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Abstract. In this paper we focus on the Cauchy problem for the general-

ized IBq equation with damped term in n-dimensional space. We establish
the global existence and decay estimates of solution with Lq(1 ≤ q ≤ 2)
initial value, provided that the initial value is suitably small. Moreover,

we also show that the solution is asymptotic to the solution uL to the
corresponding linear equation as time tends to infinity. Finally, asymp-
totic profile of the solution uL to the linearized problem is also discussed.
Keywords: IBq equation, global existence, decay estimates, asymptotic

profile.
MSC(2010): Primary: 35L30; Secondary: 35L75.

1. Introduction

We investigate the Cauchy problem for the following generalized improved
Boussinesq (IBq) equation with damped term

(1.1) utt −∆utt −∆u− ν∆ut = ∆Ψ(u),

with the initial value

(1.2) t = 0 : u = u0(x), ut = u1(x).

Here u = u(x, t) is the unknown function of x = (x1, . . . , xn) ∈ Rn and t > 0,
ν is a positive constant. Ψ(u) is a smooth nonlinear function with Ψ(u) =
O(|u|1+σ)(σ ≥ 1) for u → 0.

It is well known that the IBq equation has the form

(1.3) utt −∆u−∆utt = ∆(u2).

Equation (1.3) is an important physical model, which approximately describes
the propagation of long waves on shallow water and the dynamical and ther-
modynamical properties of anharmonic monatomic and diatomic chains [1].
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For the study of well-posedness, some interesting results have been established
(see [14,15]).

Owing to irreversible processes taking place within the system, the dissi-
pation function depends on the time derivatives of the relative displacements,
the authors took into account internal friction (it is called this type of friction
hydrodynamical) and derived IBq equation with damped term (1.1) in [1].

Polat [11] established global existence and blow-up of solutions to (1.1)-(1.2).
By the contraction mapping principle and the sharp decay estimates for the
linearized problem, global existence and asymptotic behavior of solutions to
(1.1)-(1.2) was established by Wang and Hu [17] provided that the initial data
is suitably small. In this paper, our main purpose is to investigate sufficient
conditions on global existence of solutions and obtain the optimal decay es-
timate of solutions to the problem (1.1)-(1.2). Moreover, we prove that our
solution u is asymptotic to the solution uL to the linearized problem and a
simpler asymptotic profile of uL is derived. The results obtained in this paper
refine those in [17]. For the details see Theorem 3.2, Theorem 4.1 and Corollary
3.3-Corollary 3.6.

The study of the global existence and asymptotic behavior of solutions
to wave equation with damped term has attracted lots of mathematicians’
interests. We may refer to [8–10, 21] for damped wave equations and
[4, 5, 7, 12,16,18–20,22,23,25] and the references therein.

The plan of the paper is as follows. We investigate the decay property of the
solution operators to (1.1)-(1.2) in Section 2. Then, in Sections 3, we prove the
global existence and asymptotic decay of solutions for initial data in the space
Lq(1 ≤ q ≤ 2). Linear approximation of solutions is also discussed. Finally, we
derive a simpler asymptotic profile which gives the approximation to the linear
solution.

Notations. The Fourier transform of f is defined by

f̂(ξ) = F [f ](ξ) :=

∫
Rn

e−iξ·xf(x)dx.

Its inverse transform is denoted by F−1. For 1 ≤ p ≤ ∞, Lp = Lp(Rn)
denotes the usual Lebesgue space with the norm ∥ · ∥Lp . The nonhomogeneous
Sobolev space of order s is defined by W s,p = (I − ∂2

x)
− s

2Lp with the norm
∥f∥W s,p = ∥(I − ∂2

x)
s
2 f∥Lp . The homogeneous Sobolev space of order s is

defined by Ẇ s,p = (−∂2
x)

− s
2Lp with the norm ∥f∥Ẇ s,p = ∥(−∂2

x)
s
2 f∥Lp . For

various function spaces and notations, we may refer to [2] and [3].

2. Linear problem

We shall mainly investigate the decay property of solution operators in this
section. Therefore, we firstly need to derive the solution formula for the problem
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(1.1)-(1.2). The linearized equation of (1.1) is

(2.1) utt −∆utt −∆u− ν∆ut = 0.

We apply the Fourier transform to (2.1)-(1.2). This yields

(2.2) (1 + |ξ|2)ûtt + ν|ξ|2ût + |ξ|2û = 0,

(2.3) û(ξ, 0) = û0(ξ), ût(ξ, 0) = û1(ξ).

The corresponding characteristic equation of (2.2) is

(1 + |ξ|2)λ2 + ν|ξ|2λ+ |ξ|2 = 0.

