**ISSN: 1017-060X (Print)** 



ISSN: 1735-8515 (Online)

## **Bulletin of the**

# Iranian Mathematical Society

Vol. 43 (2017), No. 5, pp. 1531-1542

Title:

 $\operatorname{NSE}$  characterization of some linear groups

Author(s):

N. Ahanjideh, L. Mousavi and B. Taeri

Published by the Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 43 (2017), No. 5, pp. 1531–1542 Online ISSN: 1735-8515

### NSE CHARACTERIZATION OF SOME LINEAR GROUPS

N. AHANJIDEH, L. MOUSAVI AND B. TAERI\*

(Communicated by Cheryl E. Praeger)

ABSTRACT. For a finite group G, let  $nse(G) = \{m_k \mid k \in \pi_e(G)\}$ , where  $m_k$  is the number of elements of order k in G and  $\pi_e(G)$  is the set of element orders of G. In this paper, we prove that  $G \cong L_m(2)$  if and only if  $p \mid |G|$  and  $nse(G) = nse(L_m(2))$ , where  $m \in \{n, n+1\}$  and  $2^n - 1 = p$  is a prime number.

**Keywords:** Set of the numbers of elements of the same order, prime graph, Mersenne number.

MSC(2010): Primary: 20D06; Secondary: 20D15.

#### 1. Introduction

For a finite group G and a positive integer t, let  $M_t(G)$  be the set of all elements of G satisfying the equation  $x^t = 1$ , that is  $M_t(G) = \{g \in G \mid g^t = 1\}$ . The groups  $G_1$  and  $G_2$  are called of the same order type if and only if  $|M_t(G_1)| = |M_t(G_2)|, t = 1, 2, \ldots$  In 1987, J.G. Thompson posed a question as follows:

**Thompson's Problem.** Suppose that  $G_1$  and  $G_2$  are of the same order type. If  $G_1$  is solvable, is it true that  $G_2$  is necessarily solvable?

For a natural number n, let  $\pi(n)$  be the set of prime divisors of n. We denote by  $\pi(G)$  the set of prime divisors of |G| and by  $\pi_e(G)$  the set of element orders of G. Let  $\operatorname{nse}(G) = \{m_k \mid k \in \pi_e(G)\}$ , where  $m_k$  is the number of elements of order k in G. It is well known that if  $G_1$  and  $G_2$  are of the same order type, then  $|G_1| = |G_2|$  and  $\operatorname{nse}(G_1) = \operatorname{nse}(G_2)$ . So it is natural to investigate Thompson's problem by |G| and  $\operatorname{nse}(G)$ . The following example, due to Thompson, shows that there are finite groups which are not characterizable by  $\operatorname{nse}(G)$  and |G|. For the groups  $G_1 = (C_2 \times C_2 \times C_2 \times C_2) \rtimes A_7$  and  $G_2 = L_3(4) \rtimes C_2$  (which are maximal subgroups of the Mathieu group of degree 23), we have  $\operatorname{nse}(G_1) =$  $\operatorname{nse}(G_2)$  and  $|G_1| = |G_2|$  but  $G_1 \ncong G_2$ .

C2017 Iranian Mathematical Society

Article electronically published on 31 October, 2017. Received: 24 April 2016, Accepted: 9 October 2016.

<sup>\*</sup>Corresponding author.

