ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the Iranian Mathematical Society

Vol. 43 (2017), No. 5, pp. 1457-1465

Title:

Very cleanness of generalized matrices

Author(s):

Y. Kurtulmaz

VERY CLEANNESS OF GENERALIZED MATRICES

Y. KURTULMAZ

(Communicated by Bernhard Keller)

ABSTRACT. An element a in a ring R is very clean in case there exists an idempotent $e \in R$ such that ae = ea and either a - e or a + e is invertible. An element a in a ring R is very J-clean provided that there exists an idempotent $e \in R$ such that ae = ea and either $a - e \in J(R)$ or $a + e \in J(R)$. Let R be a local ring, and let $s \in C(R)$. We prove that $A \in K_s(R)$ is very clean if and only if $A \in U(K_s(R))$, $I \pm A \in U(K_s(R))$ or $A \in K_s(R)$ is very J-clean.

Keywords: Local ring, very clean ring, very *J*-clean ring. MSC(2010): Primary: 15A12; Secondary: 15B99, 16L99.

1. Introduction

Throughout this paper all rings are associative with identity. Let R be a ring. Let C(R) be the center of R and $s \in C(R)$. The set containing all 2×2 matrices $\begin{pmatrix} R & R \\ R & R \end{pmatrix}$ becomes a ring with usual matrix addition and multiplication defined by

$$\begin{pmatrix} a_1 & x_1 \\ y_1 & b_1 \end{pmatrix} \begin{pmatrix} a_2 & x_2 \\ y_2 & b_2 \end{pmatrix} = \begin{pmatrix} a_1a_2 + sx_1y_2 & a_1x_2 + x_1b_2 \\ y_1a_2 + b_1y_2 & sy_1x_2 + b_1b_2 \end{pmatrix}.$$

This ring is denoted by $K_s(R)$ and the element s is called the *multiplier* of $K_s(R)$ [3].

Let A and B be rings, and let ${}_AM_B$ and ${}_BN_A$ be bimodules. A Morita context is a 4-tuple $A=\begin{pmatrix}A&M\\N&B\end{pmatrix}$ and there exist context products $M\times N\to A$ and $N\times M\to B$ written multiplicatively as $(w,z)\to wz$ and $(z,w)\to zw$, such that $\begin{pmatrix}A&M\\N&B\end{pmatrix}$ is an associative ring with the obvious matrix operations. A

Article electronically published on 31 October, 2017. Received: 21 June 2016, Accepted: 21 July 2016.

Morita context $\begin{pmatrix} A & M \\ N & B \end{pmatrix}$ with A=B=M=N=R is called a *generalized matrix* ring over R. Thus the ring $K_s(R)$ can be viewed as a special kind of Morita context. It was observed by Krylov [3] that the generalized matrix rings over R are precisely these rings $K_s(R)$ with $s \in C(R)$. When $s=1, K_1(R)$ is just the matrix ring $M_2(R)$, but $K_s(R)$ can be different from $M_2(R)$. In fact, for a local ring R and $s \in C(R)$, $K_s(R) \cong K_1(R)$ if and only if s is a unit, (see

[3, Lemma 3 and Corollary 2]) and [4, Corollary 4.10].

In [5], it is said that that an element $a \in R$ is strongly clean provided that there exist an idempotent $e \in R$ and unit $u \in R$ such that a = e + u and eu = ue and, a ring R is called strongly clean in case every element in R is strongly clean. In [2], very clean rings were introduced. An element $a \in R$ is very clean provided that either a or -a is strongly clean. A ring R is very clean in case every element in R is very clean. It is explored that the necessary and sufficient conditions under which a triangular 2×2 matrix ring over local rings is very clean. The very clean 2×2 matrices over commutative local rings are completely determined. Motivated by this general setting, the aim of this paper is to investigate the very cleanness of 2×2 generalized matrix rings. For elements $a, b \in R$, we say that a is equivalent to b if there exist units u, v

For elements $a, b \in R$, we say that a is equivalent to b if there exist units u, v such that b = uav; we use the notation $a \sim b$ to mean that a is similar to b, that is, $b = u^{-1}au$ for some unit u.

Throughout this paper, $M_n(R)$ and $T_n(R)$ denote the ring of all $n \times n$ matrices and the ring of all $n \times n$ upper triangular matrices over R, respectively. We write R[[x]], U(R) and J(R) for the power series ring R, group of units and the Jacobson radical of R, respectively. For $A \in M_n(R), \chi(A)$ stands for the characteristic polynomial $det(tI_n - A)$. Let $\mathbb{Z}(p)$ be the localization of \mathbb{Z} at the prime ideal generated by the prime p.

