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ON THE DEFINING NUMBER OF (2n− 2)-VERTEX
COLORINGS OF Kn ×Kn

D. A. MOJDEH*, M. ALISHAHI AND M. MOHAGHEGHI NEJAD

Abstract. In a given graph G = (V,E), a set of vertices S
with an assignment of colors to them is said to be a defining set
of the vertex coloring of G, if there exists a unique extension
of the colors of S to a c ≥ χ(G) coloring of the vertices of G.
A defining set with minimum cardinality is called a minimum
defining set and its cardinality is the defining number, denoted
by d(G, c). In this note we study d(G = Kn×Kn, 2n−2). We
determine an upper bound for d(G = Kn ×Kn, 2n− 2) for all
n and its exact value for some n.

1. Introduction

A proper c-coloring of a graph G is an assignment of c different
colors to the vertices of G such that no two adjacent vertices receive
the same color. The (vertex) chromatic number of a graph G is
denoted by χ(G). A graph G with χ(G) = k is called a k chromatic
graph. In a given graph G = (V, E), a set of vertices S with an
assignment of colors to them is said to be a defining set of the vertex
coloring of G, if there exists a unique extension of the colors of S to a
c ≥ χ(G) coloring of the vertices of G. A defining set with minimum
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cardinality is called a minimum defining set and its cardinality is
the defining number, denoted by d(G, c). There are some papers
on the defining set of graphs, especially d(Kn × Kn, χ = n) (the
critical set of Latin squares of order n), d(Gk, χ = k) where Gk is a
k-regular graph. Considerable research work is also carried out on
the defining set on block designs. The interested reader may see [1,
2, 3, 4, 6, 7, 8, 9, 10 , 11, 12] and their references.

The following material are useful.

Definition 1.1. A graph G with v vertices is called a uniquely
2-list colorable (U2LC) if there exists S1, S2, ..., Sv, a list of colors
on its vertices, each of size 2, such that there is a unique coloring
for G from this list of colors (see [6]).

Lemma 1.2. A connected graph is U2LC if and only if at least
one of its block (a maximal connected subgraph of the graph that
has no cut vertex) is not a cycle, a complete graph and a complete
bipartite graph (see [6]).

Definition 1.3. A graph G is M(2) if it is not U2LC.

Definition 1.4. A defining set S with an assignment of colors in
a graph G, is called a strong defining set if there exists an ordering
{v1, v2, ..., vn−s} of the vertices of G − S such that, in the induced
list of colors in each of the subgraphs G − S, G − (S ∪ {v1}), G −
(S ∪ {v1, v2}), ..., G − (S ∪ {v1, v2, ..., vn−s}), there exists at least
one vertex whose list of colors is of cardinality 1 (see [8]).

Lemma 1.5. Let G be a k-regular k-vertex coloring graph. Then
every cycle in G has a vertex in the defining set of G.

Proof. Let C be a cycle in G which has no vertex in a defining
set. Thus each vertex of C must be forced (uniquely colored), but
only k−2 colors can be excluded by already colored neighbors. By
Lemma 1.2 the cycle C is M(2). This implies there are at least two
choices that complete the coloring of the cycle. �
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Corollary 1.6. Let S be a defining set for a k-regular k-vertex
coloring graph G, then G− S is a forest.

Corollary 1.7. Every defining set of a k-regular k-vertex coloring
graph is strong.

The Corollary 1.7 implies the following result which has been
proved in [8].

Theorem 1.8. Every defining set of a k-regular k-chromatic graph
is strong (see [8]).

Definition 1.9. An n × n matrix whose entries come from S =
{1, 2, ..., 2n− 1}, is called a silver matrix if for each i = 1, ..., n the
union of the ith row and the ith column contains all elements of S
(see [5]).

If n is an even positive integer then the silver matrix is con-
structed as follows.

Let mij be the (i, j) entry of n× n matrix M . We put
(1) mij = i + j (mod n− 1) if i < j < n
(2) mij = 2i (mod n− 1) if i < j = n
(3) mij = n if i = j
(4) mij = mji + n (mod n− 1) if i > j.

Definition 1.10. A Latin square of order n is an n × n array or
matrix with entries taken from the set {1, 2, ..., n} with the property
that each entry occurs exactly once in each row or column.

2. Lower bound of d(Kn ×Kn, 2n− 2)

In this section we determine a lower bound for the defining set
of (2n− 2)-colorings of Kn ×Kn.