<sup>1531</sup> 

The influence of nse(G) on the structure of finite groups was studied by some authors (see [9,10,15]). We say that the group G is characterizable by nse in the class  $\mathfrak{A}$  of groups, if every group  $H \in \mathfrak{A}$  with nse(G) = nse(H) is isomorphic to G. Recently, Shao and Jiang [14] showed that the group  $L_2(p)$ , where p is prime, is characterizable by nse in the class of finite groups whom orders are divisible by p. They also showed [13] that the group  $L_2(2^a)$ , where either  $2^a - 1$  or  $2^a + 1$  is a prime, is characterizable by its order and nse in the class of finite groups. Aslo in [1] and [2], the characterization of some alternating groups, projective Symplectic groups and projective special orthogonal groups have been studied. It is known that  $L_3(2) \cong L_2(7)$  and  $L_4(2) \cong A_8$  (see [4]). Authors in [9,10] showed that  $L_2(7)$  and  $A_8$  are characterizable by nse. In this paper, we focus on the group  $L_m(2)$ , where  $2^n - 1 = p \ge 31$  is a prime number and  $m \in \{n, n + 1\}$ . In fact, we are going to prove the following theorem:

**Theorem 1.1** (Main Theorem). Let G be a finite group,  $2^n - 1 = p \ge 31$  be a prime number and  $m \in \{n, n+1\}$ . Then  $G \cong L_m(2)$  if and only if  $p \mid |G|$  and  $\operatorname{nse}(G) = \operatorname{nse}(L_m(2))$ .

To prove this theorem, we use the classification of finite simple groups with disconnected prime graph. The prime graph GK(G) of G is the graph with the vertex set  $\pi(G)$ , where two distinct primes r and s are joined by an edge if G contains an element of order rs. Let t(G) denote the number of connected components of G and let  $\pi_1(G), \pi_2(G), \ldots, \pi_{t(G)}(G)$  be the sets of vertices of the connected components of GK(G). We will use the notation  $\pi_i$  instead of  $\pi_i(G)$ , when it causes no ambiguity. If  $2 \in \pi(G)$ , then we always assume that  $2 \in \pi_1(G)$ . Also, |G| can be expressed as a product of  $OC_1, OC_2, \cdots, OC_{t(G)}$ , where  $OC_i$  is a positive integer with  $\pi(OC_i) = \pi_i$ . The  $OC_i$ 's are called the order components of G. In particular, an odd number  $OC_i$  is called an odd order component of G. The sets of order components of finite simple groups with disconnected prime graph can be obtained using [11] and [17]. For a natural number n and a prime number a, we use  $|n|_a = a^e$ , when  $a^e ||n$ , i.e.,  $a^e | n$  but  $a^{e+1} \nmid n$ . All further unexplained notations are standard and can be found in [4], for instance.

#### 2. Preliminaries

In this section, we present some useful lemmas which will be used in the proof of the main theorem.

**Lemma 2.1** ([6]). Let G be a finite group and let t be a positive integer dividing |G|. If  $M_t(G) = \{g \in G \mid g^t = 1\}$ , then  $t \mid |M_t(G)|$ .

**Lemma 2.2** ([3]). Let G be a Frobenius group of even order with kernel K and complement H. Then t(G) = 2, the prime graph components of G are  $\pi(H)$  and  $\pi(K)$ , and the following assertions hold:

- (1) K is nilpotent;
- (2)  $|K| \equiv 1 \pmod{|H|}$ .

The group G is named a 2-Frobenius group, when there exists a normal series  $1 \leq H \leq K \leq G$  such that K and G/H are Frobenius groups with kernels H and K/H, respectively.

**Lemma 2.3** ([17, Theorem 2]). Let G be a 2-Frobenius group of even order, which has a normal series  $1 \leq H \leq K \leq G$  such that K and G/H are Frobenius groups with kernels H and K/H, respectively. Then

- (i) t(G) = 2 and,  $\pi_1 = \pi(H) \cup \pi(G/K)$  and  $\pi_2 = \pi(K/H)$ .
- (ii) G/K and K/H are cyclic, (|G/K|, |K/H|) = 1 and |G/K| divides |Aut(K/H)|.
- (iii) H is a nilpotent group and G is a solvable group.