2. Very Clean Elements

A ring R is local if it has only one maximal ideal. It is well known that, a ring R is local if and only if a+b=1 in R implies that either a or b is invertible. The aim of this section is to investigate elementary properties of very clean matrices over local rings.

Lemma 2.1 ([7, Lemma 1]). Let
$$R$$
 be a ring and let $s \in C(R)$. Then $\begin{pmatrix} a & x \\ y & b \end{pmatrix} \rightarrow \begin{pmatrix} b & y \\ x & a \end{pmatrix}$ is an automorphism of $K_s(R)$.

Lemma 2.2 ([7, Lemma 2]). Let R be a ring and $s \in C(R)$. Then the following hold

$$\begin{aligned} (1) \ \ J(K_s(R)) &= \left(\begin{array}{cc} J(R) & (s:J(R)) \\ (s:J(R)) & J(R) \end{array} \right), \ where \\ (s:J(R)) &= \{r \in R | rs \in J(R) \}. \end{aligned}$$

(2) If R is a local ring with
$$s \in J(R)$$
, then $J(K_s(R)) = \begin{pmatrix} J(R) & R \\ R & J(R) \end{pmatrix}$ and moreover $\begin{pmatrix} a & x \\ y & b \end{pmatrix} \in U(K_s(R))$ if and only if $a, b \in U(R)$.

Lemma 2.3 ([7, Lemma 3]). Let $E^2 = E \in K_s(R)$. If E is equivalent to a diagonal matrix in $K_s(R)$, then E is similar to a diagonal matrix in $K_s(R)$.

Lemma 2.4. Let R be a local ring with $s \in C(R)$ and let E be a non-trivial idempotent of $K_s(R)$. Then we have the following.

(1) If
$$s \in U(R)$$
, then $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

(2) If
$$s \in J(R)$$
, then either $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ or $E \sim \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

Proof. Let $E=\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$ where $a,b,c,d\in R$. Since $E^2=E$, we have

(2.1)
$$a^2 + sbc = a$$
, $scb + d^2 = d$, $ab + bd = b$, $ca + dc = c$.

If $a, d \in J(R)$, then $b, c \in J(R)$ and so $E \in J(M_2(R; s))$. Hence E = 0, a contradiction. Since R is local, we have $a \in U(R)$ or $d \in U(R)$. Assume that $a \in U(R)$. Then

$$(2.2) \qquad \left(\begin{array}{cc} 1 & 0 \\ -ca^{-1} & 1 \end{array}\right) \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} a^{-1} & a^{-1}b \\ 0 & -1 \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & sca^{-1}-d \end{array}\right).$$

Hence E is equivalent to a diagonal matrix. Now suppose that $d \in U(R)$. Then

$$(2.3) \quad \left(\begin{array}{cc} 1 & -bd^{-1} \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ -d^{-1}c & d^{-1} \end{array}\right) = \left(\begin{array}{cc} a - sbd^{-1}c & 0 \\ 0 & 1 \end{array}\right).$$

Hence E is equivalent to a diagonal matrix. According to Lemma 2.3, there exist $P \in U(K_s(R))$ and idempotents $f, g \in R$ such that

$$(2.4) PEP^{-1} = \begin{pmatrix} f & 0 \\ 0 & q \end{pmatrix}.$$

To complete the proof we shall discuss four cases f=1 and g=0, or f=0 and g=1, or f=1 and g=1 or f=0 and g=0. However, E is a non-trivial idempotent matrix, we may discard the latter two cases. Since R is local, $s \in U(R)$ or $s \in J(R)$. We divide the proof into some cases:

(A) Assume that $s \in U(R)$.

Case (i).
$$f = 1$$
 and $g = 0$. Then $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

Case (ii).
$$f = 0$$
 and $g = 1$. Then $E \sim \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. But since

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)^{-1} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right),$$

where $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & s^{-1} \\ s^{-1} & 0 \end{pmatrix}$, we have that $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. This proves (1)

(B) Assume that $s \in J(R)$.

