Bulletin of the Iranian Mathematical Society Vol. 31 No. 1 (2005), pp 49-61.

ON THE DEFINING NUMBER OF (2n-2)-VERTEX COLORINGS OF $K_n \times K_n$

D. A. MOJDEH*, M. ALISHAHI AND M. MOHAGHEGHI NEJAD

ABSTRACT. In a given graph G = (V, E), a set of vertices S with an assignment of colors to them is said to be a defining set of the vertex coloring of G, if there exists a unique extension of the colors of S to a $c \ge \chi(G)$ coloring of the vertices of G. A defining set with minimum cardinality is called a minimum defining set and its cardinality is the defining number, denoted by d(G, c). In this note we study $d(G = K_n \times K_n, 2n-2)$. We determine an upper bound for $d(G = K_n \times K_n, 2n-2)$ for all n and its exact value for some n.

1. Introduction

A proper c-coloring of a graph G is an assignment of c different colors to the vertices of G such that no two adjacent vertices receive the same color. The (vertex) chromatic number of a graph G is denoted by $\chi(G)$. A graph G with $\chi(G) = k$ is called a k chromatic graph. In a given graph G = (V, E), a set of vertices S with an assignment of colors to them is said to be a defining set of the vertex coloring of G, if there exists a unique extension of the colors of S to a $c \geq \chi(G)$ coloring of the vertices of G. A defining set with minimum

MSC(2000): Primary 05C15; Secondary 05C17

Keywords: Defining set, Coloring, Unique extension

Received: 27 June 2004 , Revised: 08 December 2005

^{*}Corresponding author

^{© 2005} Iranian Mathematical Society.

⁴⁹

cardinality is called a minimum defining set and its cardinality is the defining number, denoted by d(G,c). There are some papers on the defining set of graphs, especially $d(K_n \times K_n, \chi = n)$ (the critical set of Latin squares of order n), $d(G_k, \chi = k)$ where G_k is a k-regular graph. Considerable research work is also carried out on the defining set on block designs. The interested reader may see [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12] and their references.

The following material are useful.

Definition 1.1. A graph G with v vertices is called a *uniquely* 2-*list colorable* (U2LC) if there exists $S_1, S_2, ..., S_v$, a list of colors on its vertices, each of size 2, such that there is a unique coloring for G from this list of colors (see [6]).

Lemma 1.2. A connected graph is U2LC if and only if at least one of its block (a maximal connected subgraph of the graph that has no cut vertex) is not a cycle, a complete graph and a complete bipartite graph (see [6]).

Definition 1.3. A graph G is M(2) if it is not U2LC.

Definition 1.4. A defining set S with an assignment of colors in a graph G, is called a *strong defining set* if there exists an ordering $\{v_1, v_2, ..., v_{n-s}\}$ of the vertices of G - S such that, in the induced list of colors in each of the subgraphs G - S, $G - (S \cup \{v_1\})$, $G - (S \cup \{v_1, v_2\})$, ..., $G - (S \cup \{v_1, v_2, ..., v_{n-s}\})$, there exists at least one vertex whose list of colors is of cardinality 1 (see [8]).

Lemma 1.5. Let G be a k-regular k-vertex coloring graph. Then every cycle in G has a vertex in the defining set of G.

Proof. Let *C* be a cycle in *G* which has no vertex in a defining set. Thus each vertex of *C* must be forced (uniquely colored), but only k-2 colors can be excluded by already colored neighbors. By Lemma 1.2 the cycle C is M(2). This implies there are at least two choices that complete the coloring of the cycle.

Corollary 1.6. Let S be a defining set for a k-regular k-vertex coloring graph G, then G - S is a forest.

Corollary 1.7. Every defining set of a k-regular k-vertex coloring graph is strong.

The Corollary 1.7 implies the following result which has been proved in [8].

Theorem 1.8. Every defining set of a k-regular k-chromatic graph is strong (see [8]).

Definition 1.9. An $n \times n$ matrix whose entries come from $S = \{1, 2, ..., 2n - 1\}$, is called a *silver matrix* if for each i = 1, ..., n the union of the i^{th} row and the i^{th} column contains all elements of S (see [5]).

