x=0 \tag{2.12}\\
\lim _{k \rightarrow+\infty} \int_{\Omega} \frac{\alpha k_{1}(x) \widehat{u}_{m_{k}}+\beta k_{2}(x) \widehat{v}_{m_{k}}}{\left\|w_{m_{k}}\right\|_{E}^{p-1}} d x=0 . \tag{2.13}
\end{gather*}
$$

Moreover by Remark 2.4, we infer

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \int_{\Omega}\left|\widehat{u}_{m_{k}}\right|^{\alpha-1}\left|\widehat{v}_{m_{k}}\right|^{\beta-1} \widehat{u}_{m_{k}} \widehat{v}_{m_{k}} d x=\int_{\Omega}|\widehat{u}|^{\alpha-1}|\widehat{v}|^{\beta-1} \widehat{u} \widehat{v} d x . \tag{2.14}
\end{equation*}
$$

From (2.11) with (2.12), (2.13) and (2.14) we arrive at

$$
\limsup _{k \rightarrow+\infty}\left\{\frac{\alpha}{p} \int_{\Omega}\left|\nabla \widehat{u}_{m_{k}}\right|^{p} d x+\frac{\beta}{p} \int_{\Omega}\left|\nabla \widehat{v}_{m_{k}}\right|^{p} d x\right\} \leq \lambda_{1} \int_{\Omega}|\widehat{u}|^{\alpha-1}|\widehat{v}|^{\beta-1} \widehat{u} \widehat{v} d x .
$$

By Proposition 2.6 and the variational characterization of λ_{1} we get

$$
\begin{aligned}
& \lambda_{1} \int_{\Omega}|\widehat{u}|^{\alpha-1}|\widehat{v}|^{\beta-1} \widehat{u} \widehat{v} d x \leq \frac{\alpha}{p} \int_{\Omega}|\nabla \widehat{u}|^{p} d x+\frac{\beta}{p} \int_{\Omega}|\nabla \widehat{v}|^{p} d x \\
& \quad \leq \liminf _{k \rightarrow+\infty}\left\{\frac{\alpha}{p} \int_{\Omega}\left|\nabla \widehat{u}_{m_{k}}\right|^{p} d x+\frac{\beta}{p} \int_{\Omega}\left|\nabla \widehat{v}_{m_{k}}\right|^{p} d x\right\} \\
& \quad \leq \limsup _{k \rightarrow+\infty}\left\{\frac{\alpha}{p} \int_{\Omega}\left|\nabla \widehat{u}_{m_{k}}\right|^{p} d x+\frac{\beta}{p} \int_{\Omega}\left|\nabla \widehat{v}_{m_{k}}\right|^{p} d x\right\} \leq \lambda_{1} \int_{\Omega}|\widehat{u}|^{\alpha-1}|\widehat{v}|^{\beta-1} \widehat{u} \widehat{v} d x .
\end{aligned}
$$

Thus theses inequalities are indeed equalities and we have

$$
\begin{gather*}
\lim _{k \rightarrow+\infty}\left\{\frac{\alpha}{p} \int_{\Omega}\left|\nabla \widehat{u}_{m_{k}}\right|^{p} d x+\frac{\beta}{p} \int_{\Omega}\left|\nabla \widehat{v}_{m_{k}}\right|^{p} d x\right\}=\frac{\alpha}{p} \int_{\Omega}|\nabla \widehat{u}|^{p} d x+\frac{\beta}{p} \int_{\Omega}|\nabla \widehat{v}|^{p} d x \tag{2.15}\\
=\lambda_{1} \int_{\Omega}|\widehat{u}|^{\alpha-1}|\widehat{v}|^{\beta-1} \widehat{u} \widehat{v} d x
\end{gather*}
$$

We shall prove that $\widehat{u} \neq 0$ and $\widehat{v} \neq 0$.
By contradiction suppose that $\widehat{u}=0$, thus $\widehat{u}_{m_{k}} \rightarrow 0$ in $L^{p}(\Omega)$ as $k \rightarrow+\infty$. Then from the fact that

$$
\begin{aligned}
\left|\wedge\left(\widehat{u}_{m_{k}}, \widehat{v}_{m_{k}}\right)\right| & =\left.\left|\int_{\Omega}\right| \widehat{u}_{m_{k}}\right|^{\alpha-1}\left|\widehat{v}_{m_{k}}\right|^{\beta-1} \widehat{u}_{m_{k}} \widehat{v}_{m_{k}} d x \mid \\
& \leq\left\|\widehat{u}_{m_{k}}\right\|_{L^{p}(\Omega)}^{\alpha} \mid \widehat{v}_{m_{k}} \|_{L^{p}(\Omega)}^{\beta} .
\end{aligned}
$$