Case (iii).
$$f = 1$$
 and $g = 0$. Then $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

Case (iii).
$$f = 1$$
 and $g = 0$. Then $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.
Case (iv). $f = 0$ and $g = 1$. Then $E \sim \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

To complete the proof of (B), we prove that only one of $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ or $E \sim$

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
 is valid. Indeed, if otherwise, $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $E \sim \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

Then
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
. That is, there exists $P = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in U(K_s(R))$

such that $P\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} P$. By direct calculation one can easily see

that x = t = 0. But since $P \in U(K_s(R))$ and $s \in J(R)$, we get $x, t \in U(R)$ by Lemma 2.2, a contradiction. This holds (2).

Lemma 2.5. Let R be a ring and $s \in C(R)$. Then $A \in K_s(R)$ is very clean if and only if for each invertible $P \in K_s(R)$, $PAP^{-1} \in K_s(R)$ is very clean.

Proof. If PAP^{-1} is very clean in $K_s(R)$, then either PAP^{-1} or $-PAP^{-1}$ is

strongly clean for some $P \in U(K_s(R))$. Suppose that PAP^{-1} is strongly clean in $K_s(R)$. Then there exist $E^2 = E$, $U \in U(K_s(R))$ such that $PAP^{-1} =$ E + U and EU = UE. Then $A = P^{-1}EP + P^{-1}UP$, $(P^{-1}EP)^2 = P^{-1}EP$,

 $P^{-1}UP \in U(K_s(R)), P^{-1}EP \text{ and } P^{-1}UP \text{ commute};$ $(P^{-1}EP)(P^{-1}UP) = P^{-1}EUP = P^{-1}UEP = (P^{-1}UP)(P^{-1}EP).$ So A is strongly clean. If $-PAP^{-1}$ is very clean in $K_s(R)$, then -A is strongly clean by using the similar argument. Hence A is very clean. Conversely assume that $A \in K_s(R)$ is very clean i.e. either A or -A is strongly clean. Suppose that -A is strongly clean. There exist $F^2 = F \in K_s(R)$ and $W \in U(K_s(R))$ such that -A = F + W with FW = WF. Let $P \in K_s(R)$ be an invertible matrix. $P^{-1}(-A)P = P^{-1}FP + P^{-1}WP$ is strongly clean since $P^{-1}FP$ is an

idempotent, $P^{-1}WP \in U(K_s(R))$, $P^{-1}FP$ and $P^{-1}WP$ commute. Similarly, strong cleanness of A implies strong cleanness of $P^{-1}AP$. This completes the proof.

Lemma 2.6. Let R be a local ring and $s \in C(R)$. Then $A \in K_s(R)$ is very clean if and only if either

- (1) $I \pm A \in U(K_s(R))$, or
- (2) $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$, where $v \in J(R)$, $w \in \pm 1 + J(R)$ and $s \in U(R)$, or (3) either $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$ or $A \sim \begin{pmatrix} w & 0 \\ 0 & v \end{pmatrix}$, where $v \in J(R)$, $w \in \pm 1 + J(R)$

Proof. (\Leftarrow). If $I \pm A \in U(K_s(R))$, then A is obviously very clean. If $A \sim$ Proof. (\Leftarrow). If $I \pm A \in U(\mathbf{R}_s(R))$, then A is obviously very clean. If $A \in U(R)$, where $v \in J(R)$, $w \in \pm 1 + J(R)$ and $s \in U(R)$, then $\begin{pmatrix} v - 1 & 0 \\ 0 & w \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$, $\begin{pmatrix} v - 1 & 0 \\ 0 & w \end{pmatrix}$ is invertible and $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ is idempotent. Then $\begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$ is strongly clean. Similarly $\begin{pmatrix} -v & 0 \\ 0 & -w \end{pmatrix}$ is strongly clean. Since either $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$ or $A \sim \begin{pmatrix} -v & 0 \\ 0 & -w \end{pmatrix}$, we have $PAP^{-1} = \frac{v}{2}$

 $\left(\begin{array}{cc} v & 0 \\ 0 & w \end{array} \right)$ is very clean. By Lemma 2.5, A is very clean.

Similarly, if either $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$ or $A \sim \begin{pmatrix} w & 0 \\ 0 & v \end{pmatrix}$, where $v \in J(R)$, $w \in \pm 1 + J(R)$ and $s \in J(R)$, then A is very clean

 (\Rightarrow) . Assume that A is very clean and $\pm A, I \pm A \notin U(K_s(R))$. Then either A-E or A+E is in $U(K_s(R))$ where $E^2=E\in K_s(R)$.

