ON THE DEFINING NUMBER OF $(2 n-2)$-VERTEX COLORINGS OF $K_{n} \times K_{n}$

D. A. MOJDEH*, M. ALISHAHI AND M. MOHAGHEGHI NEJAD

Abstract

In a given graph $G=(V, E)$, a set of vertices S with an assignment of colors to them is said to be a defining set of the vertex coloring of G, if there exists a unique extension of the colors of S to a $c \geq \chi(G)$ coloring of the vertices of G. A defining set with minimum cardinality is called a minimum defining set and its cardinality is the defining number, denoted by $d(G, c)$. In this note we study $d\left(G=K_{n} \times K_{n}, 2 n-2\right)$. We determine an upper bound for $d\left(G=K_{n} \times K_{n}, 2 n-2\right)$ for all n and its exact value for some n.

1. Introduction

A proper c-coloring of a graph G is an assignment of c different colors to the vertices of G such that no two adjacent vertices receive the same color. The (vertex) chromatic number of a graph G is denoted by $\chi(G)$. A graph G with $\chi(G)=k$ is called a k chromatic graph. In a given graph $G=(V, E)$, a set of vertices S with an assignment of colors to them is said to be a defining set of the vertex coloring of G, if there exists a unique extension of the colors of S to a $c \geq \chi(G)$ coloring of the vertices of G. A defining set with minimum

MSC(2000): Primary 05C15; Secondary 05C17
Keywords: Defining set, Coloring, Unique extension
Received: 27 June 2004 , Revised: 08 December 2005
*Corresponding author
(c) 2005 Iranian Mathematical Society.
cardinality is called a minimum defining set and its cardinality is the defining number, denoted by $d(G, c)$. There are some papers on the defining set of graphs, especially $d\left(K_{n} \times K_{n}, \chi=n\right)$ (the critical set of Latin squares of order $n), d\left(G_{k}, \chi=k\right)$ where G_{k} is a k-regular graph. Considerable research work is also carried out on the defining set on block designs. The interested reader may see [1 , $2,3,4,6,7,8,9,10,11,12]$ and their references.

The following material are useful.
Definition 1.1. A graph G with v vertices is called a uniquely 2-list colorable (U2LC) if there exists $S_{1}, S_{2}, \ldots, S_{v}$, a list of colors on its vertices, each of size 2 , such that there is a unique coloring for G from this list of colors (see [6]).

Lemma 1.2. A connected graph is $U 2 L C$ if and only if at least one of its block (a maximal connected subgraph of the graph that has no cut vertex) is not a cycle, a complete graph and a complete bipartite graph (see [6]).

Definition 1.3. A graph G is $M(2)$ if it is not $U 2 L C$.
Definition 1.4. A defining set S with an assignment of colors in a graph G, is called a strong defining set if there exists an ordering $\left\{v_{1}, v_{2}, \ldots, v_{n-s}\right\}$ of the vertices of $G-S$ such that, in the induced list of colors in each of the subgraphs $G-S, G-\left(S \cup\left\{v_{1}\right\}\right), G-$ $\left(S \cup\left\{v_{1}, v_{2}\right\}\right), \ldots, G-\left(S \cup\left\{v_{1}, v_{2}, \ldots, v_{n-s}\right\}\right)$, there exists at least one vertex whose list of colors is of cardinality 1 (see [8]).

Lemma 1.5. Let G be a k-regular k-vertex coloring graph. Then every cycle in G has a vertex in the defining set of G.

Proof. Let C be a cycle in G which has no vertex in a defining set. Thus each vertex of C must be forced (uniquely colored), but only $\mathrm{k}-2$ colors can be excluded by already colored neighbors. By Lemma 1.2 the cycle C is $M(2)$. This implies there are at least two choices that complete the coloring of the cycle.

Corollary 1.6. Let S be a defining set for a k-regular k-vertex coloring graph G, then $G-S$ is a forest.

Corollary 1.7. Every defining set of a k-regular k-vertex coloring graph is strong.

The Corollary 1.7 implies the following result which has been proved in [8].

Theorem 1.8. Every defining set of a k-regular k-chromatic graph is strong (see [8]).

Definition 1.9. An $n \times n$ matrix whose entries come from $S=$ $\{1,2, \ldots, 2 n-1\}$, is called a silver matrix if for each $i=1, \ldots, n$ the union of the $i^{\text {th }}$ row and the $i^{\text {th }}$ column contains all elements of S (see [5]).

