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Abstract. Triangular matrix rings are examples of trivial extensions.
In this article we determine the structure of derivations and biderivations
of the trivial extensions, and thereby we describe the derivations and

biderivations of the upper triangular matrix rings. Some related results
are also obtained.
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1. Introduction

Let R be a ring with identity and Z(R) be the center of R. For each x, y ∈ R,
denote the commutator of x, y by [x, y] = xy − yx. Let M be a unitary R-
bimodule. An additive mapping d : R → M is said to be a derivation if
d(ab) = d(a)b + ad(b) for all a, b ∈ R. Let a ∈ R. The mapping Ia : R → R
given by Ia(x) = [x, a] is easily seen to be a derivation of R. Ia is called the
inner derivation induced by a. The biadditive mapping d : R × R → M is
called a biderivation if it is a derivation in each component; that is,

(1.1) d(xy, z) = d(x, z)y + xd(y, z) and d(x, yz) = d(x, y)z + yd(x, z)

are fulfilled for all x, y, z in R. In the sequel, we use (1.1) without explicit
mention.

A mapping d : R×R → R is said to be an extremal biderivation if d(x, y) =
[x, [y, a]] for all x, y ∈ R, where a ∈ R is such that [a, [R,R]] = 0.

Let R and M be as above. The trivial extension T (R,M) of R by M is
defined to be

T (R,M) = {(r,m) : r ∈ R,m ∈ M}.
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It is easy to see that T (R,M) with the componentwise addition and the mul-
tiplication given by

(r,m)(r′,m′) = (rr′, rm′ +mr′) (r, r′ ∈ R;m,m′ ∈ M)

is a ring with the multiplicative identity (1, 0). It is useful to note that T (R,M)
has also the matrix representation

T (R,M) =

{(
r m
0 r

)
: r ∈ R,m ∈ M

}
with the usual addition and multiplication of matrices.

Trivial extensions have been extensively studied in algebra and analysis (see,
for instance, [1, 6, 8, 10,11]).

Let R and S be rings with identity, M be a unitary (R,S)-bimodule, and

T =

(
R M
0 S

)
be the upper triangular matrix ring determined by R,S and

M with the usual addition and multiplication of matrices. For the special
case when R = S (so that M is an R-bimodule), the matrix representation of

T (R,M) shows that it is a subring of

(
R M
0 R

)
. In particular, T (R,R) is a

subring of the upper triangular matrix ring T2(R).
Many authors have studied T in several directions. Characterizing its au-

tomorphisms, derivations and biderivations are a few among all. The readers
interested in the structure of automorphisms and derivations of T may refer
to [2–5,9], and the readers interested in biderivations of T may refer to [3,7,12]
and the references therein.

Let T be as above. Then one can easily verify that M can be made into a
unitary R× S-bimodule via the scalar multiplications given by

(1.2) (r, s)m = rm and m(r, s) = ms ((r, s) ∈ R× S,m ∈ M).

Hence, T (R×S,M) is the trivial extension of R×S by M . Now, it is straight-
forward to show that the mapping

(1.3) T → T (R× S,M) given by

(
r m
0 s

)
7→ ((r, s),m)

is a ring isomorphism. Therefore, upon the (natural) identification above,
the upper triangular matrix rings are examples of trivial extensions. Since it
turns out that the trivial extensions are easier to work with, one can prove a
property for an upper triangular matrix ring via proving the same property
for the corresponding trivial extension. In this paper, first we determine the
structure of derivations and biderivations of T (R,M) (Theorems 2.1 and 2.6),
and then, following the procedure explained above, we determine the structure
of derivations and biderivations of T (Theorems 2.4 and 2.11). Some other
related results are also established.

In the sequel, unless there is a doubt of ambiguity, the zero elements of the
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rings and modules, zero subrings, zero submodules and zero functions are all
denoted by 0. As usual, Eij stands for the standard matrix unit.

2. Main results and proofs

Let R be a ring with identity, M be unitary R-bimodule and T (R,M) be
the trivial extension of R by M . Our first result describes the derivations of
T (R,M).

Theorem 2.1. Let d be a derivation of the trivial extension T (R,M). Then
there exists

(i) a derivation δ of R,
(ii) a derivation γ : R → M ,
(iii) a bimodule homomorphism f : M → R satisfying

(2.1) mf(m′) + f(m)m′ = 0 for all m,m′ ∈ M,

(iv) and there exists a biadditive mapping g on M satisfying

(2.2) g(rm) = rg(m) + δ(r)m and g(mr) = g(m)r +mδ(r),

for all r ∈ R,m ∈ M , such that

d(r,m) = (δ(r) + f(m), γ(r) + g(m)) for all r ∈ R,m ∈ M.