Case 1. If A - E is in $U(K_s(R))$, then A - E = V and EV = VE, where

 $V \in U(K_s(R))$. If $s \in U(R)$, then $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ by Lemma 2.4. Then

there exists $P \in U(K_s(R))$ such that $PEP^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. From Lemma 2.5,

 $PAP^{-1} - PEP^{-1} = PVP^{-1}$ is very clean. Let $W = [w_{ij}] = PVP^{-1}$ and

$$WF = \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix} = FW.$$

 $PAP^{-1} = F. \text{ Since} \\ WF = \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix} = FW, \\ \text{we find } w_{12} = w_{21} = 0 \text{ and } w_{11}, w_{22} \in U(R). \\ \text{Hence } A \sim \begin{pmatrix} w_{11} + 1 & 0 \\ 0 & w_{22} \end{pmatrix} = B. \text{ Note that } A \in U(K_s(R)) \text{ if and only if } \\ PAP^{-1} = U(K_s(R)) \text{ This gives that } B \notin U(K_s(R)) \text{ and } I \pm B \notin U(K_s(R)).$

Since R is local, we have $w_{22} \in \pm 1 + J(R)$ and $\pm 1 + w_{11} \in J(R)$. If $s \in$

 $J(R), \text{ then either } E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{ or } E \sim \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \text{ by Lemma 2.4. Using the previous argument, one can easily show that either } A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix} \text{ or } \begin{pmatrix} w & 0 \\ 0 & v \end{pmatrix} \text{ where } v \in \pm 1 + J(R) \text{ and } w \in J(R).$ Case 2. If A + E is in $U(K_s(R))$, then A + E = V and EV = VE, where $V \in U(K_s(R))$. If $s \in U(R)$, then $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ by Lemma 2.5. Then there exists $P \in U(K_s(R))$ such that $PAP^{-1} + PEP^{-1} = PVP^{-1}$. Let $W = [w_{ij}] = PVP^{-1}$ and $PEP^{-1} = F$. Since $WF = \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix} = FW, \text{ we find } w_{12} = w_{21} = 0 \text{ and } w_{11}, w_{22} \in U(R). \text{ Thus } A \sim \begin{pmatrix} w_{11} - 1 & 0 \\ 0 & w_{22} \end{pmatrix} = B. \text{ Note that } A \in U(K_s(R)) \text{ if and only if } PAP^{-1} \in U(K_s(R)). \text{ This gives that } B \notin U(K_s(R)) \text{ and } I \pm B \notin U(K_s(R)). \text{ Since } R \text{ is local, we have } w_{22} \in \pm 1 + J(R) \text{ and } 1 + w_{11} \in J(R). \text{ If } s \in J(R), \text{ then either } E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{ or } E \sim \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ by Lemma 2.5. In this case, using the previous argument, one can easily show that either $A \sim \begin{pmatrix} w_{11} - 1 & 0 \\ 0 & w_{22} \end{pmatrix}$ or $A \sim \begin{pmatrix} w_{11} & 0 \\ 0 & w_{22} - 1 \end{pmatrix}$.

3. Very J-clean element

Let R be a ring. In [1], an element $a \in R$ is said to be $strongly\ J$ -clean provided that there exists an idempotent $e \in R$ such that $a-e \in J(R)$ and ae=ea. A ring R is $strongly\ J$ -clean in case every element in R is $strongly\ J$ -clean. We say that an element $a \in R$ is $very\ J$ -clean if there exists an idempotent $e \in R$ such that ae=ea and either $a-e \in J(R)$ or $a+e \in J(R)$. A ring R is $very\ J$ -clean in case every element in R is $very\ J$ -clean. A very J-clean ring need not be $strongly\ J$ -clean. For example $\mathbb{Z}_{(3)}$ is $very\ J$ -clean but not $strongly\ J$ -clean.

Lemma 3.1. Every very J-clean element is very clean.

Proof. Let
$$e^2 = e \in R$$
 and $w \in J(R)$. If $x - e = w$, then $x - (1 - e) = 2e - 1 + w \in U(R)$ since $(2e - 1)^2 = 1$. Similarly if $x + e = w$, then $x + (1 - e) = 1 - 2e + w \in U(R)$ since $(1 - 2e)^2 = 1$.

The converse statement of Lemma 3.1 need not hold in general.

Example 3.2. Let S be a commutative local ring and $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ be in $R = M_2(S)$. A is an invertible matrix and it is very clean. Since R is a 2-projective-free ring, by [6, Proposition 2.1], it is easily checked that any idempotent E in R is one of the following:

$$\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & x \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 1 & x \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right),$$

where $x \in S$. But A is not very J-clean since neither of the above mentioned idempotents E does not satisfy $A - E \notin J(R)$ or $A + E \notin J(R)$.