Proposition 2.1. d(Kn ×Kn, 2n− 2) ≥ (n− 1)2.

Proof. Let G = Kn×Kn and let S be its defining set. By Corollary
1.6, G−S has no cycle. Thus in each row and each column of G at
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least n − 2 vertices belong to S. Therefore, d(Kn × Kn, 2n − 2) ≥
n(n − 2). If n − 2 elements of each column or each row belong to
S, then every vertex v of G − S is a neighbor of a vertex of the
same column and a vertex of the same row. Hence the degree of
every vertex in S is exactly 2. Thus G − S is a cycle. Therefore,
d(Kn ×Kn, 2n− 2) ≥ n(n− 2) + 1 = (n− 1)2. �

Remark 2.2. Let S be a defining set of (2n − 2)-colorings of
G = Kn × Kn. Let N = V (G) \ S. Then by Proposition 2.1, N
has at most 2 vertices from each given row or column. Therefore,
by a permutation of the rows or columns we can assume that N is
a subset of the ∗ vertices in the following table:

? ?
? ?

? ?
? ?

? ?
? ?

? ?
? ?

?

Let L(i, j) be the list of colors of the vertex (i, j). In the following,
it is shown that, there are no four vertices as (i, j), (i, j + 1), (i +
1, j + 1) and (i + 1, j + 2) in N = V (G) \ S such that L(i, j) =
{a}, L(i, j +1) = {a, b}, L(i+1, j +1) = {b, c} and L(i+1, j +2) =
{∗}, or there are no four vertices as (i, j), (i+1, j), (i+1, j +1) and
(i + 2, j + 1) in N = V (G) \S such that L(i, j) = {∗}, L(i + 1, j) =
{b, c}, L(i + 1, j + 1) = {a, b} and L(i + 1, j + 2) = {a}. Without
loss of generality one can assume that i = j = 1.

Lemma 2.3. Let S be a defining set of (2n − 2)-colorings of G =
Kn ×Kn. Let N = V (G) \S. Then N has no path on four vertices
such that its lists of colors are as follows:
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1 2 3
1 a ab
2 bc ?

1 2
1 ?
2 bc ab
3 a

Table B Table A

Proof. Assume that the color of the vertex (2, 1) in the table A is
k. Hence the color k will not exist in the first row and in the second
column. If the color k appears in the first row then from 2n − 1
vertices of the first row and the first column, two vertices have not
been colored and two vertices have color k; i.e. from 2n− 2 colors,
at most 2n−4 colors have been used. Thus there are two choices for
coloring of the (1, 1) vertex, which is a contradiction. If the color
k appears in the second column then from 2n − 1 vertices of the
second row and the second column, three vertices have not been
colored, and two vertices have color k. So at most 2n− 5 colors are
used for coloring 2n− 4 vertices, and hence there are three choices
for coloring of the (2, 2) vertex which is a contradiction. Therefore,
the color k does not exist in the first row and in the second column.
Hence the color k must be assigned to the vertex (1, 2), thus a = k
or b = k which is a contradiction too. Therefore, there is no path
on four vertices in N given by the table A. The argument for the
table B is similar. �

By Corollary 1.7 every defining set of (2n− 2)-vertex coloring of
Kn ×Kn is strong.

If there exists a path on at least three vertices in N = V (G) \ S,
then the internal vertex of the path has a list of at least two colors.
In the following we show that there is no path on five vertices in
N .

lemma 2.4. Let S be a defining set of (2n − 2)-colorings of G =
Kn × Kn and N = V (G) \ S. Then the induced subgraph 〈N〉 has
no path on five vertices as a subgraph.

Proof. Contrarily, assume that 〈N〉 has a path P on five vertices
as follows:
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1 2 3 4
1 ∗ yz
2 bc ab
3 ∗
4

By Corollary 1.7 S is strong. Since the internal vertices of P have
a list of two colors, at least one of the end vertices of this path has
a list of one color. Suppose L(1, 1) = {x}. There are two cases for
the list of L(1, 2).

Case 1.
x 6∈ L(1, 2) = {y, z}. Since P − (1, 1) is M(2), L(3, 3) has only
one element, say L(3, 3) = {a}. But the element a has to lie in
L(2, 3), otherwise the subgraph induced by 〈(1, 2), (2, 2), (2, 3)〉 will
be M(2). Hence L(2, 3) = {a, b}. The subgraph 〈(1, 2), (2, 2)〉 is
M(2). Thus L(2, 2) has to contain b. By (table B) of Lemma 2.3
this case does not arise.

