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ON THE DEFINING NUMBER OF (2n —2)-VERTEX
COLORINGS OF K, x K,

D. A. MOJDEH*, M. ALISHAHI AND M. MOHAGHEGHI NEJAD

ABSTRACT. In a given graph G = (V, E), a set of vertices S
with an assignment of colors to them is said to be a defining set
of the vertex coloring of G, if there exists a unique extension
of the colors of S to a ¢ > x(G) coloring of the vertices of G.
A defining set with minimum cardinality is called a minimum
defining set and its cardinality is the defining number, denoted
by d(G, ¢). In this note we study d(G = K,, X K,,,2n—2). We
determine an upper bound for d(G = K,, x K,,,2n — 2) for all
n and its exact value for some n.

1. Introduction

A proper c-coloring of a graph G is an assignment of ¢ different
colors to the vertices of G such that no two adjacent vertices receive
the same color. The (vertex) chromatic number of a graph G is
denoted by x(G). A graph G with x(G) = k is called a k chromatic
graph. In a given graph G = (V, E), a set of vertices S with an
assignment of colors to them is said to be a defining set of the vertex
coloring of GG, if there exists a unique extension of the colors of S to a
¢ > x(G) coloring of the vertices of G. A defining set with minimum
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cardinality is called a minimum defining set and its cardinality is
the defining number, denoted by d(G, ¢). There are some papers
on the defining set of graphs, especially d(K, x K,, x = n) (the
critical set of Latin squares of order n), d(Gy, x = k) where Gy, is a
k-regular graph. Considerable research work is also carried out on
the defining set on block designs. The interested reader may see |1,
2,3,4,6,7,8, 9,10, 11, 12] and their references.
The following material are useful.

Definition 1.1. A graph G with v vertices is called a uniquely
2-list colorable (U2LC) if there exists Sy, S, ..., Sy, a list of colors
on its vertices, each of size 2, such that there is a unique coloring
for G from this list of colors (see [6]).

Lemma 1.2. A connected graph is U2LC' if and only if at least
one of its block (a mazimal connected subgraph of the graph that
has no cut vertex) is not a cycle, a complete graph and a complete
bipartite graph (see [6]).

Definition 1.3. A graph G is M(2) if it is not U2LC.

Definition 1.4. A defining set S with an assignment of colors in
a graph G, is called a strong defining set if there exists an ordering
{v1,v9, ..., vp_s} of the vertices of G — S such that, in the induced
list of colors in each of the subgraphs G — S, G — (SU{v}), G —
(S UA{v1,v9}),...; G — (S U {vy,v9,...,0,_s}), there exists at least
one vertex whose list of colors is of cardinality 1 (see [8]).

Lemma 1.5. Let G be a k-reqular k-vertex coloring graph. Then
every cycle in G has a vertex in the defining set of G.

Proof. Let C be a cycle in G which has no vertex in a defining
set. Thus each vertex of C' must be forced (uniquely colored), but
only k—2 colors can be excluded by already colored neighbors. By
Lemma 1.2 the cycle C is M (2). This implies there are at least two
choices that complete the coloring of the cycle. ([l
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Corollary 1.6. Let S be a defining set for a k-reqular k-vertex
coloring graph G, then G — S is a forest.

Corollary 1.7. Every defining set of a k-reqular k-vertex coloring
graph is strong.

The Corollary 1.7 implies the following result which has been
proved in [8].

Theorem 1.8. Fuvery defining set of a k-reqular k-chromatic graph
is strong (see [8]).

Definition 1.9. An n x n matrix whose entries come from S =
{1,2,...,2n — 1}, is called a silver matriz if for each i = 1,...,n the
union of the i*" row and the i*" column contains all elements of S
(see [5]).

If n is an even positive integer then the silver matrix is con-
structed as follows.

Let m;; be the (i, j) entry of n x n matrix M. We put

()myy=i+7 (modn—1)ifi<j<n

(2) myy =20 (modn—1)ifi<j=n

(4) mij =my; +n (modn —1)ifi > j.

Definition 1.10. A Latin square of order n is an n X n array or
matrix with entries taken from the set {1, 2, ..., n} with the property
that each entry occurs exactly once in each row or column.