If n is an even positive integer then the silver matrix is constructed as follows.

Let $m_{i j}$ be the (i, j) entry of $n \times n$ matrix M. We put
(1) $m_{i j}=i+j(\bmod n-1)$ if $i<j<n$
(2) $m_{i j}=2 i \quad(\bmod n-1)$ if $i<j=n$
(3) $m_{i j}=n \quad$ if $i=j$
(4) $m_{i j}=m_{j i}+n(\bmod n-1)$ if $i>j$.

Definition 1.10. A Latin square of order n is an $n \times n$ array or matrix with entries taken from the set $\{1,2, \ldots, n\}$ with the property that each entry occurs exactly once in each row or column.

2. Lower bound of $d\left(K_{n} \times K_{n}, 2 n-2\right)$

In this section we determine a lower bound for the defining set of $(2 n-2)$-colorings of $K_{n} \times K_{n}$.

Proposition 2.1. $d\left(K_{n} \times K_{n}, 2 n-2\right) \geq(n-1)^{2}$.
Proof. Let $G=K_{n} \times K_{n}$ and let S be its defining set. By Corollary 1.6, $G-S$ has no cycle. Thus in each row and each column of G at
least $n-2$ vertices belong to S. Therefore, $d\left(K_{n} \times K_{n}, 2 n-2\right) \geq$ $n(n-2)$. If $n-2$ elements of each column or each row belong to S, then every vertex v of $G-S$ is a neighbor of a vertex of the same column and a vertex of the same row. Hence the degree of every vertex in S is exactly 2 . Thus $G-S$ is a cycle. Therefore, $d\left(K_{n} \times K_{n}, 2 n-2\right) \geq n(n-2)+1=(n-1)^{2}$.

Remark 2.2. Let S be a defining set of $(2 n-2)$-colorings of $G=K_{n} \times K_{n}$. Let $N=V(G) \backslash S$. Then by Proposition 2.1, N has at most 2 vertices from each given row or column. Therefore, by a permutation of the rows or columns we can assume that N is a subset of the $*$ vertices in the following table:

Let $L(i, j)$ be the list of colors of the vertex (i, j). In the following, it is shown that, there are no four vertices as $(i, j),(i, j+1),(i+$ $1, j+1)$ and $(i+1, j+2)$ in $N=V(G) \backslash S$ such that $L(i, j)=$ $\{a\}, L(i, j+1)=\{a, b\}, L(i+1, j+1)=\{b, c\}$ and $L(i+1, j+2)=$ $\{*\}$, or there are no four vertices as $(i, j),(i+1, j),(i+1, j+1)$ and $(i+2, j+1)$ in $N=V(G) \backslash S$ such that $L(i, j)=\{*\}, L(i+1, j)=$ $\{b, c\}, L(i+1, j+1)=\{a, b\}$ and $L(i+1, j+2)=\{a\}$. Without loss of generality one can assume that $i=j=1$.

Lemma 2.3. Let S be a defining set of $(2 n-2)$-colorings of $G=$ $K_{n} \times K_{n}$. Let $N=V(G) \backslash S$. Then N has no path on four vertices such that its lists of colors are as follows:

	1	2	3
1	a	$a b$	
2		$b c$	\star

Table B

	1	2
1	\star	
2	$b c$	$a b$
3		a

Table A

Proof. Assume that the color of the vertex $(2,1)$ in the table A is k. Hence the color k will not exist in the first row and in the second column. If the color k appears in the first row then from $2 n-1$ vertices of the first row and the first column, two vertices have not been colored and two vertices have color k; i.e. from $2 n-2$ colors, at most $2 n-4$ colors have been used. Thus there are two choices for coloring of the $(1,1)$ vertex, which is a contradiction. If the color k appears in the second column then from $2 n-1$ vertices of the second row and the second column, three vertices have not been colored, and two vertices have color k. So at most $2 n-5$ colors are used for coloring $2 n-4$ vertices, and hence there are three choices for coloring of the $(2,2)$ vertex which is a contradiction. Therefore, the color k does not exist in the first row and in the second column. Hence the color k must be assigned to the vertex (1,2), thus $a=k$ or $b=k$ which is a contradiction too. Therefore, there is no path on four vertices in N given by the table A. The argument for the table B is similar.

By Corollary 1.7 every defining set of $(2 n-2)$-vertex coloring of $K_{n} \times K_{n}$ is strong.