Lemma 3.3. Let R be a ring and $s \in C(R)$. Then $A \in K_s(R)$ is very J-clean if and only if $PAP^{-1} \in K_s(R)$ is very J-clean for some $P \in U(K_s(R))$.

Proof. (⇒). Assume that $A \in K_s(R)$ is very J-clean. Then there exists $E^2 = E \in K_s(R)$ such that $A - E = W \in J(K_s(R))$ or $A + E = W \in J(K_s(R))$ and EW = WE. Let $F = PEP^{-1}$ and $V = PWP^{-1}$. Then $F^2 = F$, $V \in J(K_s(R))$ and FV = VF. If $A - E = W \in J(K_s(R))$, then $PAP^{-1} - F = V \in J(K_s(R))$. Thus PAP^{-1} is very J-clean. The same result is obtained when $A + E \in J(K_s(R))$.

(\Leftarrow). Assume that PAP^{-1} is very J-clean for some $P \in U(K_s(R))$. Then by using a similar argument, A is very J-clean. □

Lemma 3.4. Let R be a local ring and $s \in C(R)$. Then $A \in K_s(R)$ is very J-clean if and only if either

- (1) $I \pm A \in J(K_s(R))$, or
- (2) $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$, where $v \in \pm 1 + J(R)$, $w \in J(R)$ and $s \in U(R)$, or
- (3) either $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$ or $A \sim \begin{pmatrix} w & 0 \\ 0 & v \end{pmatrix}$, where $v \in \pm 1 + J(R)$, $w \in J(R)$ and $s \in J(R)$.

Proof. (\Leftarrow). If either $I \pm A \in J(K_s(R))$, then A is obviously very J-clean. If $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$, where $v \in \pm 1 + J(R)$, $w \in J(R)$ and $s \in U(R)$, then $\begin{pmatrix} v+1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} v & 0 \end{pmatrix}$

 $\begin{pmatrix} v+1 & 0 \\ 0 & w \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix} \in J(K_s(R)). \text{ Then by Lemma 3.3, } A$

is very *J*-clean. Similarly, if either $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$ or $A \sim \begin{pmatrix} w & 0 \\ 0 & v \end{pmatrix}$, where $v \in \pm 1 + J(R)$, $w \in J(R)$ and $s \in J(R)$, then A is very J-clean.

(⇒). Assume that A is very J-clean and $I \pm A \notin J(K_s(R))$. Then either A - E or A + E is in $J(K_s(R))$ where $E^2 = E \in K_s(R)$ is a non-trivial idempotent. Case 1. If A - E is in $J(K_s(R))$, then A - E = M and EM = ME, where

 $M \in J(K_s(R))$. If $s \in U(R)$, then $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ by Lemma 2.4. Then there

exists $P \in U(K_s(R))$ such that $PEP^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = F$. From Lemma 3.3, $PAP^{-1} - PEP^{-1} = PMP^{-1}$ is very J-clean. Let $v = [v_{ij}] = PMP^{-1}$. Since VF = FV, we find $v_{12} = v_{21} = 0$ and $v_{11}, v_{22} \in J(R)$. Hence $A \sim \begin{pmatrix} v_{11} + 1 & 0 \\ 0 & v_{22} \end{pmatrix}$. If $s \in J(R)$, then either $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ or $E \sim \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ by Lemma 2.4. Using the previous argument, one can easily show that either $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$ or $A \sim \begin{pmatrix} w & 0 \\ 0 & v \end{pmatrix}$, where $v \in \pm 1 + J(R)$ and $w \in J(R)$. Case 2. If A + E is in $J(K_s(R))$, then A + E = M and EM = ME, where

 $M \in J(K_s(R)).$

If $s \in U(R)$, then $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ by Lemma 2.4. Then there exists $P \in U(K_s(R))$ such that $PAP^{-1} + PEP^{-1} = PVP^{-1}$. Let $V = [v_{ij}] = PVP^{-1}$ and $PEP^{-1} = F$. Since VF = FV, we find $v_{12} = v_{21} = 0$ and $v_{11}, v_{22} \in J(R)$. Thus $A \sim \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$, where $v = v_{11} - 1 \in \pm 1 + J(R), w = v_{22} \in J(R)$.