Case 2.
x ∈ L(1, 2) and L(1, 2) = {x, y}.

1 2 3 4
1 ∗ xy
2 bc = zt ab
3 ∗
4

There are two subcases:
(i) y 6∈ L(2, 2) = {z, t}. Since 〈(2, 2), (2, 3), (3, 3)〉 is M(2), it

follows that L(3, 3) has one element as a. Since 〈(2, 2), (2, 3)〉 is
M(2), it is clear that a ∈ L(2, 3) and L(2, 3) = {a, b}. Also 〈(2, 2)〉
is M(2), hence we have b ∈ L(2, 2) and L(2, 2) = {z, t} = {b, c}.
By Lemma 2.3 (table B) this case can not happen either.

(ii) y ∈ L(2, 2).

1 2 3 4
1 x xy
2 yz ?
3 ?
4
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By Lemma 2.3 (table A) this case is also impossible. �

Theorem 2.5. Let S be a defining set to (2n − 2)-colorings of
G = Kn ×Kn and N = V (G) \ S. Then

|N | ≤ b8n
5
c,

and hence

d(G, 2n− 2) ≥ n2 − b8n
5
c.

Proof. The induced subgraph 〈N〉 is a subgraph of a path on
2n − 1 vertices. By Lemma 3, 〈N〉 has no path on five vertices as
a subgraph. Thus for any path on five vertices at least one vertex
does not belong to N . Hence the number of vertices in N is at most
(2n− 1)− b2n−1

5
c, i.e.

|N | ≤ (2n− 1)− b2n− 1

5
c = b8n

5
c.

Therefore,

d(G, 2n− 2) ≥ n2 − b8n
5
c.

�

3. Defining number of Kn ×Kn for some values of n

In this section we show that d(Kn ×Kn, 2n− 2) = n2 − b8n
5
c for

n = 1, 2, 3, 4, 5, 6, 8, 9, 13,14, 15, 18, 23, 28 and for n = 10m, where
m is a positive integer.

Lemma 3.1. Let n be a positive integer such that 8n
5≡ 0, 1, 2. If

d(Kn × Kn, 2n − 2) = n2 − b8n
5
c then d(K2n × K2n, 2(2n) − 2) =

(2n)2 − b8(2n)
5
c.

Proof. Suppose that n is a positive integer such that 8n
5≡ 0. We

consider a 2n× 2n matrix M as
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A B
C A

where A is an n× n matrix corresponding to (2n− 2)-colorings of
Kn×Kn, B is an n×n Latin square with numbers {2n−1, 2n, ..., 3n−
2} and C is an n×n Latin square with numbers {3n−1, 3n, ..., 4n−
2}. It is easy to see that the defining set of A’s, n2 entries of B and
n2 entries of C consist the defining set of K2n ×K2n. Therefore its

defining number is n2−b8n
5
c+n2−b8n

5
c+n2 +n2 = (2n)2−b8(2n)

5
c.

For 8n
5≡ 1, 2 similar proofs work. �

Remark 3.2. In the following arrays the non-indexed labels de-
note the colors of the vertices in the defining set of Kn × Kn and
the indexed labels denote the colors of the vertices that are forced
(uniquely colored) with respect to the indices.

Theorem 3.3. For n = 1, 2, 3, 4, 5, 6, 8, 9, 13, 15, 18, 23, 28,

d(Kn ×Kn, 2n− 2) = n2 − b8n
5
c.

Proof. We introduce the defining set of size n2 − b8n
5
c for

n = 1, 2, 3, 4, 5, 6, 8, 9, 13, 14, 15, 18, 23, 28.

n = 1 11 , n = 2
11 22

2 13
, n = 3

41 22 1
2 3 43

3 1 24

,
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n = 5
81 62 7 1 2
6 74 83 2 1
3 4 5 85 6
5 3 4 66 78