Proof. Let r ∈ R and set d(r, 0) = (δ(r), γ(r)). Since d is additive, so are δ and
γ. For any r, r′ ∈ R we have

(δ(rr′), γ(rr′)) = d(rr′, 0) = d((r, 0)(r′, 0))

= d(r, 0)(r′, 0) + (r, 0)d(r′, 0)

= (δ(r), γ(r))(r′, 0) + (r, 0)(δ(r′), γ(r′))

= (δ(r)r′, γ(r)r′) + (rδ(r′), rγ(r′))

= (δ(r)r′ + rδ(r′), γ(r)r′ + rγ(r′)).

Therefore, the mappings δ : R → R and γ : R → M are derivations. This
proves (i) and (ii). To prove (iii) and (iv), let m ∈ M be arbitrary and set
d(0,m) = (f(m), g(m)). Obviously, f and g are additive. Let r ∈ R. Using (i)
and (ii), we have

(f(rm), g(rm)) = d(0, rm) = d((r, 0)(0,m))

= d(r, 0)(0,m) + (r, 0)d(0,m)

= (δ(r), γ(r))(0,m) + (r, 0)(f(m), g(m))

= (0, δ(r)m) + (rf(m), rg(m))

= (rf(m), rg(m) + δ(r)m).

Replacing rm by mr in the above computation, we find also that

(f(mr), g(mr)) = (f(m)r, g(m)r +mδ(r)) for all r ∈ R,m ∈ M.
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Thus, f is a bimodule homomorphism and g satisfies (2.2). To prove (2.1), let
m,m′ be in M . Then applying d to (0,m)(0,m′) = (0, 0), we have

(0, 0) = d((0,m)(0,m′))

= (f(m), g(m))(0,m′) + (0,m)(f(m), g(m′))

= (0, f(m)m′) + (0,mf(m′))

= (0, f(m)m′ +mf(m′)).

Since d is additive, the last conclusion is obvious. □

Now, it is not hard to verify:

Corollary 2.2. Let d and T (R,M) be as above. Then d can be decomposed
into the sum of three derivations D,Γ and F of T (R,M) given by

D(r,m) = (δ(r), g(m)), Γ(r,m) = (0, γ(r)), F (r,m) = (f(m), 0).

For the special case when M = R, the result is more interesting. The deriva-
tion D decomposes into the sum of two special derivations, and the derivation
F takes a simple form:

Corollary 2.3. In Corollary 2.2, assume that M = R. Then:

(i) D is decomposed into the sum of derivations D1, D2, where D1 is induced
by the derivation δ, and D2 is the restriction of the inner derivation IbE12

of T2(R) to the subring T (R,R) for some b ∈ Z(R).
(ii) There exists a central element a ∈ R such that 2a = 0, and for every

(r, s) ∈ R×R, we have F (r, s) = (as, 0).

In particular, if R is 2-torsionfree, then F = 0, and for every (r, s) in R × S,
we have

d(r, s) = (δ(r), δ(s)) + (0, bs) + (0, γ(r))

= D1(r, s) +D2(r, s) + Γ(r, s)

Proof. (i) Put g(1) = b, and let r ∈ R. According to (2.2), we have

g(r) = g(r.1) = rg(1) + δ(r) = rb+ δ(r);

g(r) = g(1.r) = g(1)r + δ(r) = br + δ(r).

These equations imply that b ∈ Z(R) and that g(r) = br+ δ(r). Therefore, for
every (r, s) ∈ R×R, we have

D(r, s) = (δ(r), g(s)) = (δ(r), bs+ δ(s))

= (δ(r), δ(s)) + (0, bs).

Now, the mappings D1, D2 defined by

D1(r, s) = (δ(r), δ(s)) and D2(r, s) = (0, bs)
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are easily seen to be derivations of T (R,R). Note that D1 is determined by
applying δ to the entries of (r, s). On the other hand, since b ∈ Z(R), for every

X =

(
r s
0 r

)
∈ T (R,R) ⊆ T2(R), we have

IbE12(X) = XIbE12 − IbE12X = bsE12.

That is, D2 is the restriction of the inner derivation IbE12 of T2(R) to the
subring T (R,R).
(ii) Put f(1) = a. In view of (2.1), we have 0 = 1.f(1) + f(1).1 = 2a. Hence,
since f is a bimodule homomorphism on R, for any r ∈ R, we have

ra = rf(1) = f(r.1) = f(1.r) = f(1)r = ar,

so that a ∈ Z(R). Therefore, for any (r, s) ∈ R×R, we have F (r, s) = (sa, 0).
To prove the particular case, notice that from 2f(1) = 0 and the torsion

assumption on R it follows that f(1) = 0. So, for any r ∈ R, we get f(r) =
f(r.1) = rf(1) = 0. □