2. Lower bound of d(K, x K,,2n — 2)

In this section we determine a lower bound for the defining set
of (2n — 2)-colorings of K,, x K,.

Proposition 2.1. d(K, x K,,2n —2) > (n —1)°.

Proof. Let G = K,, x K,, and let S be its defining set. By Corollary
1.6, G — S has no cycle. Thus in each row and each column of G at
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least n — 2 vertices belong to S. Therefore, d(K, x K,,2n —2) >
n(n — 2). If n — 2 elements of each column or each row belong to
S, then every vertex v of G — S is a neighbor of a vertex of the
same column and a vertex of the same row. Hence the degree of
every vertex in S is exactly 2. Thus G — S is a cycle. Therefore,

d(K, x K,,2n —2) >n(n—2)+1=(n—1)>2 O

Remark 2.2. Let S be a defining set of (2n — 2)-colorings of
G =K, x K,. Let N =V(G)\ S. Then by Proposition 2.1, N
has at most 2 vertices from each given row or column. Therefore,
by a permutation of the rows or columns we can assume that N is
a subset of the x vertices in the following table:

Let L(4, j) be the list of colors of the vertex (7, j). In the following,
it is shown that, there are no four vertices as (i,7), (i,7 + 1), (¢ +
I,j+1)and (i+1,7+2)in N = V(G) \ S such that L(i,j) =
{a},L(i,j+1) ={a,b}, L(i+1,j+1) ={b,c} and L(i+1,j+2) =
{x}, or there are no four vertices as (7, 7), (i+1,7),(i+1,7+1) and
(14+2,7+1)in N = V(G)\ S such that L(i,j) = {*},L(i+1,j) =
{b,e}, L(i+ 1,7+ 1) ={a,b} and L(i + 1,j + 2) = {a}. Without
loss of generality one can assume that 1 = 57 = 1.

Lemma 2.3. Let S be a defining set of (2n — 2)-colorings of G =
K, x K,. Let N =V (G)\ S. Then N has no path on four vertices
such that its lists of colors are as follows:
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11213 1]2
1lalab L] *
2| bc| ab
2 be |
3 a
Table B Table A

Proof. Assume that the color of the vertex (2,1) in the table A is
k. Hence the color k will not exist in the first row and in the second
column. If the color k appears in the first row then from 2n — 1
vertices of the first row and the first column, two vertices have not
been colored and two vertices have color k; i.e. from 2n — 2 colors,
at most 2n —4 colors have been used. Thus there are two choices for
coloring of the (1,1) vertex, which is a contradiction. If the color
k appears in the second column then from 2n — 1 vertices of the
second row and the second column, three vertices have not been
colored, and two vertices have color k. So at most 2n — 5 colors are
used for coloring 2n — 4 vertices, and hence there are three choices
for coloring of the (2, 2) vertex which is a contradiction. Therefore,
the color k does not exist in the first row and in the second column.
Hence the color k must be assigned to the vertex (1,2), thus a = k
or b = k which is a contradiction too. Therefore, there is no path
on four vertices in NV given by the table A. The argument for the
table B is similar. O

By Corollary 1.7 every defining set of (2n — 2)-vertex coloring of
K, x K, is strong.

If there exists a path on at least three vertices in N = V(G) \ 5,
then the internal vertex of the path has a list of at least two colors.

In the following we show that there is no path on five vertices in
N.

lemma 2.4. Let S be a defining set of (2n — 2)-colorings of G =
K, x K, and N =V(G)\ S. Then the induced subgraph (N) has

no path on five vertices as a subgraph.

Proof. Contrarily, assume that (V) has a path P on five vertices
as follows:
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112|314
1 Yz
2 be | ab
3 *
4

By Corollary 1.7 S is strong. Since the internal vertices of P have
a list of two colors, at least one of the end vertices of this path has
a list of one color. Suppose L(1,1) = {x}. There are two cases for
the list of L(1,2).

Case 1.
r & L(1,2) = {y,z}. Since P — (1,1) is M(2), L(3,3) has only
one element, say L(3,3) = {a}. But the element a has to lie in
L(2,3), otherwise the subgraph induced by ((1,2),(2,2), (2,3)) will
be M(2). Hence L(2,3) = {a,b}. The subgraph ((1,2),(2,2)) is
M (2). Thus L(2,2) has to contain b. By (table B) of Lemma 2.3
this case does not arise.