4 5 3 7 87

n = 6
11 24 3 5 4 6
2 73 42 1 6 5
9 10 8 65 3 7
8 9 7 38 107 2
7 8 10 2 56 9
10 3 9 4 1 89

n = 9
161 152 14 4 5 10 11 12 13

15 144 163 5 4 11 12 13 10

1 2 3 165 156 12 13 10 11

2 3 1 15 167 13 10 11 12

3 6 7 8 9 168 14 1 2

7 1 8 9 6 149 1511 2 3

8 9 2 6 7 15 1610 3 1

9 7 6 14 8 4 5 1612 1513

6 8 9 7 14 5 4 15 1614

n = 13
111 92 10 7 8 1 2 3 12 13 14 15 16

9 104 113 8 7 2 3 1 13 14 15 16 12

4 5 6 115 96 3 1 2 14 15 16 12 13

5 6 4 9 10 117 88 7 15 16 12 13 14

6 4 5 10 11 8 710 99 16 12 13 14 15

17 18 19 20 21 22 23 24 1111 9 4 5 6

18 19 20 21 22 23 24 17 912 1014 5 6 4

19 20 21 22 23 24 17 18 10 1113 6 4 5

20 21 22 23 24 17 18 19 8 7 1115 9 10

21 22 23 24 17 18 19 20 7 8 916 10 11

22 23 24 171 18 19 20 21 1 2 3 1117 8

23 24 17 18 19 20 21 22 2 3 1 818 720

24 17 18 19 20 21 22 23 3 1 2 7 919
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n = 14
261 252 24 22 8 9 10 23 11 20 21 5 6 7

25 244 263 5 23 10 11 9 20 21 22 6 7 8

12 13 16 265 25 18 19 4 3 2 1 15 14 17

13 12 15 256 248 19 18 1 4 3 2 16 17 14

14 15 12 24 267 16 13 2 1 4 3 17 18 19

3 4 1 20 21 269 2510 22 2 23 6 7 8 5

4 1 2 21 22 25 2611 3 23 7 20 8 5 6

15 16 17 6 5 13 14 2612 25 8 7 10 19 18

16 17 18 7 6 14 15 2513 2415 5 8 19 10 13

17 18 19 8 7 15 16 24 2614 6 5 14 13 10

18 19 14 9 10 24 17 11 12 2616 2517 13 16 15

19 14 13 10 11 17 24 12 9 25 2618 18 15 16

1 2 3 23 9 11 12 20 21 22 4 2619 2420 25

2 3 4 11 20 12 9 21 22 1 23 24 2522 2621

n = 15
261 272 28 15 16 8 5 6 13 11 12 9 10 14 7

27 284 263 16 15 7 8 5 10 13 11 12 9 6 14

17 18 19 265 27 20 21 22 1 2 23 24 25 3 4

18 19 17 276 288 21 22 20 2 3 24 25 23 4 1

19 17 18 28 267 22 20 21 3 4 25 23 24 1 2

4 1 2 14 9 269 2710 28 15 16 10 11 12 13 3

3 4 1 12 14 27 2812 2611 16 15 9 10 11 2 13

20 21 22 5 6 23 24 25 2613 27 17 18 19 7 8

21 22 20 6 7 24 25 23 2714 2816 18 19 17 8 5

22 20 21 7 8 25 23 24 28 2615 19 17 18 5 6

2 3 4 13 5 6 7 8 14 1 2617 2718 28 15 16

1 2 3 8 13 5 6 7 4 14 17 2820 2619 16 15

23 24 25 9 10 17 18 19 11 12 20 21 22 2621 27

24 25 23 10 11 18 19 17 12 9 21 22 20 2722 2824

25 23 24 11 12 19 17 18 9 10 22 20 21 28 2623
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n = 23
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For n = 4, 8, 18, 28 one can use the Lemma 3.1 and consider the
defining numbers for n = 2, 4, 9, 14. �

For n = 10m, consider a silver matrix of size 2m with entries
X = A2m, A1, A3, ..., A2m−1, A2m+1, ..., A4m−1, where

X =

81 62 7 1 2
6 74 83 2 1
3 4 5 85 6
5 3 4 66 78

4 5 3 7 87

form its main diagonal entries. Now we replace the entry Ai, 1 ≤
i ≤ 2m−1 by the 5×5 Latin square with {5i+4, 5i+5, 5i+6, 5i+
7, 5i+8} and for Ai, 2m+1 ≤ i ≤ 4m−1 by the 5×5 Latin square
with {5i− 1, 5i, 5i + 1, 5i + 2, 5i + 3}. Then the non indexed labels
of the constructed 10m× 10m matrix, illustrate the defining set of
K10m ×K10m.

We note that the proof of the case n = 10m is due to Karola
Meszaros, a Ph.D. student of Roya Beheshti Zavareh at MIT.
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