Now, upon the identification given in (1.3) and using Theorem 2.1, we can
(re)determine the structure of the derivations of the upper triangular matrix

ring T =

(
R M
0 S

)
(see also [4, Theorem 2.2.1]):

Theorem 2.4. Let d be a derivation of the upper triangular matrix ring T .
Then there are derivations δ1 of R, δ2 of S, an additive mapping g on M
satisfying

(2.3) g(rm) = rg(m)+δ1(r)m and g(mr) = g(m)r+mδ2(r) (r ∈ R,m ∈ M),

and an element m∗ ∈ M , such that, for every

(
r m
0 s

)
∈ T , we have

d

(
r m
0 s

)
=

(
δ1(r) rm∗ −m∗s+ g(m)
0 δ2(s)

)
.

Proof. Let us identify T with T (R×S,M). By Theorem 2.1, there are deriva-
tions δ of R × S and γ : R × S → M such that, for every (r, s) ∈ R × S, we
have

d((r, s), 0) = (δ(r, s), γ(r, s)).

First, we claim that there are derivations δ1 of R and δ2 of S such that

(2.4) δ(r, s) = (δ1(r), δ2(s)) for all r ∈ R, s ∈ S.

To see this, let δ(1, 0) = (a, b). Then, from

(a, b) = δ((1, 0)2) = δ(1, 0)(1, 0) + (1, 0)δ(1, 0)
= (a, 0) + (a, 0) = (2a, 0)
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it follows that δ(1, 0) = (0, 0). Similarly, δ(0, 1) = (0, 0). Now let r be in R
and assume that δ(r, 0) = (δ1(r), α(r)). Since δ(1, 0) = (0, 0), we have

(δ1(r), α(r)) = δ(r, 0) = δ((r, 0)(1, 0))

= δ(r, 0)(1, 0) + (r, 0)δ(1, 0)

= (δ1(r), 0).

Hence α(r) = 0. Likewise, there exists a mapping δ2 on S such that for every
s ∈ S, δ(0, s) = (0, δ2(s)). Consequently, for every r ∈ R, s ∈ S, we have

d(r, s) = d(r, 0) + d(0, s) = (δ1(r), δ2(s)).

To see that δ1, δ2 are derivations, let (r′, s′) be also in R× S. Then

(δ1(rr
′), δ2(ss

′)) = δ(rr′, ss′) = δ((r, s)(r′, s′))

= δ(r, s)(r′, s′) + (r, s)δ(r′, s′)

= (δ1(r), δ2(s))(r
′, s′) + (r, s)(δ1(r

′), δ2(s
′))

= (δ1(r)r
′ + rδ(r′), δ2(s)s

′ + sδ2(s
′)).

Since δ is additive, so are δ1, δ2. Therefore, δ1, δ2 are derivations.
Now, we claim that there exists m∗ ∈ M such that

(2.5) γ(r, s) = rm∗ −m∗s for all r ∈ R, s ∈ S.

Since γ is a derivation, we have γ(1, 1) = 0. Put γ(1, 0) = m∗. Then, in view
of (1.2) and noting that γ(0, 1) = −γ(1, 0) = −m∗, for every r ∈ R, s ∈ S, we
have

γ(r, 0) = γ((r, 0)(1, 0)) = γ(r, 0)(1, 0) + (r, 0)γ(1, 0) = (r, 0)m∗ = rm∗;

γ(0, s) = γ((0, 1)(0, s)) = γ(0, 1)(0, s) + (0, 1)γ(0, s) = −m∗(0, s) = −m∗s.

Hence, γ(r, s) = γ(r, 0) + γ(0, s) = rm∗ −m∗s, proving (2.5).
Now, by Theorem 2.1, there exists a bimodule homomorphism f : M → R×

S, and an additive mapping g : M → M that satisfies the conditions in (2.3).
First, we prove that f = 0: Let m be in M and assume that f(m) = (u, v).
Using (1.2) twice, we have

(u, v) = f(m) = f(m(0, 1)) = f(m)(0, 1) = (u, v)(0, 1) = (0, v);

(u, v) = f(m) = f((1, 0)m) = (1, 0)f(m) = (1, 0)(u, v) = (u, 0).

The above equations imply of course that u = v = 0.
To show that g satisfies (6), let r ∈ R and m ∈ M be arbitrary. Noting that

here M is an R× S-bimodule, using (1.2), (2.3) and (2.4), we have

g(rm) = g((r, 0)m) = (r, 0)g(m) + δ(r, 0)m

= rg(m) + (δ1(r), δ2(0))m

= rg(m) + δ1(r)m;
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g(mr) = g(m(0, r)) = g(m)(0, r) +mδ(0, r)

= g(m)r +m(δ1(0), δ2(r))

= g(m)r +mδ2(r).