If there exists a path on at least three vertices in $N=V(G) \backslash S$, then the internal vertex of the path has a list of at least two colors. In the following we show that there is no path on five vertices in N.
lemma 2.4. Let S be a defining set of $(2 n-2)$-colorings of $G=$ $K_{n} \times K_{n}$ and $N=V(G) \backslash S$. Then the induced subgraph $\langle N\rangle$ has no path on five vertices as a subgraph.

Proof. Contrarily, assume that $\langle N\rangle$ has a path P on five vertices as follows:

	1	2	3	4
1	$*$	$y z$		
2		$b c$	$a b$	
3			$*$	
4				

By Corollary 1.7 S is strong. Since the internal vertices of P have a list of two colors, at least one of the end vertices of this path has a list of one color. Suppose $L(1,1)=\{x\}$. There are two cases for the list of $L(1,2)$.

Case 1.
$x \notin L(1,2)=\{y, z\}$. Since $P-(1,1)$ is $M(2), L(3,3)$ has only one element, say $L(3,3)=\{a\}$. But the element a has to lie in $L(2,3)$, otherwise the subgraph induced by $\langle(1,2),(2,2),(2,3)\rangle$ will be $M(2)$. Hence $L(2,3)=\{a, b\}$. The subgraph $\langle(1,2),(2,2)\rangle$ is $M(2)$. Thus $L(2,2)$ has to contain b. By (table B) of Lemma 2.3 this case does not arise.

Case 2.
$x \in L(1,2)$ and $L(1,2)=\{x, y\}$.

	1	2	3	4
1	$*$	$x y$		
2		$b c=z t$	$a b$	
3			$*$	
4				

There are two subcases:
(i) $y \notin L(2,2)=\{z, t\}$. Since $\langle(2,2),(2,3),(3,3)\rangle$ is $M(2)$, it follows that $L(3,3)$ has one element as a. Since $\langle(2,2),(2,3)\rangle$ is $M(2)$, it is clear that $a \in L(2,3)$ and $L(2,3)=\{a, b\}$. Also $\langle(2,2)\rangle$ is $M(2)$, hence we have $b \in L(2,2)$ and $L(2,2)=\{z, t\}=\{b, c\}$. By Lemma 2.3 (table B) this case can not happen either.
(ii) $y \in L(2,2)$.

	1	2	3	4
1	x	$x y$		
2		$y z$	\star	
3			\star	
4				

By Lemma 2.3 (table A) this case is also impossible.
Theorem 2.5. Let S be a defining set to ($2 n-2$-colorings of $G=K_{n} \times K_{n}$ and $N=V(G) \backslash S$. Then

$$
|N| \leq\left\lfloor\frac{8 n}{5}\right\rfloor
$$

and hence

$$
d(G, 2 n-2) \geq n^{2}-\left\lfloor\frac{8 n}{5}\right\rfloor
$$

Proof. The induced subgraph $\langle N\rangle$ is a subgraph of a path on $2 n-1$ vertices. By Lemma $3,\langle N\rangle$ has no path on five vertices as a subgraph. Thus for any path on five vertices at least one vertex does not belong to N. Hence the number of vertices in N is at most $(2 n-1)-\left\lfloor\frac{2 n-1}{5}\right\rfloor$, i.e.

$$
|N| \leq(2 n-1)-\left\lfloor\frac{2 n-1}{5}\right\rfloor=\left\lfloor\frac{8 n}{5}\right\rfloor
$$

Therefore,

$$
d(G, 2 n-2) \geq n^{2}-\left\lfloor\frac{8 n}{5}\right\rfloor
$$

3. Defining number of $K_{n} \times K_{n}$ for some values of n

In this section we show that $d\left(K_{n} \times K_{n}, 2 n-2\right)=n^{2}-\left\lfloor\frac{8 n}{5}\right\rfloor$ for $n=1,2,3,4,5,6,8,9,13,14,15,18,23,28$ and for $n=10 m$, where m is a positive integer.

Lemma 3.1. Let n be a positive integer such that $8 n \stackrel{5}{\equiv} 0,1,2$. If $d\left(K_{n} \times K_{n}, 2 n-2\right)=n^{2}-\left\lfloor\frac{8 n}{5}\right\rfloor$ then $d\left(K_{2 n} \times K_{2 n}, 2(2 n)-2\right)=$ $(2 n)^{2}-\left\lfloor\frac{8(2 n)}{5}\right\rfloor$.