**Lemma 2.4** ([17]). Let G be a finite group with  $t(G) \ge 2$ . Then one of the following statements holds:

- (i) G is a Frobenius or 2-Frobenius group;
- (ii) G has a normal series  $1 \leq H \leq K \leq G$  such that H and G/K are  $\pi_1$ groups and K/H is a non abelian simple group, H is a nilpotent group and  $|G/H| \mid |\operatorname{Aut}(K/H)|$ . Moreover, any odd order component of G is also an odd order component of K/H.

For a natural number k and a prime p, if  $p^m || k$ , then we say that  $p^m$  is a p-part of k and denote it by  $k_p$ . The following result of Zsigmondy is used to prove the main theorem.

**Lemma 2.5** ([18, Zsigmondy's Theorem]). Let n and a be integers greater than 1. Then there exists a prime divisor p of  $a^n - 1$  such that p does not divide  $a^i - 1$  for all  $i, 1 \le i \le n - 1$ , except in the following cases:

- (i) n = 2 and  $a = 2^k 1$ , where  $k \ge 2$ .
- (ii) n = 6 and a = 2.

The prime p in Lemma 2.5 is called a Zsigmondy prime of  $a^n - 1$ .

**Lemma 2.6** ([5]). Let p and q be prime and m, n > 1.

- (i) With the exceptions of the relations (239)<sup>2</sup> 2(13)<sup>4</sup> = 1 and (3)<sup>5</sup> 2(11)<sup>2</sup> = 1 every solution of the equation p<sup>m</sup> 2q<sup>n</sup> = 1 has exponents m = n = 2.
- (ii) The only solution of the equation  $p^m q^n = 1$  is  $3^2 2^3 = 1$ .

Remark 2.7. Let H be a finite group. Clearly, for  $n \in \pi_e(H)$ ,  $m_n = k\phi(n)$ , where k is the number of cyclic subgroups of order n in H and  $\phi(n)$  the Euler totient function of n. By Lemma 2.1 and the discussion above we have:

(2.1) 
$$\begin{cases} \phi(n) \mid m_n \\ n \mid \Sigma_{d|n} m_d. \end{cases}$$

If n > 2, then  $\phi(n)$  is even and hence,  $m_n$  is even. If  $2 \in \pi(H)$ , then (2.1) shows that  $2 \mid 1 + m_2$  and hence,  $m_2$  is odd. This implies that  $a \in nse(H)$  is odd if and only if  $2 \in \pi(H)$  and  $m_2(H) = a$ .

#### 3. Main results

Suppose that  $cl_G(x)$  denotes the conjugacy class in G containing x. Throughout this section, let  $n \ge 5$ ,  $2^n - 1 = p$  be a prime,  $m \in \{n, n + 1\}$ , G a finite group such that  $p \mid |G|$  and  $\operatorname{nse}(G) = \operatorname{nse}(L_m(2))$ .

**Lemma 3.1.** For every  $1 \neq x \in L_m(2)$ , either  $p \mid |cl_{L_m(2)}(x)|$  or x has order  $p \text{ and } |cl_{L_m(2)}(x)| = \frac{|L_m(2)|}{p}.$ 

*Proof.* Let  $p \nmid |cl_{L_m(2)}(x)|$ . Then [8] implies that there exists a divisor r of n such that  $|cl_{L_m(2)}(x)| = \frac{|L_m(2)|}{|L_{n/r}(2^r)|}$  and  $r \neq 1$ . Since  $2^n - 1$  is prime, n is prime and hence, r = n. This forces  $|cl_{L_m(2)}(x)| = \frac{|L_m(2)|}{p}$ . Thus  $|C_{L_m(2)}(x)| = p$  and hence, x has order p, as claimed.  $\square$ 

Let  $r \in \pi(G)$ . We denote by  $S_r(G)$ ,  $Syl_r(G)$  and  $n_r(G)$ , a Sylow r-subgroup of G, the set of Sylow r-subgroups of G and  $|Syl_r(G)|$ , respectively. The following lemma is well-known and it can for example be extracted from [7]:

Lemma 3.2.  $n_p(L_m(2)) = \frac{|L_m(2)|}{np}$ .