We solve the above equation to get

(2.4) λ±(ξ) =
−ν|ξ|2 ± i|ξ|

√
4− (4− ν2)|ξ|2

2(1 + |ξ|2)
,

which are the corresponding eigenvalues. Thus we obtain the solution to the
initial value problem for the second order ordinary differential equation (2.2),
(2.3)

(2.5) û(ξ, t) = Ŝ1(ξ, t)û1(ξ) + Ŝ2(ξ, t)û0(ξ),

where

Ŝ1(ξ, t) =
1

λ+(ξ)− λ−(ξ)

(
eλ+(ξ)t − eλ−(ξ)t

)
,

Ŝ2(ξ, t) =
1

λ+(ξ)− λ−(ξ)

(
λ+(ξ)e

λ−(ξ)t − λ−(ξ)e
λ+(ξ)t

)
.

(2.6)

Then, we apply F−1 to (2.5) and get the solution formula to (2.1)-(1.2):

(2.7) u(t) = S1(t) ∗ u1 +S2(t) ∗ u0.

By the Duhamel principle, it is well known that the problem (1.1)-(1.2) is
equivalent to the following integral equation

(2.8) u(t) = S1(t) ∗ u1 +S2(t) ∗ u0 +

∫ t

0

S1(t− τ) ∗ (1−∆)−1∆Ψ(u)(τ)dτ.

In what follows, we establish the estimate of solutions by energy method in
the Fourier space.

Lemma 2.1. Assume that u is a solution to (2.1)-(1.2). Then, the Fourier
transform û of the solution u satisfies the following estimate
(2.9)

(1 + |ξ|2)|ût(ξ, t)|2 + |ξ|2|û(ξ, t)|2 ≤ Ce−cω(ξ)t
(
(1 + |ξ|2)|û1(ξ)|2 + |ξ|2|û0(ξ)|2

)
,

for ξ ∈ Rn and t ≥ 0, where ω(ξ) = |ξ|2
1+|ξ|2 .
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Proof. We may prove (2.9) by the energy method in the Fourier space. The
energy method in Fourier space was first developed in [13] and then used in
many papers (see, for example, [5, 12,19,20,25]).

Multiplying (2.2) by ¯̂ut and taking the real part, we have

(2.10)
1

2

d

dt
{(1 + |ξ|2)|ût|2 + |ξ|2|û|2}+ ν|ξ|2|ût|2 = 0.

We multiply (2.2) by ¯̂u and take the real part. This gives

(2.11)
1

2

d

dt
{ν|ξ|2|û|2 + 2(1 + |ξ|2)Re(ût

¯̂u)}+ |ξ|2|û|2 − (1 + |ξ|2)|ût|2 = 0.

Multiplying (2.10) and (2.11) by 2(1 + |ξ|2) and µ|ξ|2, respectively, and then,
summing up these two equalities, we arrive at

(2.12)
d

dt
E+ F = 0,

where

E = (1 + |ξ|2)2|ût|2 + {|ξ|2(1 + |ξ|2) + 1

2
ν2|ξ|4}|û|2 + ν|ξ|2(1 + |ξ|2)Re(ût

¯̂u),

F = ν|ξ|4|û|2 + ν|ξ|2(1 + |ξ|2)|ût|2.

A simple computation shows that

(2.13) c(1 + |ξ|2)E0 ≤ E ≤ C(1 + |ξ|2)E0, F ≥ cω(ξ)E0,

where E0 = (1+ |ξ|2)|ût|2+ |ξ|2|û|2 and ω(ξ) = |ξ|2
1+|ξ|2 . Consequently, we obtain

F ≥ cω(ξ)E. Substituting this estimate into (2.12), we have d
dtE+ cω(ξ)E ≤ 0.

This differential inequality is solved as E(ξ, t) ≤ e−cω(ξ)tE(ξ, 0), which together
with (2.13) proves the desired estimate (2.9). This completes the proof of
Lemma 2.1. □

The estimate (2.9) and the solution formula (2.5) immediately give the fol-

lowing estimates for Ŝ1 and Ŝ2.

Lemma 2.2. The following estimates

|Ŝ1(ξ, t)| ≤ C|ξ|−1(1 + |ξ|2) 1
2 e−cω(ξ)t,

|Ŝ2(ξ, t)|+ |∂tŜ1(ξ, t)| ≤ Ce−cω(ξ)t,

|∂tŜ2(ξ, t)| ≤ C|ξ|(1 + |ξ|2)− 1
2 e−cω(ξ)t,

(2.14)

hold for ξ ∈ Rn and t ≥ 0, where ω(ξ) = |ξ|2
1+|ξ|2 .