Letting $k \rightarrow+\infty$ since $\left\|\widehat{u}_{m_{k}}\right\|_{L^{p}(\Omega)} \rightarrow 0$, we deduce that

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \wedge\left(\widehat{u}_{m_{k}}, \widehat{v}_{m_{k}}\right)=0 \tag{2.16}
\end{equation*}
$$

From (2.10) taking $\lim _{k \rightarrow+\infty}$ sup with (2.12), (2.13) and (2.16) we arrive at

$$
\begin{equation*}
\limsup _{k \rightarrow+\infty}\left\{\frac{\alpha}{p} \int_{\Omega} h_{1}(x)\left|\nabla \widehat{u}_{m_{k}}\right|^{p} d x+\frac{\beta}{p} \int_{\Omega} h_{2}(x)\left|\nabla \widehat{v}_{m_{k}}\right|^{p} d x\right\}=0 \tag{2.17}
\end{equation*}
$$

On the other hand, since $\left\|\widehat{w}_{m_{k}}\right\|_{E}=1$ and
$\frac{\alpha}{p} \int_{\Omega} h_{1}(x)\left|\nabla \widehat{u}_{m_{k}}\right|^{p} d x+\frac{\beta}{p} \int_{\Omega} h_{2}(x)\left|\nabla \widehat{v}_{m_{k}}\right|^{p} d x \geq \min \left(\frac{\alpha}{p}, \frac{\beta}{p}\right)\left\|\widehat{w}_{m_{k}}\right\|_{E}=\min \left(\frac{\alpha}{p}, \frac{\beta}{p}\right)>0$,
which contradicts (2.17). Thus $\widehat{u} \neq 0$. Similary we have $\widehat{v} \neq 0$.
By again the definition of λ_{1} from (2.15) we deduce that $\widehat{w}=(\widehat{u}, \widehat{v})=\left(\varphi_{1}, \varphi_{2}\right)$ or $\widehat{w}=(\widehat{u}, \widehat{v})=\left(-\varphi_{1},-\varphi_{2}\right)$, where $\left(\varphi_{1}, \varphi_{2}\right)$ is eigenpair associated with λ_{1} of the problem (1.4).

Next we shall consider following two cases:
Assume that $\widehat{u}_{m_{k}} \rightarrow \varphi_{1}, \widehat{v}_{m_{k}} \rightarrow \varphi_{2}$ in $L^{p}(\Omega)$ as $k \rightarrow+\infty$. Observe that by the variational characterization of λ_{1} we have

$$
\frac{\alpha}{p} \int_{\Omega}\left|\nabla \widehat{u}_{m_{k}}\right|^{p} d x+\frac{\beta}{p} \int_{\Omega}\left|\nabla \widehat{v}_{m_{k}}\right|^{p} d x-\lambda_{1} \int_{\Omega}\left|u_{m_{k}}\right|^{\alpha-1}\left|v_{m_{k}}\right|^{\beta-1} u_{m_{k}} v_{m_{k}} d x \geq 0
$$

From this, note that $h_{1}(x) \geq 1, h_{2}(x) \geq 1$ a.e $x \in \Omega$, we have
$\frac{\alpha}{p} \int_{\Omega} h_{1}(x)\left|\nabla \widehat{u}_{m_{k}}\right|^{p} d x+\frac{\beta}{p} \int_{\Omega} h_{2}(x)\left|\nabla \widehat{v}_{m_{k}}\right|^{p} d x-\lambda_{1} \int_{\Omega}\left|u_{m_{k}}\right|^{\alpha-1}\left|v_{m_{k}}\right|^{\beta-1} u_{m_{k}} v_{m_{k}} d x \geq 0$.
Then from (2.8) it implies:

$$
-\int_{\Omega} H\left(x, u_{m_{k}}, v_{m_{k}}\right) d x+\int_{\Omega}\left(\alpha k_{1}(x) u_{m_{k}}+\beta k_{2}(x) v_{m_{k}}\right) d x \leq c, k=1,2, \ldots
$$