**Corollary 3.3.** For  $u \in \pi_e(L_m(2))$ , either  $p \mid m_u(L_m(2))$  or u = p and  $m_p(L_m(2)) = \frac{(p-1)|L_m(2)|}{np}.$ 

*Proof.* Since  $|S_p(L_m(2))| = p$ , we deduce that  $S_p(L_m(2))$  is cyclic. Thus it is obvious that  $m_p(L_m(2)) = \phi(p) \cdot n_p(L_m(2))$  and Lemma 3.2 shows that  $m_p(L_m(2)) = \frac{(p-1)|L_m(2)|}{np}.$ On the other hand,  $m_u(L_m(2)) = \sum_{\text{for some } y \in L_m(2) \text{ with } O(y) = u |cl_{L_m(2)}(y)|,$ 

so Lemma 3.1 completes the proof.

**Corollary 3.4.** For every  $u \in \pi_e(G)$ ,  $p \nmid m_u(G)$  if and only if  $m_u(G) =$  $m_p(L_m(2))$ . In particular,  $m_p(G) = m_p(L_m(2))$ .

*Proof.* Since  $m_u(G) \in \text{nse}(L_m(2))$ , Corollary 3.3 completes the proof. Also, by (2.1),  $p \mid 1 + m_p(G)$ , so  $p \nmid m_p(G)$ . Thus  $m_p(G) = m_p(L_m(2))$ , as claimed.  $\Box$ 

**Lemma 3.5** ([1]). Let t be the number of cyclic subgroups of order n in G, namely  $H_1, \ldots, H_t$  and let for  $1 \leq i \leq t$ ,  $\beta_i$  be the number of cyclic subgroups of  $C_G(H_i)$  of order r, where gcd(r,n) = 1. If  $\beta = min\{\beta_i : 1 \le i \le t\}$ , then  $m_n\phi(r)\beta \le m_{nr}(G).$ 

**Lemma 3.6.** Let  $n \neq 7$  and s be a Zsigmondy prime of  $2^{n-1} - 1$ .

(i) If t = 2s, then  $t \in \pi_e(L_{n+1}(2))$  and  $m_t(L_{n+1}(2)) = \frac{\phi(t)|L_{n+1}(2)|}{2(n-1)(2^{n-1}-1)}$ .

Ahanjideh, Mousavi and Taeri

(ii) If 
$$t = s$$
, then  $t \in \pi_e(L_n(2))$  and  $m_t(L_n(2)) = \frac{\phi(t)|L_n(2)|}{(n-1)(2^{n-1}-1)}$ .

Proof. It is known that  $2s \in \pi_e(L_{n+1}(2))$  and  $s \in \pi_e(L_n(2))$ . Let  $x_1$  be an element of  $L_{n-1}(2)$  of order s and  $S_1 \in \operatorname{Syl}_s(L_{n-1}(2))$ . Then [7, P. 187, Satz 7.3] implies that all subgroups of  $L_{n-1}(2)$  of order s are conjugate with  $\langle x_1 \rangle$ ,  $C_{L_{n-1}(2)}(\langle x_1 \rangle) = C_{L_{n-1}(2)}(S_1)$  is a cyclic group of order  $2^{n-1} - 1$ , and  $|N_{L_{n-1}(2)}(S_1)| = |N_{L_{n-1}(2)}(\langle x_1 \rangle)| = (n-1)(2^{n-1}-1)$ . Since  $S = \{\operatorname{diag}(I_{m-n+1}, y):$  $y \in S_1\} \in \operatorname{Syl}_s(L_m(2))$ , we can get that  $\operatorname{diag}(I_{m-n+1}, x_1)$  is an element of  $L_m(2)$  of order s and S is cyclic. On the other hand, we can see by Schur's lemma that

$$C_{L_m(2)}(S) = C_{L_m(2)}(\langle \operatorname{diag}(I_{m-n+1}, x_1) \rangle)$$
  