Finally, by Theorem 2.1, the identification described in (1.3), and noting
that f = 0, for any r ∈ R, s ∈ S and m ∈ M , we have

d((r, s),m) = (δ(r, s) + f(m), γ(r, s) + g(m))

= ((δ1(r), δ2(s)), rm
∗ −m∗s+ g(m))

=

(
δ1(r) rm∗ −m∗s+ g(m)
0 δ2(s)

)
.

□

Remark 2.5. Let d and T be as above. Define M∗ = m∗E12 = d(E11), and
let IM∗ be the inner derivation of T induced by M∗. Then for every X =(

r m
0 s

)
in T , we have

IM∗(X) = Xm∗E12 −m∗E12X = (rm∗ −m∗s)E12.

Therefore, the derivation d can be decomposed into the sum d = ∆ + IM∗ ,
where (the derivation) ∆ is defined by

∆

(
r m
0 s

)
=

(
δ1(r) g(m)
0 δ2(s)

)
.

LetR be a ring with identity. Recall that a biadditive mapping d : R×R → R
is said to be a biderivation of R if d is a derivation in each argument. Our next
aim is to describe the biderivations of the trivial extension T (R,M).

Theorem 2.6. Let d be a biderivation of the trivial extension T (R,M). Then
there exist

(i) biderivations δ of R and γ : R×R → M ,
(ii) a biadditive mapping α : R × M → R which is a derivation in the first

coordinate and a bimodule homomorphism in the second coordinate,
(iii) a biadditive mapping β : R × M → M which is a derivation in the first

coordinate, and

(2.6) β(r, r′m) = r′β(r,m) + δ(r, r′)m,

(2.7) β(r,mr′) = β(r,m)r′ +mδ(r, r′)

for all r, r′ ∈ R and m ∈ M ,
(iv) a biadditve mapping θ : R × M → R which is a derivation in the first

coordinate and a bimodule homomorphism in the second coordinate,
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(v) a biadditive mapping η : R × M → M which is a derivation in the first
coordinate, and

η(r, r′m) = r′η(r,m) + δ(r, r′)m,

η(r,mr′) = η(r,m)r′ +mδ(r, r′)

for all r, r′ ∈ R and m ∈ M ,
(vi) a biadditive mapping f : M×M → R which is a bimodule homomorphism

in each coordinate, and finally,
(vii) there exists a biadditive mapping g : M ×M → M for which

g(rm,m′) = rg(m,m′) + α(r,m′)m,(2.8)

g(mr,m′) = g(m,m′)r +mα(r,m′),(2.9)

g(m, rm′) = rg(m,m′) + θ(r,m)m′,(2.10)

g(m,m′r) = g(m,m′)r +m′θ(r,m),(2.11)

are fulfilled for all r, r′ ∈ R and m,m′ ∈ M , such that

d((r,m), (r′,m′)) = (δ(r, r′) + α(r,m′) + θ(r′,m) + f(m,m′),

γ(r, r′) + β(r,m′) + η(r′,m) + g(m,m′)).

Proof. To prove the conclusions involving biderivations, we deal only with the
first coordinates. Let r, r′ ∈ R, and let d((r, 0), (r′, 0)) = (δ(r, r′), γ(r, r′)).
Since d is biadditive, so are δ and γ. For any r1, r2, r

′ ∈ R, we have

(δ(r1r2, r
′), γ(r1r2, r

′)) = d((r1r2, 0), (r
′, 0)) = d((r1, 0)(r2, 0), (r

′, 0))

= (r1, 0)d((r2, 0), (r
′, 0)) + d((r1, 0), (r

′, 0))(r2, 0)

= (r1, 0)(δ(r2, r
′), γ(r2, r

′))

+ (δ(r1, r
′), γ(r1, r

′))(r2, 0)

= (r1δ(r2, r
′) + δ(r1, r

′)r2, r1γ(r2, r
′) + γ(r1, r

′)r2).

Therefore, δ and γ are derivations in the first coordinate. This proves (i).
To prove (ii) and (iii), let r ∈ R,m ∈ M be arbitrary, and set

d((r, 0), (0,m)) = (α(r,m), β(r,m)) ∈ R×M.

Biadditivity of α and β follow from d. Let r′ be also in R. Then, from

(α(rr′,m), β(rr′,m)) = d((rr′, 0), (0,m)) = d((r, 0)(r′, 0), (0,m))

= (r, 0)d((r′, 0), (0,m)) + d((r, 0), (0,m))(r′, 0)

= (r, 0)(α(r′,m), β(r′,m)) + (α(r,m), β(r,m))(r′, 0)

= (rα(r′,m) + α(r,m)r′, rβ(r′,m) + β(r,m)r′)
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it follows that α, β are derivations in the first coordinate. Moreover, using (i),
we have

(α(r, r′m), β(r, r′m)) = d((r, 0), (0, r′m)) = d((r, 0), (r′, 0)(0,m))

= (r′, 0)(d(r, 0), (0,m)) + d((r, 0), (r′, 0))(0,m)

= (r′, 0)(α(r,m), β(r,m)) + (δ(r, r′), γ(r, r′))(0,m)

= (r′α(r,m), r′β(r,m)) + (0, δ(r, r′)m)

= (r′α(r,m), r′β(r,m) + δ(r, r′)m).

