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Abstract. Let A be a complex n × n matrix and assume that the nu-
merical range of A lies in the set of a sector of half angle α denoted by
Sα. We prove the numerical ranges of the conjugate, inverse and Schur

complement of any order of A are in the same Sα. The eigenvalues of
some kinds of matrix product and numerical ranges of hadmard product,
star-congruent matrix and unitary matrix of polar decompostion are also
included in the same sector. Furthermore, we extend some inequalities

about eigenvalues and singular values and the linear fractional maps to
this class of matrices.
Keywords: Numerical ranges, sector, positive definite, Toeplitz decom-
position.
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1. Introduction

Let Mn be the set of n × n complex matrices. In the present analysis, we
use the Toeplitz (sometimes also called the Hermitian) decomposition of A:

(1.1) A = B + iC,

where

B =
1

2
(A+A∗), C =

1

2i
(A−A∗).

If B > 0 and C > 0, then A is said to be accretive-dissipative. And this kind
of matrices of order n will be denoted by M++

n .
Recall that the numerical range of A ∈ Mn is defined by

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1}.
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Also, we define a sector on the complex plane

(1.2) Sα = {z ∈ C : Rz > 0, | Iz |≤ Rz tan(α)}, α ∈ [0,
π

2
).

Besides, Pn denotes the set of positive semidefinite n× n matrices.
A comprehensive survey on the properties of M++

n can be found in [7].
Meanwhile, according to [7], we know that accretive-dissipative matrices first
appeared in [9] for the special case in which both B and C in (1.1) are real sym-
metric matrices, which results in a complex symmetric A. It turned out that
these matrices possess remarkable properties with respect to Gaussian elim-
ination, very similar to those of ordinary positive-definite matrices [9] (also,
see [8, 14]). Determinantal inequalities of Fisher type for accretive-dissipative
matrices were proved and improved in [5, 12, 13, 16, 17]. Moreover, sectorial
matrices were examined in [1] which focused on discussing the criteria for a
matrix to be sectorial.

Later, many interesting inequalities and properties for matrices with nu-
merical ranges in a sector are investigated by several authors. For example,
in [4, 15] the authors discussed the determinant, eigenvalue and singular value
inequalities. In [18], Lin extended the result of Haynsworth and Hartfiel and
Zhang also made an extension of Matic’s results to a sector in [22]. Rotfel’d
inequality for partitioned matrices was as well discussed in such condition in [6].

In [7] some remarkable characteristics are proved, and we see that many
properties of matrices M++

n are natural extension of the corresponding proper-
ties of positive-definite matrices. In this article, we will extend the properties
to matrices with numerical ranges in a sector.

2. Main results

In this section, we prove various aspects of properties of matrices with nu-
merical ranges in a sector.

Here we assume that A has the form in (1.1) and a subset of C as a sector
of half angle α if it is of the form {eiφz : z ∈ Sα} for some φ ∈ [0, 2π) and Sα

defined in (1.2).
We begin with several lemmas.

Lemma 2.1 ([3, Corollary 2.4]). Let 0 ≤ α < π
2 , 0 < γ < 1 and T be a complex

square matrix with W (T ) ⊆ Sα. Then W (T γ) ⊆ Sαγ .

Lemma 2.2 ( [20, Lemma 2.1]). Let A has positive definite Hermitian part
and Let H = H(A) and S = S(A). Then A is invertible and A−1 has positive
definite Hermitian part given by

H(A−1) =
A−1 +A−∗

2
= (H + S∗H−1S)−1
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Lemma 2.3 ([10, p. 10]). Spectral containment: for all A ∈ Mn,

σ(A) ⊂ W (A),

where σ(A) denotes the spectrum of A.

2.1. The set Sα.

Property 2.4. If W (A) ⊆ Sα, A ∈ Mn, then:
(a) W (AT ) ⊆ Sα;
(b) W (A) ⊆ Sα;
(c) W (A−1) ⊆ Sα.