Proof. Suppose that n is a positive integer such that $8 n \stackrel{5}{\equiv} 0$. We consider a $2 n \times 2 n$ matrix M as

\mathcal{A}	\mathcal{B}
\mathcal{C}	\mathcal{A}

where \mathcal{A} is an $n \times n$ matrix corresponding to ($2 n-2$)-colorings of $K_{n} \times K_{n}, \mathcal{B}$ is an $n \times n$ Latin square with numbers $\{2 n-1,2 n, \ldots, 3 n-$ $2\}$ and \mathcal{C} is an $n \times n$ Latin square with numbers $\{3 n-1,3 n, \ldots, 4 n-$ $2\}$. It is easy to see that the defining set of \mathcal{A} 's, n^{2} entries of \mathcal{B} and n^{2} entries of \mathcal{C} consist the defining set of $K_{2 n} \times K_{2 n}$. Therefore its defining number is $n^{2}-\left\lfloor\frac{8 n}{5}\right\rfloor+n^{2}-\left\lfloor\frac{8 n}{5}\right\rfloor+n^{2}+n^{2}=(2 n)^{2}-\left\lfloor\frac{8(2 n)}{5}\right\rfloor$.

For $8 n \stackrel{5}{\equiv} 1,2$ similar proofs work.
Remark 3.2. In the following arrays the non-indexed labels denote the colors of the vertices in the defining set of $K_{n} \times K_{n}$ and the indexed labels denote the colors of the vertices that are forced (uniquely colored) with respect to the indices.

Theorem 3.3. For $n=1,2,3,4,5,6,8,9,13,15,18,23,28$,

$$
d\left(K_{n} \times K_{n}, 2 n-2\right)=n^{2}-\left\lfloor\frac{8 n}{5}\right\rfloor .
$$

Proof. We introduce the defining set of size $n^{2}-\left\lfloor\frac{8 n}{5}\right\rfloor$ for $n=1,2,3,4,5,6,8,9,13,14,15,18,23,28$.

$$
n=1 \begin{array}{l|l|l|}
\hline 1 \\
1_{1} \\
\end{array}, \quad n=2 \begin{array}{|c|c|}
\hline 1_{1} & 2_{2} \\
\hline 2 & 1_{3} \\
\hline
\end{array}, \quad n=3 \begin{array}{|c|c|c|}
\hline 4_{1} & 2_{2} & 1 \\
\hline 2 & 3 & 4_{3} \\
\hline 3 & 1 & 2_{4} \\
\hline
\end{array},
$$

26_{1}	25_{2}	24	22	8	9	10	23	11	20	21	5	6	7
25	24_{4}	26_{3}	5	23	10	11	9	20	21	22	6	7	8
12	13	16	26_{5}	25	18	19	4	3	2	1	15	14	17
13	12	15	25_{6}	24_{8}	19	18	1	4	3	2	16	17	14
14	15	12	24	26_{7}	16	13	2	1	4	3	17	18	19
3	4	1	20	21	26_{9}	25_{10}	22	2	23	6	7	8	5
4	1	2	21	22	25	26_{11}	3	23	7	20	8	5	6
15	16	17	6	5	13	14	26_{12}	25	8	7	10	19	18
16	17	18	7	6	14	15	25_{13}	24_{15}	5	8	19	10	13
17	18	19	8	7	15	16	24	26_{14}	6	5	14	13	10
18	19	14	9	10	24	17	11	12	26_{16}	25_{17}	13	16	15
19	14	13	10	11	17	24	12	9	25	26_{18}	18	15	16
1	2	3	23	9	11	12	20	21	22	4	26_{19}	24_{20}	25
2	3	4	11	20	12	9	21	22	1	23	24	25_{22}	26_{21}

26_{1}	27_{2}	28	15	16	8	5	6	13	11	12	9	10	14	7
27	28_{4}	26_{3}	16	15	7	8	5	10	13	11	12	9	6	14
17	18	19	26_{5}	27	20	21	22	1	2	23	24	25	3	4
18	19	17	27_{6}	28_{8}	21	22	20	2	3	24	25	23	4	1
19	17	18	28	26_{7}	22	20	21	3	4	25	23	24	1	2
4	1	2	14	9	26_{9}	27_{10}	28	15	16	10	11	12	13	3
3	4	1	12	14	27	28_{12}	26_{11}	16	15	9	10	11	2	13
20	21	22	5	6	23	24	25	26_{13}	27	17	18	19	7	8
21	22	20	6	7	24	25	23	27_{14}	28_{16}	18	19	17	8	5
22	20	21	7	8	25	23	24	28	26_{15}	19	17	18	5	6
2	3	4	13	5	6	7	8	14	1	26_{17}	27_{18}	28	15	16
1	2	3	8	13	5	6	7	4	14	17	28_{20}	26_{19}	16	15
23	24	25	9	10	17	18	19	11	12	20	21	22	26_{21}	27
24	25	23	10	11	18	19	17	12	9	21	22	20	27_{22}	28_{24}
25	23	24	11	12	19	17	18	9	10	22	20	21	28	26_{23}