Hence, α is a left R-homomorphism in the second coordinate, and β satisfies
(2.6). Similarly, one shows that α is also a right R-homomorphism in the second
coordinate, and β satisfies (2.7).

The proofs of the existence of the mappings θ : R×M → R and η : R×M →
M satisfying the properties given in (iv) and (v) are similar to those of α and
β in (ii) and (iii), hence suppressed.

To prove (vi) and (vii), let m,m′ ∈ M be arbitrary, and assume

d((0,m), (0,m′)) = (f(m,m′), g(m,m′)) ∈ R×M.

Obviously, f and g are biadditive. Let r be in R. Then, from

(f(rm,m′), g(rm,m′)) = d((0, rm)(0,m′)) = d((r, 0)(0,m), (0,m′))

= (r, 0)(d(0,m), (0,m′)) + d((r, 0), (0,m′))(0,m)

= (r, 0)(f(m,m′), g(m,m′))

+ (α(r,m′), β(r,m′))(0,m)

= (rf(m,m′), rg(m,m′) + α(r,m′)m)

it follows that f(rm,m′) = rf(m,m′) and g(rm,m′) = rg(m,m′)+α(r,m′)m.
In similar fashions, we can show that f is a right R-homomorphism in the
first coordinate, and an R-bimodule homomorphism in the second coordinate;
moreover, g satisfies the properties (2.9)-(2.11). Since d is biadditive, the last
conclusion is now obvious. □

Remark 2.7. Let d and T (R,M) be as above. Then the mappings D,Γ, F and
G : T (R,M)× T (R,M) → T (R,M) defined by

D((r,m), (r′,m′)) = (δ(r, r′), β(r,m′) + η(r′,m)),

Γ((r,m), (r′,m′)) = (0, γ(r, r′)),

F ((r,m), (r′,m′)) = (f(m,m′), 0),

G((r,m), (r′,m′)) = (α(r,m′) + θ(r′,m), g(m,m′)),

are easily seen to be biderivations of T (R,M), and d = D+Γ+F+G. (Compare
with Theorem 2.11.)
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Corollary 2.8. In Theorem 2.6, assume that the ring R is 2-torsionfree and
M = R. Then the mappings f, α and θ are identically zero, and for all r, s ∈ R,
we have

(2.12) β(r, s) = sβ(r, 1) + δ(r, s) = β(r, 1)s+ δ(r, s), and β(r, 1) ∈ Z(R);

(2.13) η(r, s) = sη(r, 1) + δ(r, s) = η(r, 1)s+ δ(r, s), and η(r, 1) ∈ Z(R).

Moreover, there exists an element a ∈ Z(R) such that, for every r, s ∈ R, we
have

g(r, s) = ars, and [r, s]a = 0.(2.14)

Hence, d = D + Γ +G, in which, for every (r, s), (r′, s′) in R×R, we have

D((r, s), (r′, s′)) = (δ(r, r′), s′β(r, 1) + sη(r′, 1) + δ(r, s′) + δ(s, r′)),

Γ((r, s), (r′, s′)) = (0, γ(r, r′)), and G((r, s), (r′, s′)) = (0, ass′).

Proof. Let r, r1, r2 ∈ R. Then (0, r1)(0, r2) = (0, 0), so that

(0, 0) = d((0, r1)(0, r2), (0, r))

= (0, r1)d((0, r2), (0, r)) + d((0, r1), (o, r))(0, r2)

= (0, r1)(f(r2, r), g(r2, r)) + (f(r1, r), g(r1, r))(0, r2)

= (0, r1f(r2, r)) + (0, f(r1, r)r2)

= (0, r1f(r2, r) + f(r1, r)r2).

Substituting r = r1 = r2 = 1 in the above equation, and using the torsion
assumption on R, we get f(1, 1) = 0, and thus

f(r, s) = rsf(1, 1) = 0 for all r, s ∈ R.

To see that α = 0, let r, r1, r2 ∈ R. Noting that (0, r1)(0, r2) = (0, 0), we
have

(0, 0) = d((r, 0), (0, r1)(0, r2))

= (0, r1)d((r, 0), (0, r2)) + d((r, 0), (0, r1))(0, r2)

= (0, r1)(α(r, r2), β(r, r2)) + (α(r, r1), β(r, r1))(0, r2)

= (0, r1α(r, r2)) + (0, α(r, r1)r2)

= (0, r1α(r, r2) + α(r, r1)r2).