Case 2.
x € L(1,2) and L(1,2) = {z,y}.

1 2 314
1= Y
2 bc =zt | ab
3 *
4

There are two subcases:

(i) y & L(2,2) = {z,t}. Since ((2,2),(2,3),(3,3)) is M(2), it
follows that L(3,3) has one element as a. Since ((2,2),(2,3)) is
M (2), it is clear that a € L(2,3) and L(2,3) = {a,b}. Also ((2,2))
is M(2), hence we have b € L(2,2) and L(2,2) = {z,t} = {b,c}.
By Lemma 2.3 (table B) this case can not happen either.

(i) y € L(2,2).

Yz | *

= Wl N —
>
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By Lemma 2.3 (table A) this case is also impossible. O

Theorem 2.5. Let S be a defining set to (2n — 2)-colorings of
G=K,x K, and N=V(G)\ S. Then

&n
N <13,

and hence

d(G,2n —2) > n® — Lé%nj

Proof. The induced subgraph (N) is a subgraph of a path on
2n — 1 vertices. By Lemma 3, (N) has no path on five vertices as
a subgraph. Thus for any path on five vertices at least one vertex
does not belong to N. Hence the number of vertices in NV is at most

(2n—1) — 21, .

N < @n—1) - |22

8n
=15
Therefore,

d(G,2n —2) > n* — L%nj.

3. Defining number of K, x K, for some values of n

In this section we show that d(K, x K,,2n —2) =n? — 2] for
n=1,23,4,506,89,13,14,15,18,23,28 and for n = 10m, where
m is a positive integer.

Lemma 3.1. Let n be a positive integer such that 8n 2 0,1,2. If
d(K, x K,,2n —2) = n? — L%”J then d(Ka, X Koy, 2(2n) — 2) =
(2n)% — [ %3]

. .- . 5
Proof. Suppose that n is a positive integer such that 8n = 0. We
consider a 2n X 2n matrix M as
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A B
C|lA

where A is an n X n matrix corresponding to (2n — 2)-colorings of
K, x K,, Bis an nxn Latin square with numbers {2n—1, 2n, ..., 3n—
2} and C is an n x n Latin square with numbers {3n—1,3n, ..., 4n—
2}. Tt is easy to see that the defining set of A’s, n? entries of B and
n? entries of C consist the defining set of Ks, x Ks,. Therefore its
defining number is n® — [ 32| 402 — |82 | 402 4-n? = (2n)2 — [ 32|,

For 8n 2 1,2 similar proofs work. U

Remark 3.2. In the following arrays the non-indexed labels de-
note the colors of the vertices in the defining set of K, x K, and
the indexed labels denote the colors of the vertices that are forced
(uniquely colored) with respect to the indices.

Theorem 3.3. Forn —1,2,3,4,5,6,8,9,13, 15, 18, 23, 28,
d(K, x K,,2n —2) =n* — LSFnJ

Proof. We introduce the defining set of size n? — %] for
n—=1,234,5689 13 14,15, 18,23, 28.