Thanks to (2.14), we may establish the decay estimates for S1(t) and S2(t).
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Lemma 2.3. Assume that 1 ≤ q ≤ 2 and k, j and l are nonnegative integers.
Then

(2.15) ∥∂k
xS1(t)∗f∥L2 ≤ C(1+t)−

n
2 ( 1

q−
1
2 )−

k−j
2 ∥∂j

xf∥Ẇ−1,q+Ce−ct∥∂k+l
x f∥L2 ,

(2.16) ∥∂k
xS2(t) ∗ g∥L2 ≤ C(1 + t)−

n
2 ( 1

q−
1
2 )−

k−j
2 ∥∂j

xg∥Lq + Ce−ct∥∂k+l
x g∥L2 ,

for 0 ≤ j ≤ k. Similarly, we have
(2.17)

∥∂k
x∂tS1(t) ∗ f∥L2 ≤ C(1 + t)−

n
2 ( 1

q−
1
2 )−

k+1−j
2 ∥∂j

xf∥Ẇ−1,q + Ce−ct∥∂k+l
x f∥L2 ,

(2.18) ∥∂k
x∂tS2(t)∗g∥L2 ≤ C(1+t)−

n
2 ( 1

q−
1
2 )−

k+1−j
2 ∥∂j

xg∥Lq+Ce−ct∥∂k+l
x g∥L2 ,

for 0 ≤ j ≤ k + 1.

Proof. We only prove (2.15) and the proof of (2.16)-(2.18) is similar. It follows

from the Plancherel theorem and the pointwise estimate for Ŝ1 in (2.14) that

∥∂k
xS1(t) ∗ f∥2L2 =

∫
Rn

|ξ|2k|Ŝ1(ξ, t)|2|f̂(ξ)|2dξ

≤ C

∫
Rn

|ξ|2k−2(1 + |ξ|2)e−cω(ξ)t|f̂(ξ)|2dξ(2.19)

≤ C

∫
|ξ|≤r0

|ξ|2k−2(1 + |ξ|2)e−cω(ξ)t|f̂(ξ)|2dξ

+C

∫
|ξ|≥r0

|ξ|2k−2(1 + |ξ|2)e−cω(ξ)t|f̂(ξ)|2dξ

=: A1 + A2,

where r0 > 0 is a constant. Firstly, we estimate A1. It follows from the Hölder
inequality and the Hausdorff-Young inequality that

A1 ≤ C

∫
|ξ|≤r0

|ξ|2k−2e−c|ξ|2t|f̂(ξ)|2dξ

≤ C∥ |ξ|j−1f̂∥2
Lq′

(∫
|ξ|≤r0

|ξ|2(k−j)pe−cp|ξ|2tdξ
) 1

p

≤ C(1 + t)−n( 1
q−

1
2 )−(k−j)∥∂j

xf∥2Ẇ−1,q ,

(2.20)

where p, q, q′ satisfy 1
q′ +

1
q = 1 and 2

q′ +
1
p = 1.
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In what follows, we may estimate A2 as

A2 ≤ Ce−ct

∫
|ξ|≥r0

|ξ|2k|f̂(ξ)|2dξ

≤ Ce−ct

∫
|ξ|≥r0

|ξ|2(k+l)|f̂(ξ)|2dξ ≤ Ce−ct∥∂k+l
x f∥2L2 .

(2.21)

We insert (2.20) and (2.21) into (2.19) and immediately obtain the desired
estimate (2.15). Thus, the proof of Lemma 2.3 is completed. □

We also have the following decay estimate for S1(t) ∗ (1−∆)−1∆Ψ.

Lemma 2.4. Let 1 ≤ q ≤ 2, and let k, j and l be nonnegative integers. Then
we have
(2.22)

∥∂k
xS1(t) ∗ (1−∆)−1∆Ψ∥L2 ≤ C(1 + t)

−n
2
( 1
q
− 1

2
)− k+1−j

2 ∥∂j
xΨ∥Lq + Ce−ct∥∂k+l

x Ψ∥L2

and
(2.23)

∥∂k
x∂tS1(t)∗(I−∆)−1∆Ψ∥L2 ≤ C(1+t)

−n
2
( 1
q
− 1

2
)− k+2−j

2 ∥∂j
xΨ∥Lq +Ce−ct∥∂k+l

x Ψ∥L2 ,

where 0 ≤ j ≤ k + 1 in (2.22) and 0 ≤ j ≤ k + 2 in (2.23).

Proof. The proof is essentially the same as that of Lemma 2.3. Here we omit
the details of the proof. □

3. Decay estimates

In this section, we shall prove the global existence and asymptotic decay of
solutions to the nonlinear problem (1.1)-(1.2). We need the following lemma
for composite functions, which can be found in [6, 24].

Lemma 3.1. Assume that f = f(v) is a smooth function satisfying f(v) =
O(|v|1+σ) for v → 0, where σ ≥ 1 is an integer. Let v ∈ L∞ and ∥v∥L∞ ≤ M0

for a positive constant M0. Let 1 ≤ p, q, r ≤ +∞ and 1
p = 1

q +
1
r , and let k ≥ 0

be an integer. Then, we have

∥∂k
xf(v)∥Lp ≤ C∥v∥σ−1

L∞ ∥v∥Lq∥∂k
xv∥Lr ,

where C = C(M0) is a constant depending on M0.

In this subsection, we shall prove the decay estimate of solutions to the
problem (1.1)-(1.2) with Lq(1 ≤ q ≤ 2) initial data. The result is stated as
follows.