Similarly, if $s \in J(R)$, then either $E \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ or $E \sim \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ by Lemma **2.4.** In this case, using the previous argument, one can easily show that either $A \sim \begin{pmatrix} v_{11} - 1 & 0 \\ 0 & v_{22} \end{pmatrix}$ or $A \sim \begin{pmatrix} v_{11} & 0 \\ 0 & v_{22} - 1 \end{pmatrix}$.

Theorem 3.5. Let R be a local ring, and let $s \in C(R)$. Then $A \in K_s(R)$ is very clean if and only if $A \in U(K_s(R)), I \pm A \in U(K_s(R))$ or $A \in K_s(R)$ is very J-clean.

Proof. The proof is clear by combining Lemma 2.6 and Lemma 3.4.

Lemma 3.6. Let R be a local ring with $s \in C(R) \cap J(R)$, and $A \in K_s(R)$ be very J-clean. Then either $I \pm A \in J(K_s(R))$ or $A \sim \begin{pmatrix} w & 1 \\ v & u \end{pmatrix}$ or $A \sim$ $\begin{pmatrix} u & 1 \\ v & w \end{pmatrix}$, where $u \in \pm 1 + J(R)$, $v \in U(R)$ and $w \in J(R)$.

Proof. Assume that $I \pm A \notin J(K_s(R))$. By Lemma 2.6 either $A \sim \begin{pmatrix} v_1 \pm 1 & 0 \\ 0 & w_1 \end{pmatrix}$ or $A \sim \begin{pmatrix} v_1 & 0 \\ 0 & w_1 \pm 1 \end{pmatrix}$, where $v_1, w_1 \in J(R)$ and $s \in J(R)$. Case 1: Let $B = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ where $a = v_1 \in J(R)$, $b = w_1 \pm 1 \in \pm 1 + J(R)$.

Clearly
$$b-a \in \pm 1 + J(R) = U(R)$$
.
 $B \sim \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b-a \\ 0 & b \end{pmatrix}$

$$\sim \left(\begin{array}{cc} 1 & 0 \\ -b & b-a \end{array}\right) \left(\begin{array}{cc} a & b-a \\ 0 & b \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ (b-a)^{-1}b & (b-a)^{-1} \end{array}\right)$$

$$= \left(\begin{array}{cc} a+sb & 1 \\ (b-a)b(b-a)^{-1}b-ba-sb^2 & (b-a)b(b-a)^{-1}-sb \end{array}\right),$$
 where $u=a+sb\in J(R), v=(b-a)b(b-a)^{-1}b-ba-sb^2\in U(R)$ and $w=(b-a)b(b-a)^{-1}-sb\in \pm 1+J(R).$ Thus, $A\sim \left(\begin{array}{cc} u & 1 \\ v & w \end{array}\right)$ where $u\in J(R), v\in U(R)$ and $w\in \pm 1+J(R).$ Case 2. Let $\left(\begin{array}{cc} c & 0 \\ 0 & d \end{array}\right),$ where $c=1+v_1\in \pm 1+J(R), d=w_1\in J(R).$ Similarly, we show that $A\sim \left(\begin{array}{cc} u & 1 \\ v & w \end{array}\right)$ where $u\in \pm 1+J(R), v\in U(R)$ and $w\in J(R).$

Acknowledgements

The author would like to thank the referee for his/her valuable comments which helped to improve the manuscript.

References

- [1] H. Chen, On strongly J-clean rings, Comm. Algebra 38 (2010), no. 10, 3790–3804.
- [2] H. Chen, B. Ungor and S. Halicioglu, Very clean matrices over local rings, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), accepted.
- [3] P.A. Krylov, Isomorphism of generalized matrix rings, Algebra Logic 47 (2008), no. 4, 258–262.
- [4] P.A. Krylov and A. A. Tuganbayev, Modules over formal rings, J. Math. Sci. (N.Y.) 171 (2010), no. 2, 248–295.
- [5] W.K. Nicholson, Strongly clean rings and fitting's lemma, Comm. Algebra 27 (1999), no. 8, 3583–3592.
- [6] M. Sheibani, H. Chen and R. Bahmani, Strongly J-clean ring over 2-projective-free rings, Arxiv:1409.3974v2 [math.RA].
- [7] G. Tang and Y. Zhou, Strong cleanness of generalized matrix rings over a local ring, Linear Algebra Appl. 437 (2012), no. 10, 2546–2559.

(Yosum Kurtulmaz) Department of Mathematics, Bilkent University, Ankara, Turkey.

 $E ext{-}mail\ address: yosum@fen.bilkent.edu.tr}$