After dividing by $\left\|w_{m_{k}}\right\|_{E}$ taking $\lim _{k \rightarrow+\infty}$ sup and remark that

$$
\lim _{k \rightarrow+\infty} \int_{\Omega}\left(\alpha k_{1}(x) \widehat{u}_{m_{k}}+\beta k_{2}(x) \widehat{v}_{m_{k}}\right) d x=\int_{\Omega}\left(\alpha k_{1}(x) \varphi_{1}+\beta k_{2}(x) \varphi_{2}\right) d x
$$

we arrive at

$$
\begin{equation*}
\limsup _{k \rightarrow+\infty} \int_{\Omega} \frac{H\left(x, w_{m_{k}}\right)}{\left\|w_{m_{k}}\right\|_{E}} d x \geq \int_{\Omega}\left(\alpha k_{1}(x) \varphi_{1}+\beta k_{2}(x) \varphi_{2}\right) d x \tag{2.18}
\end{equation*}
$$

We need the following lemma
Lemma 2.9. Assume that the hypothesis $\left(\mathrm{H}_{1}\right)$ is true. Then

$$
\begin{equation*}
\limsup _{k \rightarrow+\infty} \int_{\Omega} \frac{H\left(x, w_{m_{k}}\right)}{\left\|w_{m_{k}}\right\|_{E}} d x=\frac{1}{2} \int_{\Omega}\left(F_{1}(x) \varphi_{1}+G_{1}(x) \varphi_{2}\right) d x \tag{2.19}
\end{equation*}
$$

where $F_{1}(x), G_{1}(x)$ are given by (1.9).
Proof. By (1.7), we have

$$
\begin{align*}
& H\left(x, w_{m_{k}}\right)= \tag{2.20}\\
& \frac{\alpha}{2} \int_{0}^{u_{m_{k}}}\left(f\left(x, s, v_{m_{k}}\right)+f(x, s, 0)\right) d s+\frac{\beta}{2} \int_{0}^{v_{m_{k}}}\left(g\left(x, u_{m_{k}}, t\right)+g(x, 0, t)\right) d t
\end{align*}
$$

Set $l_{k}=\left\|w_{m_{k}}\right\|_{E} \rightarrow+\infty$ as $k \rightarrow+\infty$. Observe that by hypothesiss $\left(\mathrm{H}_{1}\right)$ on $f(x, w), g(x, w)$ we have

$$
\begin{array}{rl}
\mid \alpha \int_{0}^{u_{m_{k}}} & f\left(x, s, v_{m_{k}}\right) d s-\alpha \int_{0}^{l_{k} \varphi_{1}} f\left(x, s, l_{k} \varphi_{2}\right) d s \mid \\
\leq & \alpha\left|\int_{0}^{u_{m_{k}}}\left(f\left(x, s, v_{m_{k}}\right)-f\left(x, s, l_{k} \varphi_{2}\right)\right) d s\right|+\alpha\left|\int_{l_{k} \varphi_{1}}^{u_{m_{k}}} f\left(x, s, l_{k} \varphi_{2}\right) d s\right| \\
\leq & \left|\int_{0}^{u_{m_{k}}} \alpha \frac{\partial f}{\partial t}\left(x, s, l_{k} \varphi_{2}+\delta\left(v_{m_{k}}-l_{k} \varphi_{2}\right)\right)\left(v_{m_{k}}-l_{k} \varphi_{2}\right) d s\right| \\
& +\alpha \tau(x)\left|u_{m_{k}}-l_{k} \varphi_{1}\right| \\
\leq & \left|\int_{0}^{u_{m_{k}}} \beta \frac{\partial g}{\partial s}\left(x, s, l_{k} \varphi_{2}+\delta\left(v_{m_{k}}-l_{k} \varphi_{2}\right)\right) d s\left(v_{m_{k}}-l_{k} \varphi_{2}\right)\right| \\
& +\alpha \tau(x)\left|u_{m_{k}}-l_{k} \varphi_{1}\right| \\
\leq & 2 \beta \tau(x)\left|v_{m_{k}}-l_{k} \varphi_{2}\right|+\alpha \tau(x)\left|u_{m_{k}}-l_{k} \varphi_{1}\right|, \delta \in(0,1) .
\end{array}
$$