1y |29
nzl, n=2 5 1, | n=312|3 |43}
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n=2=>5
162 71112
6 [74181] 2|1
314|586
5134 |6g]|7s
4 1513|718
n==~6
1,124 31 51] 4 |6
2 (731491 1| 6 |5
9110 8 |65| 3 | 7
819 |7 1331107 2
718110 2| 5 |9
103194 1 |8
n=29
161 | 152 14 | 4 | 5 | 10 | 11 | 12 | 13
15 | 144 | 165 | 5 | 4 | 11 | 12 | 13 | 10
1 | 2 | 3 165|156 | 12 | 13 | 10 | 11
2 | 3 | 1 | 15 |167] 13 | 10 | 11 | 12
316 | 7 | 8 | 9 |16s] 14 1 2
71 11 8 | 9 | 6 |14 | 1511 | 2 3
8 | 9| 2| 6 | 7 |15 1610 3 1
9 | 7 | 6 | 14| 8 | 4 5 | 1612 | 1513
6 | 8 | 9 | 7 | 14 5 4 15 | 1614
n=13
11: ] 9 |10 7 [ 81 11 2 [3] 12 13 | 14 | 15 | 16
9 [104]115] 8 | 7] 2 | 3 | 1] 13 | 14 | 15 | 16 | 12
4 | 5 | 6 |115|9% | 3 | 1 | 2| 14 | 15 | 16 | 12 | 13
5 1 6 | 4 | 9 |10|117| 8 | 7| 15 | 16 | 12 | 13 | 14
6 | 4 | 5 | 10 |11] 8 | 7109 | 16 | 12 | 13 | 14 | 15
17 | 18 | 19 | 20 |21 | 22 | 23 | 24 | 1111 | 9 4 5 6
18 | 19 | 20 | 21 | 22| 23 | 24 | 17 | 912 | 1014 | 5 6 4
19 | 20 | 21 | 22 | 23| 24 | 17 | 18| 10 | 1113 | 6 4 5
20 | 21 | 22 | 23 |24 17 | 18 | 19| 8 7 | 1li5] 9 | 10
21 | 22 | 23 | 24 |17 | 18 | 19 |20 7 8 | 916 | 10 | 11
22 | 23 | 24 | 171 ] 18] 19 | 20 | 21| 1 2 3 | 1117 | 8
23 | 24 | 17 | 18 | 19| 20 | 21 | 22| 2 3 T | 815 | 720
24 | 17 | 18 | 19 | 20| 21 | 22 | 23| 3 1 2 7 | 919
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n=14
261 [ 255 | 24 | 22 | 8 | 9 | 10 | 23 | 11 | 20 | 21 5 6 7
25 | 244 | 265 | 5 | 23 | 10 | 11 9 20 | 21 | 22 6 7 8
12 | 13 | 16 | 265 | 25 | 18 | 19 4 3 2 1 5 | 14 | 17
13 | 12 | 15 | 256 | 24s | 19 | 18 1 4 3 2 16 | 17 | 14
4 | 15 | 12 | 24 | 267 | 16 | 13 2 1 1 3 17 | 18 | 19
3 | 4 | 1 | 20 | 21 | 269 | 2510 | 22 2 23 6 7 8 5
4 [ 1 | 2 [ 21 |22 25 | 2611 3 23 7 20 8 5 6
15| 16 | 17 | 6 | 5 | 13 | 14 | 2612 | 25 8 7 10 | 19 | 18
16 | 17 | 18 | 7 | 6 | 14 | 15 | 2513 | 2415 | 5 8 19 | 10 | 13
17 | 18 | 19 | 8 | 7 | 15 | 16 | 24 | 2614 | 6 5 4 | 13 | 10
18 | 19 | 14 | 9 | 10 | 24 | 17 | 11 | 12 | 2616 | 2517 | 13 | 16 | 15
19 | 14 | 13 | 10 | 11 | 17 | 24 | 12 9 25 | 2615 | 18 | 15 | 16
T | 2 | 3 [ 23] 9 | 11| 12 | 20 | 21 | 22 4 | 2619 | 2420 | 25
2 | 3 | 4 | 11 | 20 | 12| 9 21 | 22 1 23 | 24 | 2522 | 2621
n=15
26, | 272 ] 28 | 15 | 16 | 8 5 6 3] 11 | 12 9 10 | 14 7
27 | 284 | 263 | 16 | 15 | 7 3 5 10 | 13 | 11 | 12 9 6 14
17 | 18 | 19 | 265 | 27 | 20 | 21 | 22 1 2 23 | 24 | 25 3 4
18 | 19 | 17 | 276 | 28s | 21 | 22 | 20 2 3 24 | 25 | 23 4 1
19 | 17 | 18 | 28 | 267 | 22 | 20 | 21 3 1 25 | 23 | 24 1 2
4 | 1 | 2 | 14| 9 | 269|270 28 | 15 | 16 | 10 | 11 | 12 | 13 3
3 | 4 | 1 | 12 | 14 | 27 | 2812 | 2611 | 16 | 15 9 10 | 11 2 13
20 | 21 | 22 | 5 | 6 | 23 | 24 | 25 | 2613 | 27 | 17 | 18 | 19 7 8
21 | 22 | 20 | 6 | 7 | 24 | 25 | 23 | 2714 | 2816 | 18 | 19 | 17 8 5
22 | 20 | 21 | 7 | 8 | 25 | 23 | 24 | 28 | 2615 | 19 | 17 | 18 5 6
2 | 3 | 4 | 13] 5 | 6 7 8 14 1T | 2617 | 2715 | 28 | 15 | 16
1| 2| 3] 8 13|35 6 7 1 14 | 17 | 2830 | 2610 | 16 | 15
23 [ 24 | 25 | 9 | 10 | 17 | 18 | 19 | 11 | 12 | 20 | 21 | 22 | 2641 | 27
24 | 25 | 23 | 10 | 11 | 18 | 19 | 17 | 12 9 21 | 22 | 20 | 2722 | 2824
25 | 23 | 24 | 11 | 12 | 19 | 17 | 18 9 10 | 22 | 20 | 21 | 28 | 2623
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n =23