= {diag(y\_1, y\_2) : y\_1 \in L\_{m-n+1}(2), y\_2 \in C\_{L\_{n-1}(2)}(S\_1)}

and

$$N_{L_m(2)}(S) = N_{L_m(2)}(\langle \operatorname{diag}(I_{m-n+1}, x_1) \rangle) \\ = \{\operatorname{diag}(y_1, y_2) : y_1 \in L_{m-n+1}(2), \ y_2 \in N_{L_{n-1}(2)}(S_1) \}.$$

This forces for every  $g \in L_m(2)$ ,  $S^g = S$  or  $S^g \cap S = 1$  and hence,

$$m_s(L_m(2)) = \phi(s)n_s(L_m(2)) = \frac{\phi(s)|L_m(2)|}{|L_{m-n+1}(2)|(n-1)(2^{n-1}-1)}.$$

If m = n + 1, then since  $m_2(L_2(2)) = m_2(C_{L_m(2)}(\langle \text{diag}(I_{m-n+1}, x_1) \rangle)) = 3$ , Lemma 3.5 implies that  $m_{2s}(L_{n+1}(2)) = \frac{\phi(s)|L_{n+1}(2)|}{2(n-1)(2^{n-1}-1)}$ , as claimed in (i). If m = n, then  $|L_{m-n+1}(2)| = 1$  and hence, (ii) follows.

**Lemma 3.7.** Let  $m \in \{7, 8\}$ . If  $127 \mid |G|$  and  $nse(G) = nse(L_m(2))$ , then  $127^2 \nmid |G|$ .

Proof. Let  $P \in \text{Syl}_{127}(G)$ . If m = 7, then applying a simple GAP program [16] shows that for every  $k \in \text{nse}(L_7(2)) = \text{nse}(G)$ ,  $127^2 \nmid (1 + m_{127} + m_k)$  and hence  $127^2 \notin \pi_e(G)$ . Therefore, every non-trivial element of P has order 127 and hence, Lemma 2.1 forces |P| to divide  $1 + m_{127}(G) = 1 + 23222833643520$ , considering Corollary 3.3. This implies that |P| = 127 and hence,  $127^2 \nmid |G|$ , as desired. If m = 8, then applying a simple GAP program [16] shows that  $k := 2^{27} \cdot 3^2 \cdot 5 \cdot 17 \cdot 31 \cdot 127 \cdot 331 \in \text{nse}(L_8(2)) = \text{nse}(G)$ . Thus there exists  $l \in \pi_e(G)$ such that  $m_l(G) = k$ . Since  $126 \nmid m_l(G)$ , we get  $\gcd(127, l) = 1$ . We claim that P acts fixed point freely on the set  $\{x \in G : O(x) = l\}$ . If not, there exists a natural number u such that  $127^u l \in \pi_e(G)$  and hence, by Lemma 3.5,  $m_{127^u l}(G) \ge \phi(127)m_l(G) > |L_8(2)|$ , which is a contradiction. This forces  $|P| \mid m_l(G)$  and hence |P| = 127, as desired. □