$$
n=23
$$

${ }^{98}$ 桠 07	\＆L 7I \％I	$\angle 86$	01 LI 78	¢L $0 ¢ 67$	$87 \angle 797$	¢\％ØE LE	†て ¢Z \＆¢
	¢I \＆I LI	てI 48	6 ¥I 0I	L\＆ 6787	LZ 979\％	Øて 78 モ\＆	¢\＆0¢ \＆
	万L 9I 0I	LI ZI 2	8 \＆\＆¢L	687 LZ	97 9\％〕て	¢ 6867	I\＆ 78 モ¢
91 LZ		01 LI ZI	$\angle 78$ I¢	$0 ¢ 897$	てZ ちて ¢	も¢ 6787	LZ ¢¢ ¢
Ľ \％\％		60 L LI	ZI L\＆0¢	67 91	¢\％¢\％モ¢	\＆¢ 8727	97 Øて $て 8$
\％7 91		860 T	LI 0\＆ 67	87 LZ LZ	ZL $\ddagger ¢ 8 ¢$	て¢ ๖て ¢	¢ 97 L8
LZ 02	LI 8I ${ }^{86}$ LZ	9L 9I \＆I	牫 6788	LZ 979	もて切 ても	L¢ ¢\％\＆¢	乙¢ も¢ 0¢
07 61	8L LI ${ }^{2 z}$ 任	9L 9L mi	\＆1 87 27	97 9Z †て	\＆\％7\％LZ	0¢ ¢\＆$¢ ¢$	モ\＆L\＆ 67
ஏ \＆	乙［ 9		07 LZ 97	¢Z も ¢ ¢	も¢ ¢¢ $\mathrm{Z¢}$	9 IE 7%	086787
91	\＆ 7 I		LZ 9\％¢	ちて ¢て も¢	¢\＆ $7 ¢$ L¢	07908	6787 LZ
9 ¢		8てもも 0才 0て	ても ¢ も \downarrow		て¢ I\＆0¢	67 LZ I	87 LZ 97
I 9	$g \dagger$ ¢	LI 8I ${ }^{17}$ 研	Lも $\ddagger \mathrm{¢}$ ¢	Ø¢ ¢\＆ 78	L\＆ $0 ¢ 67$	$87 \angle 797$	\％¢ 61
Z I	991	6I LI ${ }^{\text {zz }}$ It	${ }^{07} 0 \pm$ ¢ ${ }^{\text {¢ }}$ †¢	¢¢ 7¢ LE	0\＆67 87	LZ 97 9\％	81 \＆も
\＆ 7	万99	81 6I 0才		7¢ L¢ 08	6787 LZ	$97 \mathrm{¢Z}$ ๖て	\＆ 21 ¢
LI 8I	9868 ¢ ¢	L才 0才 LE		0才 72 91	LZ 6I 0を	9 ¢ $\%$	\＆¢ G
8I LI	0才 Lt 98	6888 ¢ ¢	LE Lt ${ }^{91} 0 才$		9L 0Z 6I	L 7 \＆	¢ 99
¢¢ 98	6I 07 LE	07 LT 88	68 \＆L ¢L		07 LI 8L	て¢ 1	c 9 I
9¢ 98	07 61 88	L\＆68［7	0¢ ¢I tI		${ }^{\text {IITも 8I }}$ LI	\＆\dagger	9 I 7
¢も 77	LT 0才 68	8\＆L\＆98	ge 7L IL	01 68	L^{6} LZ ${ }^{0}{ }^{0}$ 汇	¢99	I 7 \＆
L\＆ 88	¢E 980才	もI \＆I 68	It 27 I	LI 0I 6	8 9I 9I	${ }^{\text {LIT }}{ }^{8}$ It 0才	LI 6I 8I
88.8	68 C8 LT	\＆L ¢I 0ヵ	988 L	ZI LI I	69 CL	LT ${ }^{9} 0 \pm{ }^{9}$ 䎟	6I 8I LI
68 \＆	L\＆ 8877	¢\＆98 ¢	91 68	L ZI II	0L ¢İI		${ }^{\text {E ¢ }}{ }^{\text {¢ }}$ LD 07
$7 \dagger 68$	8\＆L\＆\＆	9\＆¢ ¢ 9	9I 01 6	8 L ZI	LI もI \＆L	\％\％0\％LZ	