Substituting r1 = r2 = 1 in the above equation, leads to 2α(r, 1) = 0, and thus
α(r, 1) = 0. Hence, using the fact that α is a bimodule homomorphism in the
second coordinate, for every r, s ∈ R, we have

α(r, s) = α(r, s.1) = sα(r, 1) = 0.

A similar argument shows that θ = 0.
Next, we prove (2.14). Relations (2.8)-(2.11) and the facts that α and θ
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are zero mappings show that the mapping g : R × R → R is merely a bimod-
ule homomorphism in each component. Therefore, for any r ∈ R, we have
rg(1, 1) = g(r, 1) = g(1, 1)r, so that a := g(1, 1) ∈ Z(R). Accordingly, for
every r, s ∈ R, we have

rsa = rsg(1, 1) = g(r, s) = srg(1, 1) = sra,

implying that g(r, s) = ars and [r, s]a = 0.
Now we prove (2.12). Let r, s be in R. In view of (2.6) and (2.7), we have

β(r, s) = β(r, s.1) = sβ(r, 1) + δ(r, s);

β(r, s) = β(r, 1.s) = β(r, 1)s+ δ(r, s).

These equations imply that β(r, 1)s = sβ(r, 1), whence β(r, 1) ∈ Z(R), as
desired. The proof of (2.13) is similar, hence omitted. The remaining parts are
easily verified. □

For the upper triangular ring T , let us identify T × T with T (R × S,M)×
T (R × S,M). Using Theorem 2.6 and Remark 2.7, we can determine the
structure of the biderivations of T . First, let us apply Theorem 2.6 to the case
when the trivial extension T (R,M) is replaced by T (R× S,M), and see what
happen to the mappings δ, γ, f, α, θ, β, η and g:

Theorem 2.9. Let d be a biderivation of the trivial extension T (R × S,M).
Then:

(i) There exist biderivations δ1 of R and δ2 of S such that, for every r, r′ ∈ R
and s, s′ ∈ S, we have

δ((r, s), (r′, s′)) = (δ1(r, r
′), δ2(s, s

′)).(2.15)

(ii) There exists an element m∗ ∈ M such that, for every r, r′ ∈ R and
s, s′ ∈ S, we have

γ((r, s), (r′, s′)) = rr′m∗ +m∗ss′ − rm∗s′ − r′m∗s,(2.16)

[r, r′]m∗ = 0 = m∗[s, s′].(2.17)

(iii) The mappings f, α and θ are identically zero.
(iv) There exists an (R,S)-bimodule homomorphism h on M such that, for

every (r, s) ∈ R× S, r′ ∈ R and m ∈ M , we have

(2.18) β((r, s),m)) = rh(m)− h(m)s, and [r, r′]h(m) = δ1(r, r
′)m.

(v) There exists an (R,S)-bimodule homomorphism k on M such that, for
every (r, s) ∈ R× S, r′ ∈ R and m ∈ M , we have

η(((r, s),m) = rk(m)− k(m)s, and k(m)[s, s′] = mδ2(s
′, s).
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(vi) The biadditive map g : M×M → M is an (R,S)-bimodule homomorphism
in each component, and, for every (r, s), (r′, s′) in R×S and m,m′ in M ,
we have

[r, r′]g(m,m′) = 0 = g(m,m′)[s, s′].

Before proving the theorem, let us mention some trivial facts about a bideriva-
tion d : R × R → M , where R is a ring with identity and M is a unitary
R-bimodule:

(2.19) d(x, 1) = 0 = d(1, y) and d(x, 0) = 0 = d(0, y) for all x, y ∈ R.

The first and the third identities follow easily from applying d to (x, 1) =
(x, 1)2 and (x, 0) = (x, 0) + (x, 0), respectively, and the two others are proved
similarly.

Proof of Theorem 2.9. (i) Applying the biderivation δ to the equation

(r, s), (1, 0)) = ((r, s), (1, 0)2),

we conclude that

δ((r, s), (1, 0)) = 0 for all (r, s) ∈ R× S.(2.20)

Likewise, for every (r, s) ∈ R× S, we have

δ((r, s), (0, 1)) = δ((1, 0), (r, s)) = δ((0, 1), (r, s)) = 0.(2.21)

Now, we claim that there exists a biderivation δ1 of R such that, for every
r, r′ ∈ R, we have

δ((r, 0), (r′, 0)) = (δ1(r, r
′), 0).(2.22)

Set δ((r, 0), (r′, 0)) = (u, v). In view of (2.20), we have

(u, v) = δ((r, 0), (r′, 0)) = δ((r, 0), (r′, 0)(1, 0))