From this and remark that $\widehat{u}_{m_{k}}=\frac{u_{m_{k}}}{l_{k}}, \widehat{v}_{m_{k}}=\frac{v_{m_{k}}}{l_{k}}$, we get:

$$
\begin{array}{rl}
\left\lvert\, \alpha \frac{1}{l_{k}} \int_{0}^{u_{m_{k}}}\right. & f\left(x, s, v_{m_{k}}\right) d s-\alpha \frac{1}{l_{k}} \int_{0}^{l_{k} \varphi_{1}} f\left(x, s, l_{k} \varphi_{2}\right) d s \\
& \leq 2 \beta \tau(x)\left|\widehat{v}_{m_{k}}-\varphi_{2}\right|+\alpha \tau(x)\left|\widehat{u}_{m_{k}}-\varphi_{1}\right| \tag{2.21}
\end{array}
$$

Similarly,

$$
\begin{equation*}
\left|\frac{\alpha}{l_{k}} \int_{0}^{u_{m_{k}}} f(x, s, 0) d s-\frac{\alpha}{l_{k}} \int_{0}^{l_{k} \varphi_{1}} f(x, s, 0) d s\right| \leq \alpha \tau(x)\left|\widehat{u}_{m_{k}}-\varphi_{1}\right| \tag{2.22}
\end{equation*}
$$

Combining (2.21) and (2.22) we infer that

$$
\begin{aligned}
\mid \int_{\Omega} & \left.\left\{\frac{\alpha}{l_{k}} \int_{0}^{u_{m_{k}}}\left(f\left(x, s, v_{m_{k}}\right)+f(x, s, 0)\right) d s-\frac{\alpha}{l_{k}} \int_{0}^{l_{k} \varphi_{1}}\left(f\left(x, s, l_{k} \varphi_{2}\right)+f(x, s, 0)\right) d s\right\} d x \right\rvert\, \\
& \leq \int_{\Omega}\left\{2 \beta \tau(x)\left|\left(\widehat{v}_{m_{k}}-\varphi_{2}\right)\right|+2 \alpha \tau(x)\left|\widehat{u}_{m_{k}}-\varphi_{1}\right|\right\} d x \\
& \leq 2 \beta\|\tau(x)\|_{L^{p^{\prime}}(\Omega)}\left\|\widehat{v}_{m_{k}}-\varphi_{2}\right\|_{L^{p}(\Omega)}+2 \alpha\|\tau(x)\|_{L^{p^{\prime}}(\Omega)}\left\|\widehat{u}_{m_{k}}-\varphi_{1}\right\|_{L^{p}(\Omega)} .
\end{aligned}
$$

Letting $k \rightarrow+\infty$, since:

$$
\lim _{k \rightarrow+\infty}\left\|\widehat{v}_{m_{k}}-\varphi_{2}\right\|_{L^{2}(\Omega)}=0, \lim _{k \rightarrow+\infty}\left\|\widehat{u}_{m_{k}}-\varphi_{1}\right\|_{L^{2}(\Omega)}=0
$$

we deduce that

$$
\begin{aligned}
\limsup _{k \rightarrow+\infty} & \int_{\Omega}\left\{\frac{\alpha}{l_{k}} \int_{0}^{u_{m_{k}}}\left(f\left(x, s, v_{m_{k}}\right)+f(x, s, 0)\right) d s\right\} d x \\
& =\limsup _{k \rightarrow+\infty} \int_{\Omega}\left\{\frac{\alpha}{l_{k}} \int_{0}^{l_{k} \varphi_{1}}\left(f\left(x, s, l_{k} \varphi_{2}\right)+f(x, s, 0)\right) d s\right\} d x
\end{aligned}
$$