Theorem 3.2. Assume that σ ≥ 1, q ∈ [1, 2], nσ ≥ q, s ≥ [n/2] + 1, u0 ∈
Hs ∩ Lq, u1 ∈ Hs ∩ Ẇ−1,q and put N1 = ∥u0∥Hs∩Lq + ∥u1∥Hs∩Ẇ−1,q . Then
there exists a constant ϵ1 > 0 such that if N1 ≤ ϵ1, then the problem (1.1)-(1.2)
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has a unique global solution u with u ∈ C0([0,+∞); Hs) ∩ C1([0,+∞); Hs).
Moreover, the solution satisfies the decay estimates

(3.1) ∥∂k
xu(t)∥L2 ≤ CN1(1 + t)−

n
2 ( 1

q−
1
2 )−

k
2 ,

(3.2) ∥∂k
xut(t)∥L2 ≤ CN1(1 + t)−

n
2 ( 1

q−
1
2 )−

k+1
2 η(t),

where 0 ≤ k ≤ s in (3.1) and (3.2) and

(3.3) η(t) =


log(2 + t), nσ = q,

(1 + t)−
σn
2q + 1

2 log(2 + t), q < nσ ≤ 2q,

(1 + t)−
1
2 , nσ > 2q.

Proof. We shall prove Theorem 3.2 by the contraction mapping principle. For
this purpose, we define the function space

X = {u ∈ C0([0,+∞); Hs) : ∥u∥X < ∞},

where

(3.4) ∥u∥X =
s∑

k=0

sup
0≤τ≤t

(1 + τ)
n
2 ( 1

q−
1
2 )+

k
2 ∥∂k

xu(τ)∥L2 .

For any R > 0, we also define

XR = {u ∈ X : ∥u∥X ≤ R}.

Here R depends on the norm of the initial value, which is chosen in the proof
of Theorem 3.2. For any u ∈ XR, we obtain by using the Gagliardo-Nirenberg
inequality

∥u∥L∞ ≤ C∥∂s0
x u∥θL2∥u∥1−θ

L2 ,

where s0 = [n/2] + 1 and θ = n
2s0

. By the definition of XR, we have

(3.5) ∥u(t)∥L∞ ≤ CR(1 + t)−
n
2 ( 1

q−
1
2 )−

n
4 ,

provided that s ≥ [n/2] + 1.
For any u ∈ XR, we define the mapping

(3.6) Φ(u) = S1(t) ∗ u1 +S2(t) ∗ u0 +

∫ t

0

S1(t− τ) ∗ (1−∆)−1∆Ψ(u)(τ)dτ.

Now, by applying ∂k
x to (3.6) and taking the L2 norm, we arrive at

∥∂k
xΦ(u)(t)∥L2 ≤ ∥∂k

xS1(t) ∗ u1∥L2 + ∥∂k
xS2(t) ∗ u0∥L2(3.7)

+

∫ t

0

∥∂k
xS1(t− τ) ∗ (1−∆)−1∆Ψ(u)(τ)∥L2dτ

=: I + J +K,

where 0 ≤ k ≤ s.
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In what follows, we estimate I, J,K, respectively. Firstly, by (2.15) with
j = 0 and l = 0, we obtain

I ≤ C(1 + t)−
n
2 ( 1

q−
1
2 )−

k
2 ∥u1∥Ẇ−1,q + e−ct∥∂k

xu1∥L2 ≤ CN1(1 + t)−
n
2 ( 1

q−
1
2 )−

k
2 .

For the term J , we apply (2.16) with j = 0 and l = 0 to get

J ≤ C(1 + t)−
n
2 ( 1

q−
1
2 )−

k
2 ∥u0∥Lq + e−ct∥∂k

xu0∥L2 ≤ CN1(1 + t)−
n
2 ( 1

q−
1
2 )−

k
2 .

To estimate the term K. We firstly make estimates for the nonlinear term. By
Lemma 3.1, the Gagliardo-Nirenberg inequality and (3.5), we deduce that

(3.8)

∥Ψ(u)(τ)∥Lq ≤ C∥u∥L∞∥u∥2L2q ≤ C∥u∥σ−1+
2(q−1)

q

L∞ ∥u∥
2
q

L2

≤ CR1+σ(1 + τ)
−(σ−1)

(
n
2 ( 1

q−
1
2 )+

n
4

)
− n

2q

≤ CR1+σ(1 + τ)−
σn
2q ,

and

(3.9)

∥∂k
xΨ(u)(τ)∥L2 ≤ C∥u∥σL∞∥∂k

xu∥L2

≤ CR1+σ(1 + τ)−(σ+1)n
2 ( 1

q−
1
2 )−

nσ
4 − k

2

. ≤ CR1+σ(1 + τ)−
σn
2q −n

2 ( 1
q−

1
2 )−

k
2 .