= (r′, 0)δ((r, 0), (1, 0)) + (δ(r, 0), (r′, 0))(1, 0)

= (u, v)(1, 0) = (u, 0),

so that v = 0. Therefore, δ((r, 0), (r′, 0)) = (u, 0) =: (δ1(r, r
′), 0). Obviously,

δ1 is biadditive. Let r1, r2, r
′ ∈ R. We have

(δ1(r1r2, r), 0) = δ((r1r2, 0), (r, 0))

= δ((r1, 0)(r2, 0), (r, 0))

= (r1, 0)δ((r2, 0), (r, 0)) + δ((r1, 0), (r, 0))(r2, 0)

= (r1, 0)(δ1(r2, r), 0) + (δ(r1, r), 0)(r2, 0)

= (r1δ1(r2, r) + δ1(r1, r)r2, 0).

Thus, δ1 is a derivation in the first coordinate. Similarly, δ1 is a derivation
in the second coordinate, so that δ1 is a biderivation of R. By an analogue
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computation one can show that there exists a biderivation δ2 of S such that,
for each pair s, s′ ∈ S, we have

δ((0, s), (0, s′)) = (0, δ2(s, s
′)).(2.23)

Next, we claim that

δ((r, 0), (0, s)) = 0 = δ((0, s), (r, 0)) for all r ∈ R, s ∈ S.(2.24)

Assume that δ((r, 0), (0, s)) = (t, z) ∈ R× S. Then, by (2.21), we have

(t, z) = δ((r, 0), (0, s)) = δ((r, 0)(1, 0), (0, s))

= (r, 0)δ((1, 0), (0, s)) + δ((r, 0), (0, s))(1, 0)

= (t, z)(1, 0) = (t, 0).

Hence z = 0. On the other hand, by applying δ to

((r, 0), (0, s)) = ((r, 0), (0, s)(0, 1)),

we find that t = 0, and thus, δ((r, 0), (0, s)) = 0. The other identity in (2.24)
is proved similarly.

Finally, since δ is biadditive, from (2.22)-(2.24) one obtains (2.15).
(ii) Recalling that γ : (R×S)× (R×S) → M is a biderivation, from (2.19) we
find that
(2.25)

γ((1, 0), (1, 1)) = γ((0, 1), (1, 1)) = γ((1, 1), (1, 0)) = γ((1, 1), (1, 1)) = 0.

Assume that γ((1, 0), (1, 0)) = m∗ ∈ M . Using(2.25), we obtain

(2.26) γ((1, 0), (0, 1)) = γ((0, 1), (1, 0)) = −m∗ and γ((0, 1), (0, 1)) = m∗.

Let r ∈ R be arbitrary, and put γ((r, 0), (0, 1)) = m. Applying γ to the identity
((r, 0), (1, 0)) = ((r, 0)(1, 0), (1, 0)), and using relations (1.2) and (2.26), we
arrive at m = rm∗. A similar computation shows also that γ((1, 0), (r, 0)) =
rm∗. Now, applying γ to the identities

γ((r, 0), (r′, 0)) = γ((r, 0), (r′, 0)(1, 0));

γ((r, 0), (r′, 0)) = γ((r, 0)(1, 0), (r′, 0)),

and using (1.2) and (2.26) again, we deduce that, for each pair r, r′ ∈ R, we
have

γ((r, 0), (r′, 0)) = rr′m∗ = r′rm∗, and [r, r′]m∗ = 0.(2.27)

Analogue computation shows that, for every r ∈ R and s, s′ ∈ S, we have

γ((r, 0), (0, s)) = −rm∗s = γ((0, s), (r, 0));(2.28)

γ((0, s), (0, s′)) = m∗ss′ = m∗s′s, and m∗[s, s′] = 0.(2.29)

Now, using the biadditivity of γ and Equations (2.27)-(2.29), we obtain
(2.16) and (2.17). This proves (ii).
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(iii) Recall that f : M ×M → R× S is an R× S-bimodule homomorphism in
both arguments. Let m,m′ ∈ M and put f(m,m′) = (r, s). Then, from

(r, s) = f(m,m′) = f((1, 0)m(0, 1),m′)

= (1, 0)f(m,m′)(0, 1)

= (1, 0)(r, s)(0, 1)

= (0, 0)

we infer that f = 0. Moreover, since α : (R × S) × M → R × S and β :
(R×S)×M → M are R×S-bimodule homomorphisms in the second argument,
we conclude also that α = β = 0.
(iv) Recalling that β : (R×S)×M → M is a derivation in the first component,
using (1.2), for every r ∈ R,m ∈ M , we have

β((r, 0),m)) = β((r, 0)(1, 0),m)

= (r, 0)β((1, 0),m) + β((r, 0),m)(1, 0)(2.30)

= r(β(1, 0),m).