Set $s=y \varphi_{1}(x), d s=\varphi_{1}(x) d y$, we get
$\int_{0}^{l_{k} \varphi_{1}}\left(f\left(x, s, l_{k} \varphi_{2}\right)+f(x, s, 0)\right) d s=\int_{0}^{l_{k}}\left(f\left(x, y \varphi_{1}, l_{k} \varphi_{2}\right)+f\left(x, y \varphi_{1}, 0\right)\right) \varphi_{1} d y$.
Remark that $l_{k}=\left\|w_{m_{k}}\right\|_{E} \rightarrow+\infty$ as $k \rightarrow+\infty$, we derive that

$$
\begin{align*}
\limsup _{k \rightarrow+\infty} & \int_{\Omega}\left\{\frac{\alpha}{l_{k}} \int_{0}^{u_{m_{k}}}\left(f\left(x, s, v_{m_{k}}\right)+f(x, s, 0)\right) d s\right\} d x \\
& =\limsup _{k \rightarrow+\infty} \int_{\Omega}\left\{\frac{\alpha}{l_{k}} \int_{0}^{l_{k}}\left(f\left(x, y \varphi_{1}, l_{k} \varphi_{2}\right)+f\left(x, y \varphi_{1}, 0\right)\right) d y\right\} \varphi_{1} d x \\
& =\int_{\Omega} F_{1}(x) \varphi_{1}(x) d x \tag{2.23}
\end{align*}
$$

Similarly, we also derive that

$$
\begin{equation*}
\limsup _{k \rightarrow+\infty} \int_{\Omega}\left\{\frac{\beta}{l_{k}} \int_{0}^{v_{m_{k}}}\left(g\left(x, u_{m_{k}}, t\right)+g(x, 0, t)\right) d s\right\} d x=\int_{\Omega} G_{1}(x) \varphi_{2}(x) d x \tag{2.24}
\end{equation*}
$$

where $F_{1}(x)$ and $G_{1}(x)$ are given in (1.9). Combining (2.23), (2.24) we obtain:

$$
\begin{equation*}
\limsup _{k \rightarrow+\infty} \int_{\Omega} \frac{H\left(x, w_{m_{k}}\right)}{\left\|w_{m_{k}}\right\|_{E}} d x=\frac{1}{2} \int_{\Omega}\left(F_{1}(x) \varphi_{1}(x)+G_{1}(x) \varphi_{2}(x)\right) d x \tag{2.25}
\end{equation*}
$$

Lemma 2.9 is proved.
Now, by (2.19) from (2.18) we obtain

$$
\frac{1}{2} \int_{\Omega}\left(F_{1}(x) \varphi_{1}+G_{1}(x) \varphi_{2}\right) d x \geq \int_{\Omega}\left(\alpha k_{1}(x) \varphi_{1}+\beta k_{2}(x) \varphi_{2}\right) d x
$$

which contradicts (1.10).
If $\widehat{u}_{m_{k}} \rightarrow-\varphi_{1}(x), \widehat{v}_{m_{k}} \rightarrow-\varphi_{2}(x)$ in $L^{p}(\Omega)$ as $k \rightarrow+\infty$, by similar computations as above and remark that in this case:

$$
\limsup _{k \rightarrow+\infty} \int_{\Omega} \frac{H\left(x, w_{m_{k}}\right)}{\left\|w_{m_{k}}\right\|_{E}} d x=-\frac{1}{2} \int_{\Omega}\left(F_{2}(x) \varphi_{1}+G_{2}(x) \varphi_{2}\right) d x
$$

Hence from (2.18) we get

$$
-\frac{1}{2} \int_{\Omega}\left(F_{2}(x) \varphi_{1}+G_{2}(x) \varphi_{2}\right) d x \geq-\int_{\Omega}\left(\alpha k_{1}(x) \varphi_{1}+\beta k_{2}(x) \varphi_{2}\right) d x
$$

which gives

$$
\frac{1}{2} \int_{\Omega}\left(F_{2}(x) \varphi_{1}+G_{2}(x) \varphi_{2}\right) d x \leq \int_{\Omega}\left(\alpha k_{1}(x) \varphi_{1}+\beta k_{2}(x) \varphi_{2}\right) d x
$$

Thus we get a contradiction with (1.10).
Hence the Palais-Smale sequence $\left\{w_{m}\right\}$ is bounded in E and it is also bounded in X. Then there exists a subsequence $\left\{w_{m_{k}}\right\}$ which converges weakly
to some $w_{0}=\left(u_{0}, v_{0}\right)$ in X. From Proposition 2.7 we deduce that $w_{0} \in E$ and $\left\{w_{m_{k}}\right\}$ converges strongly to w_{0} in E. The proof of the Proposition 2.8 is complete.