If n is an even positive integer then the silver matrix is constructed as follows.

Let m_{ij} be the (i, j) entry of $n \times n$ matrix M. We put

(1) $m_{ij} = i + j \pmod{n-1}$ if i < j < n

(2) $m_{ij} = 2i \pmod{n-1}$ if i < j = n

(3) $m_{ij} = n$ if i = j

(4) $m_{ij} = m_{ji} + n \pmod{n-1}$ if i > j.

Definition 1.10. A Latin square of order n is an $n \times n$ array or matrix with entries taken from the set $\{1, 2, ..., n\}$ with the property that each entry occurs exactly once in each row or column.

2. Lower bound of $d(K_n \times K_n, 2n-2)$

In this section we determine a lower bound for the defining set of (2n-2)-colorings of $K_n \times K_n$.

Proposition 2.1. $d(K_n \times K_n, 2n-2) \ge (n-1)^2$.

Proof. Let $G = K_n \times K_n$ and let S be its defining set. By Corollary 1.6, G - S has no cycle. Thus in each row and each column of G at

least n-2 vertices belong to S. Therefore, $d(K_n \times K_n, 2n-2) \ge n(n-2)$. If n-2 elements of each column or each row belong to S, then every vertex v of G-S is a neighbor of a vertex of the same column and a vertex of the same row. Hence the degree of every vertex in S is exactly 2. Thus G-S is a cycle. Therefore, $d(K_n \times K_n, 2n-2) \ge n(n-2) + 1 = (n-1)^2$. \Box

Remark 2.2. Let S be a defining set of (2n - 2)-colorings of $G = K_n \times K_n$. Let $N = V(G) \setminus S$. Then by Proposition 2.1, N has at most 2 vertices from each given row or column. Therefore, by a permutation of the rows or columns we can assume that N is a subset of the * vertices in the following table:

*	*							
	*	*						
		*	*					
			*	*				
				*	*			
					*	*		
						*	*	
							*	*
								*

Let L(i, j) be the list of colors of the vertex (i, j). In the following, it is shown that, there are no four vertices as (i, j), (i, j + 1), (i + 1, j + 1) and (i + 1, j + 2) in $N = V(G) \setminus S$ such that $L(i, j) = \{a\}, L(i, j + 1) = \{a, b\}, L(i + 1, j + 1) = \{b, c\}$ and $L(i + 1, j + 2) = \{*\}$, or there are no four vertices as (i, j), (i + 1, j), (i + 1, j + 1) and (i + 2, j + 1) in $N = V(G) \setminus S$ such that $L(i, j) = \{*\}, L(i + 1, j) = \{b, c\}, L(i + 1, j + 1) = \{a, b\}$ and $L(i + 1, j + 2) = \{a\}$. Without loss of generality one can assume that i = j = 1.

Lemma 2.3. Let S be a defining set of (2n - 2)-colorings of $G = K_n \times K_n$. Let $N = V(G) \setminus S$. Then N has no path on four vertices such that its lists of colors are as follows:

Proof. Assume that the color of the vertex (2, 1) in the table A is k. Hence the color k will not exist in the first row and in the second column. If the color k appears in the first row then from 2n-1vertices of the first row and the first column, two vertices have not been colored and two vertices have color k; i.e. from 2n-2 colors, at most 2n-4 colors have been used. Thus there are two choices for coloring of the (1,1) vertex, which is a contradiction. If the color k appears in the second column then from 2n-1 vertices of the second row and the second column, three vertices have not been colored, and two vertices have color k. So at most 2n-5 colors are used for coloring 2n - 4 vertices, and hence there are three choices for coloring of the (2, 2) vertex which is a contradiction. Therefore, the color k does not exist in the first row and in the second column. Hence the color k must be assigned to the vertex (1, 2), thus a = kor b = k which is a contradiction too. Therefore, there is no path on four vertices in N given by the table A. The argument for the table B is similar. \square

By Corollary 1.7 every defining set of (2n-2)-vertex coloring of $K_n \times K_n$ is strong.