**Lemma 3.8.** If  $p \mid |G|$  and  $nse(G) = nse(L_m(2))$  where  $m \in \{n, n+1\}$ , then  $p^2 \nmid |G|$ .

*Proof.* If n = 7, then Lemma 3.7 completes the proof. Now let  $n \neq 7$  and let s be a Zsigmondy prime of  $2^{n-1} - 1$ . If m = n + 1, then by Lemma **3.6**(i),  $t = 2s \in \pi_e(L_m(2))$  and  $m_t(L_m(2)) = \frac{\phi(t)|L_{n+1}(2)|}{2.(n-1).(2^{n-1}-1)} \in \operatorname{nse}(G)$ . Thus there exists  $l \in \pi_e(G)$  such that  $m_l(G) = m_t(L_m(2))$ . Since  $p-1 \nmid m_l(G)$ , gcd(p,l) = 1. We claim that  $P \in Syl_p(G)$  acts fixed point freely on the set  $\{x \in G : O(x) = l\}$ . If not, then for some natural number  $u, p^u l \in \pi_e(G)$ and by Lemma 3.5,  $m_{p^u l}(G) \geq \phi(p)m_l(G) \geq |L_m(2)|$  and hence,  $m_{p^u l}(G) \notin$  $\operatorname{nse}(L_m(2))$ , which is a contradiction. Thus the fixed point free action of P on  $\{x \in G \mid O(x) = l\}$  forces |P| to divide  $m_l(G)$  and hence,  $|P| \leq p$ , as desired. If m = n, then it is enough to replace t = 2s with t = s and use Lemma 3.6(ii) in the above argument.  $\square$ 

**Corollary 3.9.** If  $p \mid |G|$ , then for every  $r \in \pi_e(G) - \{p\}$ ,  $rp \notin \pi_e(G)$ .

*Proof.* Suppose on the contrary that  $rp \in \pi_e(G)$ . Since  $p^2 \nmid |G|$ , we deduce that  $S_p(G)$  is cyclic and hence,  $m_{rp}(G) = m_p(G)\phi(r)k$ , for some natural number k. Thus  $m_{rp}(G) = \frac{(p-1)|L_m(2)|\phi(r)k}{np}$  and hence, one of the following holds:

- $p \mid m_{rp}(G)$ . Then  $p \mid \phi(r)k$  and hence,  $m_{rp}(G) \geq \frac{(p-1)|L_m(2)|}{n} =$  $\frac{(2^n-2)|L_m(2)|}{n} > |L_m(2)|, \text{ which is a contradiction.}$
- $p \nmid m_{rp}(G)$ . Then Corollary 3.4 shows that  $m_{rp}(G) = m_p(G)$  and hence, r = 2. But  $m_2(G) = m_2(L_m(2))$ . Thus Corollary 3.4 forces  $p \mid m_2(G)$ . On the other hand, (2.1) forces  $2p \mid (1 + m_p + m_2 + m_{2p})$ and  $p \mid (1+m_p)$ . It follows that  $p \mid m_{2p} = m_p$ , which is a contradiction.

Hence  $rp \notin \pi_e(G)$ , as desired.

**Corollary 3.10.** (i)  $n_p(G) = \frac{|L_m(2)|}{np} ||G|.$ (ii)  $|G| \mid \frac{(p-1)|L_m(2)|}{n}.$ 

*Proof.* Since p |||G|,  $S_p(G)$  is cyclic, so  $m_p(G) = \phi(p)n_p(G)$ . Thus Corollary 3.4 completes the proof of (i). Let  $r \in \pi(G) - \{p\}$ . Then by Corollary 3.9, the Sylow r-subgroup of G acts fixed point freely on the set of elements of order p in G and hence,  $|G|_r | m_p(G)$ . Also,  $|G|_p = p$ . This forces  $|G| | \frac{(p-1)|L_m(2)|}{n}$ .

**Corollary 3.11.** If  $r \in \pi(L_u(2)) - \{2\}$ , then  $|L_u(2)|_r \leq 2^{3u/2}$ . In particular, if  $r \in \pi(G) - \{2\}$ , then  $|G|_r < 2^{2m}$ .

*Proof.* By Corollary 3.10, we can assume that r is a Zsigmondy prime of  $2^t - 1$ , where  $2 \leq t \leq m$ . Let  $(2^t - 1)_r = r^s$ . It is known that  $(\prod_{i=1}^m (2^i - 1))_r \leq ((2^t - 1)_r)^{[\frac{m}{t}]}([\frac{m}{t}]!)_r < ((2^t - 1)_r)^{[\frac{m}{t}]}r^{\frac{m}{t(r-1)}}$  (it can for example be extracted from [12, Lemma 1]). Since  $r \geq 3$ , Corollary 3.10(ii) shows that  $|G|_r \leq (2^{n-1} - 1)$  $1)_r |L_m(2)|_r < 2^{2m}$ , as claimed. 