Property 2.5. Let W (A) ⊆ Sα, A ∈ Mn. Then there exists a square root R of
A, i.e., R2 = A, such that W (R) ⊆ Sα

2
.

If

R = S + iT

is the Toeplitz decomposition of R, then

0 ≤ T ≤ S tan
α

2
.

Especially, let 0 < γ < 1, then W (Aγ) ⊆ Sγα.

Property 2.6. Let W (A) ⊆ Sα, A ∈ Mn and Q be an arbitrary nonsingular
matrix in Mn. Then W (Q∗AQ) ⊆ Sα. In particular, the numerical range of

any matrix Â, obtained by symmetric reordering of rows and columns in A,
would be included in Sα.

Property 2.7. If W (A1),W (A2) ⊆ Sα, A1, A2 ∈ Mn and λ1, λ2 are any positive
number, then W (λ1A1 + λ2A2) ⊆ Sα. In other words, Sα is a convex cone.

2.2. Entries, submatrices, numerical range, eigenvalues, and singular
values.

Property 2.8. The diagonal entries of a matrix A ∈ Mn, W (A) ⊆ Sα, are
complex numbers of the form β + iγ and | γ |≤ β tanα, where β > 0 and
γ ∈ R. More generally, the numerical range of a principal submatrix of A of
any order k, 1 ≤ k ≤ n, would be included in Sα.

Property 2.9. Let W (A) ⊆ Sα, A ∈ Mn, and let Ak be the order k leading
principal submatrix of A. Then the numerical range of Schur complement A/Ak

is contained in Sα.

Property 2.10. Let 0 < α < π
2 and let W (A) ⊆ Sα, A ∈ Mn. Then we have

max
l,k

|alk| ≤ secαmax
j

|ajj |,

|a(k)jj | ≤ sec2 αmax
j

|ajj |, 1 ≤ k ≤ n− 1.
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Property 2.11. For any matrix A ∈ Mn, W (A) ⊆ Sα, its eigenvalues are
complex numbers of the form β + iγ and |γ| ≤ β tanα, where β > 0 and
γ ∈ R.

Especially, from (1.1), we get

|λ(B−1C)| ≤ tanα.

Property 2.12. (Sectoral decomposition) If A ∈ Mn, W (A) ⊆ Sα, then
there exits an invertible matrix X and a unitary diagonal matrix Z =
diag(eiθ1 , . . . , eiθn) with all |θj | ≤ α such that A = XZX∗. Moreover, such a
matrix Z is unique up to permutation.

Property 2.13. Let A ∈ Mn, W (A) ⊆ Sα and A =

(
A11 A12

A21 A22

)
, where A22

is q × q, q ≤ [n/2]. Then

σj(A/A11) ≤ sec2(α)σj(A22), j = 1, . . . , q,

σj(A) ≤ sec2(α)λj(ℜA), j = 1, . . . , n,

ℜ(A/A11) ≤ sec2(α)ℜA22,

where A/A11 := A22 −A21A
−1
11 A12, σj(·) means the j-th largest singular value

and λj(·) denotes the j-th largest eigenvalue.

Property 2.14. Let A ∈ Mn, W (A) ⊆ Sα. s1 ≥ s2 ≥ · · · ≥ sn are the singular
values of A, α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn are the eigenvalues of
B and C in (1.1).

Then the n-tuple {s21, s22, . . . , s2n} is majorized by the n-tuple {α2
1+β2

1 , α
2
2+

β2
2 , . . . , α

2
n + β2

n}, i.e.,

(2.1) {s2j} ≺ {α2
j + β2

j },

(2.2) {s2j} ≺w {α2
j sec

2 α}.

Equality (2.1) can also be rewritten as

(2.3) ∥A∥2F = ∥B∥2F + ∥C∥2F .