We divide K into two parts and write K = K1 + K2, where K1 and K2 are
corresponding to the time intervals [0, t/2] and [t/2, t], respectively. Applying
(2.22) with j = 0 and l = 0 to the term K1 and using (3.8)-(3.9), we arrive at

K1 ≤ C

∫ t/2

0

(1 + t− τ)−
n
2 ( 1

q−
1
2 )−

k+1
2 ∥Ψ(u)(τ)∥Lqdτ

+ C

∫ t/2

0

e−c(t−τ)∥∂k
xΨ(u)(τ)∥L2dτ

≤ CR1+σ(1 + t)−
n
2 ( 1

q−
1
2 )−

k+1
2

∫ t/2

0

(1 + τ)−
nσ
2q dτ + CR1+σe−ct

≤

{
CR1+σ(1 + t)−

n
2 ( 1

q−
1
2 )−

k
2 (1 + t)−

σn
2q + 1

2 , nσ ̸= 2q,

CR1+σ(1 + t)−
n
2 ( 1

q−
1
2 )−

k
2 log(2 + t)(1 + t)−

1
2 , nσ = 2q.

(3.10)

Finally, we estimate the term K2 on the time interval [t/2, t]. We apply (2.22)
with q = 2, j = k and l = 0 and use (3.9). This yields

K2 ≤ C

∫ t

t/2

(1 + t− τ)−
1
2 ∥∂k

xΨ(u)(τ)∥L2dτ

≤ CR1+σ

∫ t

t/2

(1 + t− τ)−
1
2 (1 + τ)−

σn
2q −n

2 ( 1
q−

1
2 )−

k
2 dτ

≤ CR1+σ(1 + t)−
n
2 ( 1

q−
1
2 )−

k
2 (1 + t)−

nσ
2q + 1

2 .

(3.11)
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By inserting all these estimates into (3.7), we obtain

∥Φ(u)∥X ≤ CN1 + CR1+σ.

Consequently, we take R = 2CN1 and obtain

∥Φ(u)∥X ≤ 2CN1 = R,

provided that N1 is suitably small. This implies that Φ(u) ∈ XR, provided
that u ∈ XR.

For any ū, ¯̄u ∈ XR, we obtain from (3.6)

(3.12) Φ(ū)− Φ(¯̄u) =

∫ t

0

S1(t− τ) ∗ (1−∆)−1∆
(
Ψ(ū)−Ψ(¯̄u)

)
(τ)dτ.

To estimate ∥Φ(ū) − Φ(¯̄u)∥XR
, we make estimate for the following nonlinear

term. By Lemma 3.1 and 3.5, we arrive at
(3.13)
∥Φ(ū)− Φ(¯̄u)∥Lq

≤ C(∥ū∥L∞ + ∥¯̄u∥L∞)σ−1(∥ū∥
L

2q
2−q

+ ∥¯̄u∥
L

2q
2−q

)∥ū− ¯̄u∥L2

≤ C(∥ū∥L∞ + ∥¯̄u∥L∞)σ−1(∥ū∥2−
2
q

L∞ ∥ū∥
2
q−1

L2 + ∥¯̄u∥2−
2
q

L∞ ∥¯̄u∥
2
q−1

L2 )∥ū− ¯̄u∥L2

≤ CRσ(1 + τ)−(1+σ)n
2 ( 1

q−
1
2 )−

n
4 (σ+1− 2

q )∥ū− ¯̄u∥X

≤ CRσ(1 + τ)−
σn
2q ∥ū− ¯̄u∥X

and

(3.14)

∥∂k
x

(
Φ(ū)− Φ(¯̄u)

)
∥L2

≤ C(∥ū∥L∞ + ∥¯̄u∥L∞)σ−1
{
(∥ū∥L∞ + ∥¯̄u∥L∞)∥∂k

x(ū− ¯̄u)∥L2

+(∥∂k
x ū∥L∞ + ∥∂k

x
¯̄u∥L∞)∥ū− ¯̄u∥L2

}
≤ CRσ(1 + τ)−(1+σ)n

2 ( 1
q−

1
2 )−

n
4 σ− k

2 ∥ū− ¯̄u∥X

≤ CRσ(1 + τ)−
σn
2q −n

2 ( 1
q−

1
2 )−

k
2 ∥ū− ¯̄u∥X .
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It follows from (2.22), (3.13) and (3.14) that
(3.15)

∥∂k
x

(
Φ(ū)− Φ(¯̄u)

)
∥L2

≤ C

∫ t
2

0

(1 + t− τ)−
n
2 ( 1

q−
1
2 )−

k+1
2 ∥Φ(ū)− Φ(¯̄u)∥Lqdτ

+C

∫ t
2

0

e−c(t−τ)∥∂k
x(Φ(ū)− Φ(¯̄u))∥L2dτ

+C

∫ t

t
2

(1 + t− τ)−
1
2 ∥∂k

x(Φ(ū)− Φ(¯̄u))∥L2dτ

≤ CRσ∥ū− ¯̄u∥X(1 + t)−
n
2 ( 1

q−
1
2 )−

k+1
2

∫ t
2

0

(1 + τ)−
σn
2q dτ

+CRσe−ct∥ū− ¯̄u∥X

+CRσ∥ū− ¯̄u∥X(1 + t)−
n
2 ( 1

q−
1
2 )−

k
2−

σn
2q

∫ t

t
2

(1 + t− τ)−
1
2 dτ

≤

{
CRσ(1 + t)−

n
2 ( 1

q−
1
2 )−

k
2 (1 + t)−

σn
2q + 1

2 ∥ū− ¯̄u∥X , nσ ̸= 2q,

CRσ(1 + t)−
n
2 ( 1

q−
1
2 )−

k
2 log(2 + t)(1 + t)−

1
2 ∥ū− ¯̄u∥X , nσ = 2q.