Lemma 3.12. G is neither a Frobenius group nor a 2-Frobenius group.

*Proof.* Suppose on the contrary that, *G* is a Frobenius group with kernel *K* and complement *H*. We have  $\pi(H) = \{p\}$  or  $\pi(K) = \{p\}$ . If  $\pi(K) = \{p\}$ , then since  $K \trianglelefteq G$  and p || |G|, we deduce that  $S_p(G) = K$  is a normal and cyclic subgroup of *G*. Thus  $m_p(G) = p - 1$ , which is a contradiction with Corollaries **3.3** and **3.4**. Now, let  $\pi(H) = \{p\}$ . By Corollary **3.10**, we have  $\frac{|L_m(2)|}{np} \mid |G|$  and  $|G| \mid \frac{(p-1)|L_m(2)|}{n}$ , so there exists a prime divisor *r* of  $2^{n-2} - 1$  such that  $|G|_r = |L_m(2)|_r$ . Also, Lemma **2.1** shows that  $\{\pi(K), \pi(H)\} = \{\pi_1(G), \pi_2(G)\}$ . Thus  $r \in \pi(K)$ . Since *K* is nilpotent,  $S_r(G)$  is a normal subgroup of *G*, so  $S_p(G)$  acts fixed point freely on  $S_r(G)$  and hence,  $p \mid |S_r(G)| - 1$ . This shows that either m = 6 and  $31 \mid 49 - 1$  or  $p \leq |S_r(G)| \leq 2^{n-2} - 1 < p$ , which are impossible. If *G* is a 2-Frobenius group, then it follows from Lemma **2.3** that there exists a normal series  $1 \leq H \leq K \leq G$  such that K/H is a cyclic group of order *p* and  $|G/K| \mid (p-1)$ . Also, K/H acts fixed point freely on *H* and hence, the previous argument rules out this case.

The above results show that p is an isolated point in the prime graph of G and so  $t(G) \geq 2$ . Since G is not a Frobenius or 2-Frobenius group, Lemma 2.4 shows that there exists a normal series  $1 \leq H \leq K \leq G$  such that K/H is a simple group and p is an odd order component of K/H. In Theorem 3.13, fix S := K/H and  $L := L_m(2)$ , where  $m \in \{n, n+1\}$ . In what follows we need the sets of order components of finite simple groups with disconnected prime graph, which are given in [11] and [17].

#### **Theorem 3.13.** S is isomorphic to L.

*Proof.* By the classification of finite simple groups, we proceed the proof in the following steps.

**Step 1.** S can not be an alternating group  $\mathbb{A}_r$ ,  $r \geq 5$ .

*Proof.* If  $S \cong \mathbb{A}_r$ , then since  $2^n - 1 = p \in \pi(S)$ ,  $r \ge 2^n - 1$ . Thus there exists a prime number  $u \in \pi(\mathbb{A}_r)$  such that  $2^{n-1} - 1 = \frac{(p-1)}{2} < u < p$ . But |G| divides  $\frac{(p-1)|L|}{n}$ . Therefore  $u \in \pi(\frac{(p-1)|L|}{n})$ , which is a contradiction.

Step 2. S is not a sporadic simple group.