If there exists a path on at least three vertices in $N = V(G) \setminus S$, then the internal vertex of the path has a list of at least two colors. In the following we show that there is no path on five vertices in N.

lemma 2.4. Let S be a defining set of (2n - 2)-colorings of $G = K_n \times K_n$ and $N = V(G) \setminus S$. Then the induced subgraph $\langle N \rangle$ has no path on five vertices as a subgraph.

Proof. Contrarily, assume that $\langle N \rangle$ has a path P on five vertices as follows:

	1	2	3	4
1	*	yz		
2		bc	ab	
3			*	
4				

By Corollary 1.7 S is strong. Since the internal vertices of P have a list of two colors, at least one of the end vertices of this path has a list of one color. Suppose $L(1, 1) = \{x\}$. There are two cases for the list of L(1, 2).

Case 1.

 $x \notin L(1,2) = \{y,z\}$. Since P - (1,1) is M(2), L(3,3) has only one element, say $L(3,3) = \{a\}$. But the element *a* has to lie in L(2,3), otherwise the subgraph induced by $\langle (1,2), (2,2), (2,3) \rangle$ will be M(2). Hence $L(2,3) = \{a,b\}$. The subgraph $\langle (1,2), (2,2) \rangle$ is M(2). Thus L(2,2) has to contain *b*. By (table B) of Lemma 2.3 this case does not arise.

Case 2.

 $x \in L(1,2)$ and $L(1,2) = \{x, y\}.$

	1	2	3	4
1	*	xy		
2		bc = zt	ab	
3			*	
4				

There are two subcases:

(i) $y \notin L(2,2) = \{z,t\}$. Since $\langle (2,2), (2,3), (3,3) \rangle$ is M(2), it follows that L(3,3) has one element as a. Since $\langle (2,2), (2,3) \rangle$ is M(2), it is clear that $a \in L(2,3)$ and $L(2,3) = \{a,b\}$. Also $\langle (2,2) \rangle$ is M(2), hence we have $b \in L(2,2)$ and $L(2,2) = \{z,t\} = \{b,c\}$. By Lemma 2.3 (table B) this case can not happen either.

(ii) $y \in L(2,2)$.

	1	2	3	4
1	x	xy		
2		yz	*	
3			*	
4				

By Lemma 2.3 (table A) this case is also impossible.

Theorem 2.5. Let S be a defining set to (2n - 2)-colorings of $G = K_n \times K_n$ and $N = V(G) \setminus S$. Then

$$|N| \le \lfloor \frac{8n}{5} \rfloor,$$

and hence

$$d(G, 2n-2) \ge n^2 - \lfloor \frac{8n}{5} \rfloor.$$

Proof. The induced subgraph $\langle N \rangle$ is a subgraph of a path on 2n-1 vertices. By Lemma 3, $\langle N \rangle$ has no path on five vertices as a subgraph. Thus for any path on five vertices at least one vertex does not belong to N. Hence the number of vertices in N is at most $(2n-1) - \lfloor \frac{2n-1}{5} \rfloor$, i.e.

$$|N| \le (2n-1) - \lfloor \frac{2n-1}{5} \rfloor = \lfloor \frac{8n}{5} \rfloor.$$

Therefore,

$$d(G, 2n-2) \ge n^2 - \lfloor \frac{8n}{5} \rfloor.$$

3. Defining number of $K_n \times K_n$ for some values of n

In this section we show that $d(K_n \times K_n, 2n-2) = n^2 - \lfloor \frac{8n}{5} \rfloor$ for n = 1, 2, 3, 4, 5, 6, 8, 9, 13, 14, 15, 18, 23, 28 and for n = 10m, where *m* is a positive integer.

Lemma 3.1. Let *n* be a positive integer such that $8n \stackrel{5}{\equiv} 0, 1, 2$. If $d(K_n \times K_n, 2n-2) = n^2 - \lfloor \frac{8n}{5} \rfloor$ then $d(K_{2n} \times K_{2n}, 2(2n)-2) = (2n)^2 - \lfloor \frac{8(2n)}{5} \rfloor$.