Equation (3.15) implies that

∥Φ(ū)− Φ(¯̄u)∥XR
≤ CRσ ≤ 1

2
∥ū− ¯̄u∥X ,

provided that nσ ≥ q and N1 is suitably small. Therefore, according to the
contraction mapping principle, the problem (1.1)-(1.2) has a unique global
solution u with u ∈ XR. Moreover, the solution u satisfies (3.1).

In what follows, we prove ut ∈ C([0,+∞); Hs) and (3.2). For this purpose,
we differentiate (2.8) with respect to t to obtain
(3.16)

ut(t) = ∂tS1(t) ∗ u1 + ∂tS2(t) ∗ u0 +

∫ t

0

∂tS1(t− τ) ∗ (1−∆)−1∆Ψ(u)(τ)dτ.

We apply ∂k
x to (3.16) and take the L2 norm to get

∥∂k
xut(t)∥L2 ≤ ∥∂k

x∂tS1(t) ∗ u1∥L2 + ∥∂k
x∂tS2(t) ∗ u0∥L2

+

∫ t

0

∥∂k
x∂tS1(t− τ) ∗ (1−∆)−1∆Ψ(u)(τ)∥L2dτ =: I ′ + J ′ +K ′,

(3.17)

where 0 ≤ k ≤ s. By using (2.17) and (2.18) with j = 0 and l = 0, respectively,
we obtain

I ′1 ≤ C(1+t)−
n
2 ( 1

q−
1
2 )−

k+1
2 ∥u1∥Ẇ−1,q+e−ct∥∂k

xu1∥L2 ≤ CN1(1+t)−
n
2 ( 1

q−
1
2 )−

k+1
2 .
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and

J ′ ≤ C(1 + t)−
n
2 ( 1

q−
1
2 )−

k+1
2 ∥u0∥L1 + e−ct∥∂k

xu0∥L2 ≤ CN1(1 + t)−
n
2 ( 1

q−
1
2 )−

k+1
2 .

In what follows, we estimate K ′ and divide K ′ into two sections, the first
section and second section is correspond to the time intervals [0, t/2] and [t/2, t],
respectively. Equation (2.23) with j = 0 and l = 0 and equations (3.8)-(3.9)
give

K′ ≤ C

∫ t/2

0

(1 + t− τ)
−n

2
( 1
q
− 1

2
)− k+2

2 ∥Ψ(u)(τ)∥Lqdτ + C

∫ t/2

0

e−c(t−τ)∥∂k
xΨ(u)(τ)∥L2dτ

+ C

∫ t

t/2

(1 + t− τ)−1∥∂k
xΨ(u)(τ)∥L2dτ

≤ CR1+σ(1 + t)
−n

2
( 1
q
− 1

2
)− k+2

2

∫ t/2

0

(1 + t− τ)
−σn

2q dτ + CR1+σe−ct

+CR1+σ(1 + t)
−n

2
( 1
q
− 1

2
)− k

2
−σn

2q

∫ t

t/2

(1 + t− τ)−1dτ

≤ CR1+σ(1 + t)
−n

2
( 1
q
− 1

2
)− k+1

2 η(t),

where the function η(t) is defined by (3.3). Combining the above estimates
and noting R = 2CN1, we obtain ut ∈ C([0,+∞); Hs) the desired estimate
(3.2) for 0 ≤ k ≤ s. This completes the proof of Theorem 3.2. □

The proof of Theorem 3.2 immediately implies that the following corollaries
hold.

Corollary 3.3. Assume that nσ ≥ 1, s ≥ [n/2] + 1, u0 ∈ Hs ∩ L1, u1 ∈
Hs ∩ Ẇ−1,1 and put N1 = ∥u0∥Hs∩L1 + ∥u1∥Hs∩Ẇ−1,1 . Then there exists a
constant ϵ2 > 0 such that if N1 ≤ ϵ2, then the problem (1.1)-(1.2) has a unique
global solution u with u ∈ C0([0,+∞); Hs) ∩ C1([0,+∞); Hs). Moreover, for
0 ≤ k ≤ s, the solution satisfies the decay estimates

(3.18) ∥∂k
xu(t)∥L2 ≤ CN1(1 + t)−

n
4 − k

2 ,

(3.19) ∥∂k
xut(t)∥L2 ≤ CN1(1 + t)−

n
4 − k+1

2 η1(t),

where η1(t) is given by (3.3) with q = 1.