Proposition 2.10. The functional $I: E \rightarrow \mathbb{R}$ given by (2.1) is coercive on E provided that hypotheses $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ hold.

Proof. By contradiction we suppose that I is not coercive in E. Then it is possible to choose a sequence $\left\{w_{m}=\left(u_{m}, v_{m}\right)\right\}_{m}$ in E such that

$$
\left\|w_{m}\right\|_{E} \rightarrow+\infty \text { and } I\left(w_{m}\right) \leq c, c \text { is positive constant. }
$$

Let $\widehat{w}_{m}=\frac{w_{m}}{\left\|w_{m}\right\|_{E}}=\left(\widehat{u}_{m}, \widehat{v}_{m}\right)$. Hence the sequence $\left\{\widehat{w}_{m}\right\}$ is bounded in E and then bounded in $X=W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$. Therefore it has a subsequence $\widehat{w}_{m_{k}}=\left(\widehat{u}_{m_{k}}, \widehat{v}_{m_{k}}\right)$ which converges weakly in X and converges strongly in $L^{p}(\Omega) \times L^{p}(\Omega)$. Applying arguments used in the proof of Proposition 2.8, we can proof that $\widehat{w}_{m_{k}} \rightarrow\left(\varphi_{1}, \varphi_{2}\right)$ or $\widehat{w}_{m_{k}} \rightarrow\left(-\varphi_{1},-\varphi_{2}\right)$ in $L^{p}(\Omega) \times L^{p}(\Omega)$ as $k \rightarrow+\infty$ where $\left(\varphi_{1}, \varphi_{2}\right)$ is eigenpair associated with eigenvalue λ_{1} of the problem (1.4). Assume that $\widehat{w}_{m_{k}} \rightarrow\left(\varphi_{1}, \varphi_{2}\right)$ in $L^{p}(\Omega) \times L^{p}(\Omega)$ as $k \rightarrow+\infty$. By again the same arguments used in the proof of the Proposition 2.8 we arrive at

$$
\frac{1}{2} \int_{\Omega}\left(F_{1}(x) \varphi_{1}+G_{1}(x) \varphi_{2}\right) d x \geq \int_{\Omega}\left(\alpha k_{1}(x) \varphi_{1}+\beta k_{2}(x) \varphi_{2}\right) d x
$$

which contradicts (1.10). If $\widehat{w}_{m} \rightarrow\left(-\varphi_{1},-\varphi_{2}\right)$ in $L^{p}(\Omega) \times L^{p}(\Omega)$ as $k \rightarrow+\infty$, we get

$$
\frac{1}{2} \int_{\Omega}\left(F_{2}(x) \varphi_{1}+G_{2}(x) \varphi_{2}\right) d x \leq \int_{\Omega}\left(\alpha k_{1}(x) \varphi_{1}+\beta k_{2}(x) \varphi_{2}\right) d x
$$

This is in contradiction with (1.10). Thus I is coercive on E.
Proof of Theorem 1.1. By Propositions 2.8 and Proposition 2.6, applying the Minimum Principle (see Theorem 2.2), we deduce that the functional I attains its proper infimum at some $w_{0}=\left(u_{0}, v_{0}\right) \in E$, so that the problem (1.1) has at least a weak solution $w_{0} \in E$. Moreover by hypothesis $\left(\mathrm{H}_{1}\right)$ on $f(x, s, t), g(x, s, t), k_{1}(x), k_{2}(x)$, it is clear that w_{0} is nontrivial and the proof of Theorem 1.1 is complete.

Conflict of Interest Statement: The authors declare that they have no conflict of interest.