Similarly, by applying β to the identity ((0, s),m) = ((0, 1)(0, s),m), we observe
that

β((0, s),m)) = β((0, 1),m)s for all s ∈ S,m ∈ M.(2.31)

Set β((1, 0),m) = h(m). Since β((1, 1),m) = 0 (β is a derivation in the first
component), we get β((0, 1),m) = −β((1, 0),m) = −h(m). Now, using (2.30)
and (2.31), we conclude that, for every r ∈ R, s ∈ S and m ∈ M , we have

β((r, 0),m) = rh(m), and β((0, s),m) = −h(m)s.(2.32)

Since β is additive on R× S, the latter relations imply that

β((r, s),m) = β((r, 0),m) + β((0, s),m) = rh(m)− h(m)s,

as desired.
Next, we show that h is a left R-homomorphism on M . Let r ∈ R and

m ∈ M . Then, since β is a left R × S-homomorphism on M , in view of (1.2),
we have

h(rm) = β((1, 0), rm) = β((1, 0), (r, 0)m)

= (r, 0)β((1, 0),m)

= (r, 0)h(m) = rh(m).

A similar argument shows that h is also a right S- homomorphism. To prove
the second identity in (2.18), let r, r′ ∈ R and m ∈ M . By (1.2), (2.6), (2.15)
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and (2.32), we have

rr′h(m) = β((r, 0), r′m) = β((r, 0), (r′, 0)m)

= (r′, 0)β((r, 0),m) + δ((r, 0), (r′, 0))m

= r′rh(m) + (δ1(r, r
′), δ2(0, 0))m

= r′rh(m) + δ1(r, r
′)m,

so that [r, r′]h(m) = δ1(r, r
′)m. The proof of (v) is similar, hence supressed.

(vi) Since α and θ are both zero functions, by Theorem 2.6(vii), the mapping
g : M × M → M is an R × S-bimodule homomorphism in both arguments.
Hence, for every r, r′ ∈ R and m,m′ ∈ M , we get

g(rm, r′m′) = rg(m, r′m′) = rr′g(m,m′);

g(rm, r′m′) = r′g(rm,m′) = r′rg(m,m′).

Thus, [r, r′]g(m,m′) = 0. Similarly, for every s, s′ ∈ S and m,m′ ∈ M , we
obtain g(m,m′)[s, s′] = 0. This completes the proof of the theorem. □

Corollary 2.10. Let d and T ((R× S),M) be as above. Then, for every X =
((r, s),m), Y = ((r′, s′),m′) in T ((R × S),M), the biderivations D,Γ and G
defined in Remark 2.7, can be expressed as

D(X,Y ) = ((δ1(r, r
′), δ2(s, s

′)), rh(m′)− h(m′)s+ r′k(m)− k(m)s′),

Γ(X,Y ) = (0, rr′m∗ +m∗ss′ − rm∗s′ − r′m∗s),

G(X,Y ) = (0, g(m,m′)).

Moreover,

d = D + Γ +G, D(((1, 0), 0), ((1, 0), 0)) = 0,

and Γ is the extremal biderivation of T ((R×S),M) determined by A = ((0, 0),m∗).

Proof. By part (iii) of Theorem 2.9, and in view of Remark 2.7, F = 0, so
that d = D + Γ + G. The expressions for D and G are obvious, and clearly
D(((1, 0), 0), ((1, 0), 0)) = 0. To see that Γ is an extremal biderivation, note
that, in view of (2.17), we have [A, [X,Y ]] = 0, and a simple computation
shows that

Γ(X,Y ) = (0, rr′m∗ +m∗ss′ − rm∗s′ − r′m∗s) = [X, [Y,A]].

□

Now, we can easily translate the corollary above to describe the biderivations
of the triangular ring T (see also [3, Theorem 4.11] and [7, Theorem 2.4]:

Theorem 2.11. Let d be a biderivation of the triangular ring T . Then d
can be decomposed into the sum of three biderivations D,Γ and G such that
D(E11, E11) = 0,Γ is an extremal biderivation, and G is a special biderivation.
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Remark 2.12. Note that by Corollary 2.10, for every X =

(
r m
0 s

)
and

Y =

(
r′ m′

0 s′

)
in T , the biderivations D,Γ and G are given by

D(X,Y ) =

(
δ1(r, r

′) rh(m′)− h(m′)s+ r′k(m)− k(m)s′

0 δ2(s, s
′)

)
,

Γ(X,Y ) = (rr′m∗ +m∗ss′ − rm∗s′ − r′m∗s)E12 = [X, [Y,A]],

where A = m∗E12, and

G(X,Y ) = g(m,m′)E12.
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