Proof. Suppose that *n* is a positive integer such that $8n \stackrel{5}{\equiv} 0$. We consider a $2n \times 2n$ matrix *M* as

$$\begin{array}{c|c} \mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{A} \end{array}$$

where \mathcal{A} is an $n \times n$ matrix corresponding to (2n-2)-colorings of $K_n \times K_n$, \mathcal{B} is an $n \times n$ Latin square with numbers $\{2n-1, 2n, ..., 3n-2\}$ and \mathcal{C} is an $n \times n$ Latin square with numbers $\{3n-1, 3n, ..., 4n-2\}$. It is easy to see that the defining set of \mathcal{A} 's, n^2 entries of \mathcal{B} and n^2 entries of \mathcal{C} consist the defining set of $K_{2n} \times K_{2n}$. Therefore its defining number is $n^2 - \lfloor \frac{8n}{5} \rfloor + n^2 - \lfloor \frac{8n}{5} \rfloor + n^2 + n^2 = (2n)^2 - \lfloor \frac{8(2n)}{5} \rfloor$. For $8n \stackrel{5}{\equiv} 1, 2$ similar proofs work.

Remark 3.2. In the following arrays the non-indexed labels denote the colors of the vertices in the defining set of $K_n \times K_n$ and the indexed labels denote the colors of the vertices that are forced (uniquely colored) with respect to the indices.

Theorem 3.3. For n = 1, 2, 3, 4, 5, 6, 8, 9, 13, 15, 18, 23, 28, $d(K_n \times K_n, 2n - 2) = n^2 - \lfloor \frac{8n}{5} \rfloor.$

Proof. We introduce the defining set of size $n^2 - \lfloor \frac{8n}{5} \rfloor$ for n = 1, 2, 3, 4, 5, 6, 8, 9, 13, 14, 15, 18, 23, 28.

$$n = 1$$
 $\boxed{1_1}$, $n = 2$ $\boxed{\begin{array}{c}1_1 & 2_2\\2 & 1_3\end{array}}$, $n = 3$ $\begin{vmatrix}4_1 & 2_2 & 1\\2 & 3 & 4_3\\3 & 1 & 2_4\end{vmatrix}$,

 11_{1}

21

24

22

24 17

						n =	= 5			_			
				8_1	6_{2}	2 7	7	1	2				
				6	7_4	8	3	2	1	1			
				3	4		5	8-	6	-			
			-	о г	-1 -2		1	$\frac{O_5}{c}$	7	-			
				G	3	4	ł	06	18				
				4	5		3	7	$ 8_{7} $				
		_				n =	= 6				_		
			1_{1}	$ 2_4 $		3	5		4	6			
		ľ	2	73		42	1		6	5			
		ł	0	10		8	6-		3	7	-		
			0		-	7	$\frac{0}{2}$	1	0	<u>1</u>			
			8	9		1	\mathfrak{Z}_8		07	2			
			7	8		10	2		5_{6}	9			
		ſ	10	3		9	4		1	89			
		L				n -	. 0						
ſ	16_{1}	15_{2}	14		4	$\frac{1}{5}$	$\frac{1}{1}$.0	11		12	13	
ł	15	14_4	163		5	4	1	1	12		13	10	-
Ì	1	2	3	1	6_{5}	156	1	2	13		10	11	1
Ì	2	3	1	1	5	167	1	3	10		11	12	1
ĺ	3	6	7		8	9	1	68	14		1	2	
[7	1	8		9	6	1	4_{9}	15_{12}	L	2	3	
ļ	8	9	2		6	7	1	5	1610)	3	1	
ļ	9	7	6	1	.4	8		4	5	1	6_{12}	15_{13}	
l	6	8	9		7	14		5	4		15	16_{14}	
						n =	13	5					
9_{2}	10	7	8	1	L	2	3		12	1:	3	14	15
10_{4}	11_3	8	7	4	2	3	1		13	14	1	15	16
5	6	115	96		3	1	2		14	1	5	16	12
6	4	9	10	11	L7	88	7		15	10	3	12	13
4	5	10	11	8	3	710	90		16	1:	2	13	14
18	19	20	21	2	2	23	24		1111	9		4	5
19	20	21	22	2	3	24	17		912	10	14	5	6
20	21	22	23	2	4	17	18	5	10		13	6	4
21	22	23	24		7	18	19	<u>'</u> -	8	7		1115	9
22	23	24	17		8	19	20	<u> </u>	1	8		916	10
23	24	171	18		9	20	2	-	1			3	1117
24	17	18	19	$\frac{2}{2}$	0	21	22	:	2			1	818
17	18	19	20	2	1	22	23	5	3	1		2	7