Acknowledgements

This research supported by the National Foundation for Science and Technology Development of Viet Nam (NAFOSTED under grant number 101.022014.03)

References

[1] G.A. Afrouzi, M. Mirzapour and Q. Zhang, Simplicity and stability of the first eigenvalue of a $(p ; q)$ Laplacian system, Electron. J. Differential Equations 2012 (2012), no. 08, 6 pages.
[2] A. Anane and J.P. Gossez, Strongly nonlinear elliptic problems near resonance: a variational approach, Comm. Partial Differential Equation 15 (1990), no. 8, 1141-1159.
[3] D. Arcoya and L. Orsina, Landesman-Lazer condition and quasilinear elliptic equations, Nonlinear Anal. 28 (1997), no. 10, 1623-1632.
[4] L. Boccando, P. Drábek and M. Kučera, Landesman-Lazer conditions for strongly nonlinear boundary value problems, Comment. Math. Univ. Carolin. 30 (1989), no. 3, 411-427.
[5] N.T. Chung and H.Q. Toan, Existence result for nonuniformly degenerate semilinear elliptic systems in \mathbb{R}^{N}, Glasgow Math. J. 51 (2009), no. 3, 561-570.
[6] D.M. Duc, Nonlinear singular elliptic equation, J. Lond. Math. Soc. 40 (1989) 420-440.
[7] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.
[8] T.T.M. Hang and H.Q. Toan, On existence of weak solutions of Neumann problem for quasilinear elliptic equations involving p-Laplacian in an unbounded domain, Bull. Korean Math. Soc. 48 (2011), no. 6, 1169-1182.
[9] B.Q. Hung and H.Q. Toan, On existence of weak solutions for a p-Laplacian system at resonance, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 110 (2016), no. 1, 33-47.
[10] D.A. Kandilakis and M. Magiropoulos, A p-Laplacian system with resonance and nonlinear boundary conditions on an unbounded domain, Comment. Math. Univ. Carolin. 48 (2007), no. 1, 59-68.
[11] M. Lucia, P. Magrone and Huan-Songzhou, A Dirichlet problem with asymptotically linear and changing sign nonlinearity, Rev. Mat. Complut. 16 (2003), no. 2, 465-481.
[12] Q.A. Ngô and H.Q. Toan, Existence of solutions for a resonant problem under Landesman-Lazer condition, Electronic J. Differential Equations 2008 (2008), no. 98, 10 pages.
[13] Q.A. Ngô and H.Q. Toan, Some Remarks on a class of Nonuniformly Elliptic Equations of p-Laplacian type, Acta Appl. Math. 106 (2009), no. 2, 229-239.
[14] Z.Q. Ou and C.L. Tang, Resonance problems for the p-Laplacian systems, J. Math. Anal. Appl. 345 (2008), no. 1, 511-521.
[15] N.M. Stavrakakis and N.B. Zographopoulos, Existence results for quasilinear elliptic systems in \mathbb{R}^{N}, Electron. J. Differential Equations 1999 (1999), no. 39, 15 pages.
[16] M. Struwe, Variational Methods, Springer-Verlag, 2nd edition, Berlin, Heidelberg, 2008.
[17] H.Q. Toan and N.T. Chung, Existence of weak solutions for a class of nonuniformly nonlinear elliptic equations in unbounded domains, Nonlinear Anal. 70 (2009), no. 11, 3987-3996.
[18] H.Q. Toan and B.Q. Hung, On a generalization of the Landesman-Lazer condition and Neumann problem for nonuniformly semilinear elliptic equations in an unbounded domain with nonlinear boundary condition, Bull. Math. Soc. Sci. Math. Roumanie, $\mathbf{5 7}$ (105) (2014), no. 3, 301-317.
[19] P. Tomiczek, A generalization of the Landesman-Lazer condition, Electron. J. Differential Equations 2001 (2001), no. 4, 11 pages.
[20] N.B. Zographopoulos, p-Laplacian systems on resonance. Appl. Anal. 83 (2004), no. 5, 509-519.
[21] N.B. Zographopoulos, On a class of degenerate potential elliptic system, NoDEA Nonlinear Differential Equations Appl. 11 (2004), no. 2, 191-199.
(Bui Quoc Hung) Faculty of Information Technology, Le Quy Don Technical University, 236 Hoang Quoc Viet, Bac Tu Liem, Hanoi, Vietnam.

E-mail address: quochung2806@yahoo.com
(Hoang Quoc Toan) Department of Mathematics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Vietnam.

E-mail address: hq_toan@yahoo.com

[^0]: Article electronically published on 31 October, 2017.
 Received: 28 February 2016, Accepted: 17 July 2016.

 * Corresponding author.