Note: There will be a conjecture, whether {β2
j csc

2 α} ≺w {s2j} is true. The
answer is no. We give a counter-example:

A = B + iC =

(
1 + 1.6294i 1 + 1.0328i
1 + 1.0328i 2 + 1.8268i

)
,

B =

(
1 1
1 2

)
, C =

(
1.6294 1.0328
1.0328 1.8268

)
,

then tanα = 2.1184 determined by [1, Lemma 2], s21(A) = 14.4364 and
csc2(α)β2

1 = 9.3529 ⇒ csc2(α)β2
1 − s21(A) = −5.0835.
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2.3. Operations on matrices with numerical ranges contained in Sα.

Property 2.15. Let W (A) ⊆ Sα, A ∈ Mn and S ∈ Pn. Then the eigenvalues of
both AS and SA are complex numbers of the form β+ iγ, |γ| ≤ β tanα, where
β > 0 and γ ∈ R.

Property 2.16. Let W (A) ⊆ Sα, A ∈ Mn and S ∈ Pn. Then the numerical
range of Hadmard product A ◦ S still belongs to Sα.

2.4. Miscellaneous.

Property 2.17. Let W (A) ⊆ Sα, A ∈ Mn and

A = HU

be the polar decomposition of A, where U is the unitary factor. Then W (U) ⊆
Sα

The linear fractional function

v =
z − 1

z + 1

maps the right half complex plane x > 0, y ∈ R onto the unit disc.
When x ≥ 1

(2.4) |v| < 1, 1 > u = R(v) ≥ 0.

The corresponding property of matrices with numerical ranges contained in Sα

is as follows.

Property 2.18. Let W (A) ⊆ Sα, A ∈ Mn, having the decomposition form (1.1)
and let

V = (A− I)(A+ I)−1.

When B ≥ I, then the field of values W (V ) belongs to half disc (2.4).

Remark 2.19. Let W (A1), W (A2) ⊆ Sα, A1, A2 ∈ Mn, A1 = B1 + iC1 and
A2 = B2 + iC2. If

B2 ≥ B1 and C2 ≥ C1,

then either

(2.5) |detA2| ≥ | detA1|
or

(2.6) | detA1| ≥ | detA2|,
is possible.

We give two examples:
a) When A is accretive-dissipative, (2.5) is apparent.
b) We assume

A1 =

(
1 0
0 1

)
+ i

(
−3 0
0 −4

)
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A2 =

(
1 0
0 1

)
+ i

(
1 0
0 2

)
.

| detA1| = 13.0384 > | detA2| = 3.1623, which testifies (2.6);
Especially, we let

A1 =

(
1 0
0 1

)
+ i

(
−1− ϵ 0

0 −2− ϵ

)
,

and could find an appropriate ϵ, which makes the numerical ranges of A1 and
A2 in the same Sα.

3. Proofs and comments

1. Clearly,

(3.1) x∗ATx = [x∗ATx]T = xTAx = y∗Ay,

where y = x.

(3.2) x∗Ax = xTAx = z∗Az,

where z = x.
So, from (3.1), (3.2), we get (a),(b) of Property 2.4.
And we could conclude W (A∗) ⊆ Sα. Also, for any nonsingular X ∈ Mn,

W (A) = W (XAX∗). Therefore, W (A−1) = W (AA−1A∗) = W (A∗) ⊆ Sα.
2. From Lemma 2.1, we can see that, W (R) ⊆ Sα

2
, so

0 ≤ T ≤ S tan
α

2
.

And when 0 < γ < 1, the conclusion W (Aγ) ⊆ Sγα is trivial.
3. For

x∗Q∗AQx = y∗Ay ⊆ W (A),

where x ∈ Cn, x∗Q∗Qx = 1, y = Qx. Property 2.6 is obvious.
4. Following (1.1), A1 = B1 + iC1, A2 = B2 + iC2,

(3.3)
| x∗C1x |
x∗B1x

≤ tanα,
| x∗C2x |
x∗B2x

≤ tanα,

so we get

(3.4)
| λ1x

∗C1x | + | λ2x
∗C2x |

λ1x∗B1x+ λ2x∗B2x
≤ tanα,

where λ1 > 0, λ2 > 0, x∗x = 1, x ∈ Cn. Obviously, W (λ1A1 + λ2A2) ⊆ Sα.
5. Since B = [bij ] > 0, C is Hermitian in (1.1), we have bii > 0, cii ∈ R.