Corollary 3.4. Assume that nσ ≥ 2, s ≥ [n/2] + 1, u0 ∈ Hs, u1 ∈ Hs ∩ Ḣ−1

and put N1 = ∥u0∥Hs + ∥u1∥Hs∩Ḣ−1 . Then there exists a constant ϵ3 > 0 such
that if N1 ≤ ϵ3, then the problem (1.1)-(1.2) admits a unique global solution u
with u ∈ C0([0,+∞); Hs) ∩ C1([0,+∞); Hs). Moreover, for 0 ≤ k ≤ s, the
solution satisfies the decay estimates

(3.20) ∥∂k
xu(t)∥L2 ≤ CN1(1 + t)−

k
2 ,

(3.21) ∥∂k
xut(t)∥L2 ≤ CN1(1 + t)−

k+1
2 η2(t),

where η2(t) is given by (3.3) with q = 2.
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The estimates of K1 and K2 in (3.10) and (3.11) immediately imply the
following corollaries hold.

Corollary 3.5. Let nσ ≥ 2 and assume that the same conditions of Corollary
3.3 hold. Then the solution u of the problem (1.1)-(1.2), which is constructed
in Corollary 3.3, can be approximated by the solution uL to the linearized prob-
lem (2.1)-(1.2) as t → ∞. More precisely, we have the following asymptotic
relations for 0 ≤ k ≤ s:

∥∂k
x(u− uL)(t)∥L2 ≤ CN1+σ

1 (1 + t)−
n
4 − k

2 η3(t),

∥∂k
x(u− uL)t(t)∥L2 ≤ CN1+σ

1 (1 + t)−
n
4 − k+1

2 η(t)

where uL(t) := S1(t) ∗u1 +S2(t) ∗u0 is the linear solution, η(t) are defined in
(3.3) with q = 1 and η3(t) is defined by

(3.22) η3(t) =

{
(1 + t)−

σn
2 + 1

2 log(2 + t), nσ ̸= 2,

(1 + t)−
1
2 log(2 + t), nσ = 2.

Corollary 3.6. Let nσ ≥ 3 and assume that the same conditions of Corollary
3.4 hold. Then the solution u of the problem (1.1)-(1.2), which is constructed
in Corollary 3.4, is asymptotic to the solution uL to the problem (2.1)-(1.2) as
t → ∞. In fact, for 0 ≤ k ≤ s, we have

∥∂k
x(u− uL)(t)∥L2 ≤ CN1+σ

1 (1 + t)−
k
2 η4(t),

∥∂k
x(u− uL)t(t)∥L2 ≤ CN1+σ

1 (1 + t)−
k+1
2 η(t),

where uL(t) := S1(t)∗u1+S2(t)∗u0 is the linear solution and η(t) are defined
by (3.3) with q = 2 and η4(t) is defined by

(3.23) η4(t) =

{
(1 + t)−

σn
4 + 1

2 log(2 + t), nσ ̸= 4,

(1 + t)−
1
2 log(2 + t), nσ = 4.

4. Asymptotic profile of solutions to the linear problem

In this section, our aim is to build a simpler asymptotic profile of the solution
uL.

Noting that uL(t) = S1(t) ∗ u1 + S2(t) ∗ u0. In the Fourier space, we get

ûL(ξ, t) = Ŝ1(ξ, t)û1(ξ)+Ŝ2(ξ, t)û0(ξ). It follows from the mean value theorem
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that

(4.1)



e
− ν|ξ|2t

2(1+|ξ|2) = e−
ν
2 |ξ|

2t + K̄1,

sin
|ξ|

√
1− 4−ν2

|ξ|2 |ξ|2t

1 + |ξ|2
= sin(|ξ|t) + K̄2,

cos
|ξ|

√
1− 4−ν2

|ξ|2 |ξ|2t

1 + |ξ|2
= cos(|ξ|t) + K̄3,

1√
1− 4−ν2

4 |ξ|2
= 1 + K̄4,

where

K̄1 =
ν|ξ|4t

2(1 + |ξ|2)e
− ν

2
|ξ|2[ θ1

1+|ξ|2
+(1−θ1)]t

,

K̄2 =−
|ξ|3(|ξ|2 + 12−ν2

4
)t

(1 + |ξ|2)(
√

1− 4−ν2

4
|ξ|2 + 1 + |ξ|2)

cos
[ |ξ|√1− 4−ν2

4
|ξ|2t

1 + |ξ|2 θ2 + (1− θ2)|ξ|t
]
,

K̄3 =
|ξ|3(|ξ|2 + 12−ν2

4
)t

(1 + |ξ|2)(
√

1− 4−ν2

4
|ξ|2 + 1 + |ξ|2)

sin
[ |ξ|√1− 4−ν2

4
|ξ|2t

1 + |ξ|2 θ3 + (1− θ3)|ξ|t
]
,

K̄4 =
(4− ν2)|ξ|2

8(1− 4−ν2

4
|ξ|2θ4)

3
2

,

with θi(i = 1, 2, 3, 4) ∈ (0, 1).
We only prove the first equality in (4.1). In fact, let

F (x) = e
− ν|ξ|2

2 [ x
1+|ξ|2

+(1−x)]t
.