For $n=4,8,18,28$ one can use the Lemma 3.1 and consider the defining numbers for $n=2,4,9,14$.
For $n=10 m$, consider a silver matrix of size $2 m$ with entries $X=A_{2 m}, A_{1}, A_{3}, \ldots, A_{2 m-1}, A_{2 m+1}, \ldots, A_{4 m-1}$, where

$X=$| 8_{1} | 6_{2} | 7 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: |
| 6 | 7_{4} | 8_{3} | 2 | 1 |
| 3 | 4 | 5 | 8_{5} | 6 |
| 5 | 3 | 4 | 6_{6} | 7_{8} |
| 4 | 5 | 3 | 7 | 8_{7} |

form its main diagonal entries. Now we replace the entry $A_{i}, 1 \leq$ $i \leq 2 m-1$ by the 5×5 Latin square with $\{5 i+4,5 i+5,5 i+6,5 i+$ $7,5 i+8\}$ and for $A_{i}, 2 m+1 \leq i \leq 4 m-1$ by the 5×5 Latin square with $\{5 i-1,5 i, 5 i+1,5 i+2,5 i+3\}$. Then the non indexed labels of the constructed $10 \mathrm{~m} \times 10 \mathrm{~m}$ matrix, illustrate the defining set of $K_{10 m} \times K_{10 m}$.
We note that the proof of the case $n=10 \mathrm{~m}$ is due to Karola Meszaros, a Ph.D. student of Roya Beheshti Zavareh at MIT.

Acknowledgment

The authors would like to thank Prof. E. S. Mahmoodian and Prof. Rahim Zaare Nahandi for their valuable suggestions and comments.

References

[1] J. Cooper, D. Donovan and J. Seberry, Latin squares and critical sets of minimal size, Austral. J. Combin. 4 (1991), 113-120.
[2] M. Ghebleh, E. S. Mahmoodian, On uniquely list colorable graphs, Ars Combin. 59 (2001), 307-318.
[3] R. A. H. Gower, Minimal defining sets in a family of Steiner triple systems, Austral. J. Combin. 8 (1993), 55-73.
[4] A. Howse, Minimal critical sets for some small Latin squares, Austral. J. Combin. 17 (1998), 275-288.
[5] N. L. Katz, For math Olympians, numbers are gold, Special to the Washington Post, Wednesday, July 30, 1997; Page A01.
[6] M. Mahdian, E. S. Mahmoodian, A characterization of uniquely 2-list colorable graphs, Ars Combin. 51 (1999), 295-305.
[7] E. S. Mahmoodian, Defining sets and uniqueness in graph colorings: a survey. R. C. Bose Memorial Conference (Fort Collins, CO, 1995) J. Statist. Plann. Inference 73 no. 1-2 (1998), 85-89.
[8] E. S. Mahmoodian, E. Mendelsohn, On defining numbers of vertex coloring of regular graphs, 16th British Combinatorial Conference (London, 1997).Discrete Math. 197/198 (1999), 543-554.
[9] E. S. Mahmoodian, R. Naserasr, M. Zaker, Defining sets in vertex colorings of graphs and Latin rectangles. 15th British Combinatorial Conference (Stirling, 1995). Discrete Math. 167/168 (1997), 451-460.
[10] E. S. Mahmoodian, G. H. J. van Rees, Critical sets in back circulant Latin rectangles, Austral. J. Combin. 16 (1997), 45-50.
[11] A. P. Street, Defining sets for block designs; an update, in: C. J. Colbourn, E. S. Mahmoodian (Eds), Combinatorics Advances, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, (1995), 307-320.
[12] M. Zaker, Greedy defining sets of graphs, Austral. J. Combin. 23 (2001), 231-235.
D. A. Mojdeh
M. Alishahi
M. Mohagheghi Nejad

Department of Mathematics
University of Mazandaran
Babolsar, IRAN
e-mail:dmojdeh@umz.ac.ir
e-mail:alishahi@yahoo.com
e-mail:mohagheghi@yahoo.com