 $\frac{6}{4}$

7₂₀

 9_{19}

						n	= 14						
261	25_2	24	22	8	9	10	23	11	20	21	5	6	7
25	24_4	26_3	5	23	10	11	9	20	21	22	6	7	8
12	13	16	26_{5}	25	18	19	4	3	2	1	15	14	17
13	12	15	25_{6}	248	19	18	1	4	3	2	16	17	14
14	15	12	24	267	16	13	2	1	4	3	17	18	19
3	4	1	20	21	269	25_{10}	22	2	23	6	7	8	5
4	1	2	21	22	25	26_{11}	3	23	7	20	8	5	6
15	16	17	6	5	13	14	26_{12}	25	8	7	10	19	18
16	17	18	7	6	14	15	25_{13}	24_{15}	5	8	19	10	13
17	18	19	8	7	15	16	24	26_{14}	6	5	14	13	10
18	19	14	9	10	24	17	11	12	26_{16}	2517	13	16	15
19	14	13	10	11	17	24	12	9	25	2618	18	15	16
1	2	3	23	9	11	12	20	21	22	4	2619	2420	25
2	3	4	11	20	12	9	21	22	1	23	24	25_{22}	26_{21}

			-	
\sim		-	6	
11.	_		.)	

261	27_{2}	28	15	16	8	5	6	13	11	12	9	10	14	7
27	28_4	26_{3}	16	15	7	8	5	10	13	11	12	9	6	14
17	18	19	26_{5}	27	20	21	22	1	2	23	24	25	3	4
18	19	17	276	28_{8}	21	22	20	2	3	24	25	23	4	1
19	17	18	28	267	22	20	21	3	4	25	23	24	1	2
4	1	2	14	9	26_{9}	27_{10}	28	15	16	10	11	12	13	3
3	4	1	12	14	27	28_{12}	26_{11}	16	15	9	10	11	2	13
20	21	22	5	6	23	24	25	26_{13}	27	17	18	19	7	8
21	22	20	6	7	24	25	23	27_{14}	28_{16}	18	19	17	8	5
22	20	21	7	8	25	23	24	28	26_{15}	19	17	18	5	6
2	3	4	13	5	6	7	8	14	1	26_{17}	27_{18}	28	15	16
1	2	3	8	13	5	6	7	4	14	17	28_{20}	26_{19}	16	15
23	24	25	9	10	17	18	19	11	12	20	21	22	26_{21}	27
24	25	23	10	11	18	19	17	12	9	21	22	20	27_{22}	28_{24}
25	23	$\overline{24}$	11	12	19	17	18	9	10	22	20	21	28	26_{23}