Now, we take x = ei ∈ Cn, the ith element is 1, others are 0.

x∗Ax = bii + icii ⊆ Sα,

so Property 2.8 is apparent.
6. Thanks to (A/Ak)

−1
= A−1[k+1, k+2, . . . , n], Property 2.9 follows from

Property 2.4.
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7. Property 2.10 has already been proved in [5, Proposition 3.1, 3.2].
8. According to spectral containment in Lemma 2.3, namely,

δ(A) ⊆ W (A),

Property 2.11 is clear.
From (1.1) and Property 2.6, we know

B− 1
2AB− 1

2 = I + iB− 1
2CB− 1

2 .

Then

|λ(B−1C)| ≤ tanα.

9. Property 2.12 has already been proved in [21, Theorem 2.1]. And in
Property 2.13, the first two inequalities are proved in [4, Theorem 1.1, 3.1] and
the third inequality is proved in [19, Theorem 2]

10. A similar result is proved in the recent paper [2] for (2.1). Equality (2.3)
is valid for an arbitrary matrix A ∈ Mn, which easily follows from the relations

A∗A = B2 + C2 + i(BC − CB).

For (2.2),

±C ≤ B tanα ⇒ |βj | ≤ αj tanα,

then
k∑

j=1

α2
j + β2

j ≤
k∑

j=1

α2
j + α2

j tan
2 α =

k∑
j=1

α2
j sec

2 α,

so
k∑

j=1

s2j ≤
k∑

j=1

α2
j sec

2 α, k = 1, · · · · · · , n.

11. Turning to Property 2.15, we first note that matrices AS and SA always
have the same eigenvalues and assume that S is positive definite. Denoted by
Z the (unique) positive-definite square root of S. Then AS is similar to the
matrix:

Z(AS)Z−1 = ZAZ = ZBZ + iZCZ,

whose numerical range obviously belongs to Sα. Now, the required assertion
follows from Property 2.11. The case for singular S follows from a continuity
argument.

12. We know that

x∗(A ◦ S)x = tr((diagx)A(diag(x))ST ) = tr(K
1
2 (diagx)A(diag(x))K

1
2 ),

where K = ST , x ∈ Cn, x∗x = 1.
From Property 2.6, 2.7, (3.3) and (3.4), Property 2.16 is apparent.
There is also a second proof:
Since W (A) ⊆ Sα, A ∈ Mn and S ∈ Pn, so

C ≤ B tanα.
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Then

C ◦ S ≤ B ◦ S tanα.

13. To prove Property 2.17, we note that all eigenvalues of the matrix

U = H−1A

belong to W (A) (see Property 2.15). Since the field of values of a unitary (in
fact, even a normal) matrix is the convex hull of its eigenvalues (see equation
(3.3), (3.4)), we conclude that W (U) ⊆ Sα.

14. Turning to Property 2.18, we can easily verify the relation

(A− I)∗(A− I)− (A+ I)∗(A+ I) = −4B.

This relation combined with the fact that the matrix on the right-hand side is
negative-definite implies that

∥ (A− I)y ∥≤∥ (A+ I)y ∥
for any vectors y, so ∥ V ∥2≤ 1.

Thus, W (V ) is a subset of the unit disc. Now, observe that

V = (A− I)(A+ I)−1 = I − 2(A+ I)−1,

(A+ I)−1 = (B + I + iC)−1.

By Lemma 2.2, the Hermitian part of (A+I)−1, H = [B+I+C(B+I)−1C]−1.
And the Hermitian part of V ,

H(V ) = I − 2[B + I + C(B + I)−1C]−1.

So, when we assume B > I, I > H(V ) ≥ 0 is sharp, then the field of values
W (V ) belongs to half disc (2.4).
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