We apply the mean value theorem to F (x) and obtain

F (1)− F (0) = F ′(θ1), θ1 ∈ (0, 1),

which implies the first equality in (4.1) holds.
When |ξ| ≤ ϵ, where ϵ is a small positive constant, we obtain from (4.1)

Ŝ1(ξ, t) =
eλ+t − eλ−t

λ+ − λ−

=
1 + |ξ|2

|ξ|
√
1− 4−ν2

4 |ξ|2
e
− ν|ξ|2t

2(1+|ξ|2) sin
|ξ|

√
1− 4−ν2

|ξ|2 |ξ|2t

1 + |ξ|2
.

=
1

|ξ|
e−

ν
2 ξ

2t sin |ξ|t+ J̄1.
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and

Ŝ2(ξ, t) =
λ+e

λ−t − λ−e
λ+t

λ+ − λ−

=
v|ξ|

2
√
1− 4−ν2

4 |ξ|2
e
− ν|ξ|2t

2(1+|ξ|2) sin
|ξ|

√
1− 4−ν2

|ξ|2 |ξ|2t

1 + |ξ|2
+

e
− ν|ξ|2t

2(1+|ξ|2) cos
|ξ|

√
1− 4−ν2

|ξ|2 |ξ|2t

1 + |ξ|2

= e−
ν
2 ξ

2t cos |ξ|t+ J̄2.

When |ξ| ≤ ϵ, J̄1 and J̄2 satisfy

|J̄1| ≤ C(1 + |ξ|2t)e−c|ξ|2t,

and
|J̄2| ≤ C(|ξ|+ |ξ|3t)e−c|ξ|2t.

Taking

(4.2) Ŝ0
1(ξ, t) =

1

|ξ|
e−

ν
2 |ξ|

2t sin |ξ|t, Ŝ0
2(ξ, t) = e−

ν
2 |ξ|

2t cos |ξ|t.

Then

(4.3) |(Ŝ1 − Ŝ0
1)(ξ, t)| ≤ Ce−c|ξ|2t, |(Ŝ2 − Ŝ0

2)(ξ, t)| ≤ C|ξ|e−c|ξ|2t,

for |ξ| ≤ ϵ. We now define ūL by

(4.4) UL(t) = S0
1(t) ∗ u1 +S0

2(t) ∗ u0.

This ūL gives an asymptotic profile of the linear solution uL. In fact we have:

Theorem 4.1. Let n ≥ 1 and s ≥ 0. Assume that u0 ∈ Hs ∩ L1 and u1 ∈
Hs ∩ Ẇ−1,1, and put N1 = ∥u0∥Hs∩L1 + ∥u1∥Hs∩Ẇ−1,1 . Let uL be the linear
solution and let ūL be defined by (4.4). Then we have

(4.5) ∥∂k
x(uL − UL)(t)∥L2 ≤ CN1(1 + t)−

n
4 − k+1

2

for 0 ≤ k ≤ s.

Proof. Since (uL−UL)(t) = (S1−S0
1)(t)∗u1+(S2−S0

2)(t)∗u0, for the proof
of (4.5), it suffices to show the following estimates:

∥∂k
x(S1 −S0

1)(t) ∗ u1∥L2≤C(1 + t)
−n

2
( 1
q
− 1

2
)− k+1−j

2 ∥∂j
xu1∥Ẇ−1,q + Ce−ct∥∂k+l

x u1∥L2 ,

∥∂k
x(S2 −S0

2)(t) ∗ u0∥L2 ≤ C(1 + t)
−n

2
( 1
q
− 1

2
)− k+1−j

2 ∥∂j
xu0∥Lq + Ce−ct∥∂k+l

x u0∥L2 ,

where 1 ≤ q ≤ 2, and k, j and l are nonnegative integers such that 0 ≤ j ≤
k+1. These estimates can be proved similarly as in the proof of Lemma 2.3 by
using (4.3) for |ξ| ≤ ϵ and (2.14) and (4.2) for |ξ| ≥ ϵ. We omit the details. □
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Remark 4.2. By the Euler formula and (4.4), it is easy to see that

(4.6) ÛL = e−
|ν|
2 |ξ|2t sin(|ξ|t)

|ξ|
û1 + e−

|ν|
2 |ξ|2t cos(|ξ|t)û0.

Let

v̂(ξ, t) =
sin(|ξ|t)

|ξ|
,

then

v̂t(ξ, t) = cos(|ξ|t).
It is well-known that v is the fundamental solution to the following free wave
equation

(4.7)

{
vtt −∆v = 0,

t = 0 : v = 0, vt = δ,

where δ(x) is the usual Dirac measure. According to the above analysis, we
believe that ūL may be approximated by the solution to the free wave equation
(4.7) and the initial value u0, u1. For this problem, we shall investigate it in
future.
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