$33 \ 23 \ 24$	$23 \ 30 \ 33$	$34 \ 32 \ 31$	$25 \ 33 \ 27$	$32 \ 24 \ 26$	$31 \ 26 \ 25$	$30 \ 34 \ 32$	$29 \ 31 \ 34$	$28 \ 29 \ 30$	$27 \ 28 \ 29$	$26\ 27\ 28$	$19\ 25\ 2$	$24 \ 3 \ 18$	$4\ 17\ 23$	$5\ 4\ 3$	$6\ 5\ 4$	$1 \ 6 \ 5$	$2\ 1\ 6$	$3\ 2\ 1$	$18 \ 19 \ 17$	$17 \ 18 \ 19$	$40 \ 41_3 \ 44_3$	$44_1 \ 40_2 \ 41$
$31 \ 34 \ 25$	$34 \ 32 \ 24$	29 30 23	$28 \ 29 \ 34$	$27 \ 28 \ 33$	$23 \ 24 \ 32$	$33 \ 23 \ 31$	$32 \ 33 \ 30$	$22 \ 31 \ 5$	30 6 20	$1 \ 21 \ 29$	$26\ 27\ 28$	$25 \ 26 \ 27$	$24 \ 25 \ 26$	$2\ 1\ 6$	$3\ 2\ 1$	$4\ 3\ 2$	$5\ 4\ 3$	$6\ 5\ 4$	$40 \ 41_8 \ 44_7$	$44_5 \ 40_6 \ 41$	20 22 21	$21 \ 20 \ 22$
$26\ 27\ 28$	$25 \ 26 \ 27$	$24 \ 25 \ 26$	$23 \ 24 \ 22$	$34 \ 23 \ 25$	$33 \ 34 \ 12$	$22 \ 44 \ 24$	$21 \ 22 \ 23$	$32 \ 33 \ 34$	$31 \ 32 \ 33$	$30 \ 31 \ 32$	$29 \ 30 \ 31$	$28 \ 29 \ 30$	$27 \ 28 \ 29$	$20 \ 19 \ 21$	$19\ 20\ 16$	$18\ 17\ 40$	$17 \ 18 \ 44_{11}$	$44_{10} \ 21_9 \ 7$	$16\ 15\ 8$	$15 \ 16 \ 9$	$14\ 13\ 10$	$13 \ 14 \ 11$
$29 \ 30 \ 15$	$28 \ 29 \ 31$	$27 \ 28 \ 9$	26 8 30	$7\ 16\ 29$	$21 \ 27 \ 28$	$25 \ 26 \ 27$	$24 \ 25 \ 26$	$23 \ 24 \ 25$	$34 \ 23 \ 24$	$33 \ 34 \ 23$	$32 \ 33 \ 34$	$31 \ 32 \ 33$	$30 \ 31 \ 32$	$16\ 22\ 40$	$22 \ 21 \ 44_{15}$	41_{14} 44_{13} 14	40_{12} 41 13	$8 \ 9 \ 10$	$9\ 10\ 11$	$1 \ 11 \ 12$	$11 \ 12 \ 7$	$12\ 7\ 8$
$32 \ 11 \ 10$	$10 \ 14 \ 9$	$13 \ 33 \ 8$	$31 \ 32 \ 7$	$30 \ 31 \ 12$	$29 \ 30 \ 11$	$28 \ 29 \ 14$	$27\ 28\ 13$	$26\ 27\ 20$	$25 \ 26 \ 21$	$24 \ 25 \ 22$	$23 \ 24 \ 41$	$34\ 23\ 40_{20}$	$33 \ 34 \ 44_{19}$	$41_{18} 44_{17} 38$	$40_{16} 41 37$	$15\ 13\ 39$	$14 \ 15 \ 40$	$11 \ 12 \ 35$	12 7 41	7836	8916	$9\ 10\ 15$
987	8 7 12	7 12 11	$12 \ 11 \ 10$	$11 \ 10 \ 9$	$10 \ 9 \ 8$	$13 \ 16 \ 15$	$14 \ 15 \ 16$	$21 \ 44_{25} \ 41$	$22 \ 41_{26} \ 40_{24}$	$20 \ 40 \ 44_{23}$	44_{21} 18 17	41_{22} 17 19	$40 \ 19 \ 18$	$37 \ 40 \ 41$	$35 \ 38 \ 39$	$38 \ 41 \ 40$	$41 \ 39 \ 37$	$36 \ 37 \ 38$	$39\ 13\ 14$	$40 \ 14 \ 13$	$15 \ 36 \ 35$	$16 \ 35 \ 36$
$12 \ 14 \ 13$	$11 \ 13 \ 15$	$10 \ 15 \ 14$	9 40 44_{31}	$8 \ 41_{30} \ 40_{32}$	7 4429 41	21_{28} 18 17	44_{27} 17 18	$6\ 1\ 2$	$1\ 2\ 3$	$2\ 3\ 4$	$3\ 4\ 5$	456	564	$35 \ 39 \ 36$	$36 \ 41 \ 40$	$37 \ 20 \ 19$	$38 \ 19 \ 20$	$39 \ 40 \ 41$	$40 \ 36 \ 35$	$41 \ 35 \ 39$	$42 \ 38 \ 37$	$43 \ 37 \ 38$
$40\ 44_{36}$	41_{34} 40_{36}	44_{33} 41	$21 \ 16$	$22 \ 21$	$16\ 22$	$20\ 21$	$19 \ 20$	$3\ 4$	45	56	6 1	$1 \ 2$	$2 \ 3$	18 17	17 18	$36 \ 35$	$35 \ 36$	$42 \ 43$	$38 \ 37$	$37 \ 38$	$43 \ 39$	$39 \ 42$

n = 23

For n = 4, 8, 18, 28 one can use the Lemma 3.1 and consider the defining numbers for n = 2, 4, 9, 14.