44, 40, 41| 212022 | 131411 1278 91015 16 35 36 43 37 38 39 42
40 415 445 | 202221 | 141310 11127 8916 15 36 35 42 38 37 43 39
1718 19 | 445 406 41| 15169 11112 7836 40 14 13 41 35 39 37 38
18 19 17 |40 41g 447 | 16 158 91011 12 741 3913 14 40 36 35 38 37
321 654 4419 219 7 8910 11 12 35 36 37 38 39 40 41 42 43
216 543 17 18 444, | 4049 41 13 14 15 40 41 39 37 38 19 20 35 36
165 432 181740 | 4144 4445 14| 1513 39 38 41 40 3720 19 36 35
654 321 1920 16 | 2221 4445 | 4046 41 37 35 38 39 36 41 40 17 18
543 216 2019 21 16 22 40 | 41,5 4447 38| 37 40 41 35 39 36 18 17
417 23 242526 | 2728 29 30 31 32 33 34 4449 40 19 18 564 23
24 318 2526 27 | 2829 30 31 32 33 34 23 4099 | 4195 17 19 456 12
19 25 2 26 2728 | 29 30 31 32 33 34 23 24 41 449, 18 17 345 61
26 27 28 12129 30 31 32 33 34 23 24 25 22 20 40 4453 234 56
27 28 29 30 6 20 31 32 33 34 23 24 2526 21 | 22 4196 4094 123 45
28 29 30 22315 32 33 34 23 24 25 26 27 20 21 4455 41 612 34
293134 | 323330 | 212223 24 25 26 2728 13 14 1516 | 4497 17 18 19 20
303432 | 332331 | 2244 24 25 26 27 28 29 14 13 16 15 2198 18 17 | 20 21
312625 | 232432 | 333412 21 27 28 29 30 11 109 8 7 4499 41 16 22
322426 | 272833 | 342325 716 29 30 31 12 11109 8 4139 4032 | 22 21
253327 | 282934 | 2324 22 26 8 30 31327 12 11 10 9 40 445, 21 16
343231 | 293023 | 242526 27289 13 33 8 71211 10 15 14 | 4433 41
233033 | 343224 | 252627 28 29 31 1014 9 8712 11 13 15 | 4134 4036
332324 | 313425 | 2627 28 29 30 15 32 11 10 987 1214 13 | 40 4454
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For n = 4,8, 18,28 one can use the Lemma 3.1 and consider the
defining numbers for n = 2,4, 9, 14. U
For n = 10m, consider a silver matrix of size 2m with entries

X = A2m7 Ah A3, ceey Agmfl, A2m+1; ceey A4m717 where
8|62 7] 1] 2
6 |74]8] 2|1

X=3|4]5|8]|6
513 |4 |66|Ts
4153|718

form its main diagonal entries. Now we replace the entry A;, 1 <
i < 2m—1 by the 5 x 5 Latin square with {5i+4,5i+5,5: 46, 5i 4+
7,5i+8} and for A;, 2m+1 <i < 4m—1 by the 5 x 5 Latin square
with {5¢ — 1,5¢,5i + 1,50 4 2, 5i + 3}. Then the non indexed labels
of the constructed 10m x 10m matrix, illustrate the defining set of
Kiom X Kiom-

We note that the proof of the case n = 10m is due to Karola
Meszaros, a Ph.D. student of Roya Beheshti Zavareh at MIT.
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