For n = 10m, consider a silver matrix of size 2m with entries $X = A_{2m}, A_1, A_3, ..., A_{2m-1}, A_{2m+1}, ..., A_{4m-1}$, where

	8_{1}	6_2	7	1	2
	6	7_4	8_3	2	1
X =	3	4	5	85	6
	5	3	4	6_{6}	7_{8}
	4	5	3	7	87

form its main diagonal entries. Now we replace the entry A_i , $1 \le i \le 2m-1$ by the 5×5 Latin square with $\{5i+4, 5i+5, 5i+6, 5i+7, 5i+8\}$ and for A_i , $2m+1 \le i \le 4m-1$ by the 5×5 Latin square with $\{5i-1, 5i, 5i+1, 5i+2, 5i+3\}$. Then the non indexed labels of the constructed $10m \times 10m$ matrix, illustrate the defining set of $K_{10m} \times K_{10m}$.

We note that the proof of the case n = 10m is due to Karola Meszaros, a Ph.D. student of Roya Beheshti Zavareh at MIT.

Acknowledgment

The authors would like to thank Prof. E. S. Mahmoodian and Prof. Rahim Zaare Nahandi for their valuable suggestions and comments.

References

- J. Cooper, D. Donovan and J. Seberry, Latin squares and critical sets of minimal size, Austral. J. Combin. 4 (1991), 113–120.
- [2] M. Ghebleh, E. S. Mahmoodian, On uniquely list colorable graphs, Ars Combin. 59 (2001), 307–318.
- [3] R. A. H. Gower, Minimal defining sets in a family of Steiner triple systems, Austral. J. Combin. 8 (1993), 55–73.
- [4] A. Howse, Minimal critical sets for some small Latin squares, Austral. J. Combin. 17 (1998), 275–288.
- [5] N. L. Katz, For math Olympians, numbers are gold, Special to the Washington Post, Wednesday, July 30, 1997; Page A01.
- [6] M. Mahdian, E. S. Mahmoodian, A characterization of uniquely 2-list colorable graphs, Ars Combin. 51 (1999), 295–305.

60

- [7] E. S. Mahmoodian, Defining sets and uniqueness in graph colorings: a survey. R. C. Bose Memorial Conference (Fort Collins, CO, 1995) J. Statist. Plann. Inference 73 no. 1-2 (1998), 85–89.
- [8] E. S. Mahmoodian, E. Mendelsohn, On defining numbers of vertex coloring of regular graphs, 16th British Combinatorial Conference (London, 1997). Discrete Math. 197/198 (1999), 543–554.
- [9] E. S. Mahmoodian, R. Naserasr, M. Zaker, Defining sets in vertex colorings of graphs and Latin rectangles. 15th British Combinatorial Conference (Stirling, 1995). Discrete Math. 167/168 (1997), 451–460.
- [10] E. S. Mahmoodian, G. H. J. van Rees, Critical sets in back circulant Latin rectangles, Austral. J. Combin. 16 (1997), 45–50.
- [11] A. P. Street, Defining sets for block designs; an update, in: C. J. Colbourn, E. S. Mahmoodian (Eds), Combinatorics Advances, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, (1995), 307–320.
- [12] M. Zaker, Greedy defining sets of graphs, Austral. J. Combin. 23 (2001), 231–235.

D. A. Mojdeh M. Alishahi M. Mohagheghi Nejad Department of Mathematics University of Mazandaran Babolsar, IRAN e-mail:dmojdeh@umz.ac.ir e-mail:alishahi@yahoo.com e-mail:mohagheghi@yahoo.com