*Proof.* Suppose that S is a sporadic simple group. Since one of the odd order components of S is p, which is a Mersenne prime, we deduce, by considering the odd order components of sporadic simple groups, that p = 7 or p = 31. This forces n = 3 or n = 5. By our assumption  $n \ge 5$ . Also considering the order of sporadic simple groups with 31 as one of their odd order components shows that  $|S| \nmid \frac{(p-1)|L|}{n}$ , and so  $|G| \nmid \frac{(p-1)|L|}{n}$ , which is a contradiction.  $\Box$ 

**Step 3.**  $S \cong L$ . By Steps 1 and 2, and the classification of finite simple groups, S is a simple group of Lie type with disconnected prime graph. We continue the proof in the following cases:

**Case 1.** Let t(S) = 2. Then  $OC_2(S) = 2^n - 1$ .

**1.1.** If  $S \cong C_{n'}(q)$ , where  $n' = 2^t \ge 2$ , then  $\frac{q^{n'}+1}{(2,q-1)} = 2^n - 1$ . Thus p is a Zsigmondy prime of  $q^{2n'} - 1$ , and hence Fermat's little theorem shows that  $2n' \mid p - 1 = 2(2^{n-1} - 1)$ . This forces n' = 1, which is a contradiction. The same reasoning rules out the case when either  $S \cong B_{n'}(q)$  or  $S \cong {}^2D_{n'}(q)$ , where  $n' = 2^t \ge 4$ .

**1.2.** If  $S \cong C_r(3)$  or  $B_r(3)$ , then  $\frac{3^r-1}{2} = 2^n - 1$ . Thus  $2^{n+1} - 3^r = 1$ , which is a contradiction with Lemma 2.6. The same reasoning rules out the case when  $S \cong D_r(3)$  or  $S \cong D_{r+1}(3)$ .

**1.3.** If  $S \cong C_r(2)$ , then  $2^r - 1 = 2^n - 1$ , and hence r = n. This implies that  $2^{n^2} \mid |G|$  and so  $|G| \nmid \frac{(p-1)|L|}{n}$ , which is a contradiction. The same reasoning rules out the cases when  $S \cong D_r(2)$  or  $S \cong D_{r+1}(2)$ .

**1.4.** If  $S \cong D_r(5)$ , where  $r \ge 5$ , then  $(5^r - 1)/4 = (2^n - 1)$ . Thus  $5^r - 1 = 2^{n+2} - 4$  and hence,  $5(5^{r-1}+1) = 2(2^{n+1}+1)$ . But  $5^{r-1}+1 \mid |S|$ , so  $2^{n+1}+1 \mid |G|$ . Let r be a Zsigmondy prime of  $2^{2(n+1)} - 1$ , then  $r \mid 2^{n+1}+1$ . Thus  $r \mid |G|$ , and hence  $r \mid \frac{(p-1)|L|}{2}$ , which is impossible.

hence  $r \mid \frac{(p-1)|L|}{n}$ , which is impossible. **1.5.** If  $S \cong {}^{2}D_{n'}(3)$ , where  $9 \leq n' = 2^{m} + 1$  and n' is not prime, then  $\frac{3^{n'-1}+1}{2} = 2^{n} - 1$ , and hence  $3^{n'-1} = 2^{n+1} - 3$ , which is a contradiction.

**1.6.** If  $S \cong {}^{2}D_{n'}(2)$ , where  $n' = 2^{m} + 1 \ge 5$ , then  $2^{n'-1} + 1 = 2^{n} - 1$ , and hence  $2^{n'-1} = 2(2^{n-1} - 1)$ , which is a contradiction.

**1.7.** If  $S \cong {}^{2}D_{r}(3)$ , where  $5 \leq r \neq 2^{m} + 1$ , then  $\frac{3^{r}+1}{4} = 2^{n} - 1$ , and hence  $3^{r} = 2^{n+2} - 5 = 4(2^{n} + 1) - 9$ . Thus  $9 \mid 2^{n} + 1$ . So  $9 = \gcd(2^{3} + 1, 2^{n} + 1)$  and hence,  $3 \mid n$ . But *n* is prime, and hence n = 3, which is a contradiction.

**1.8.** If  $S \cong G_2(q)$ , where  $2 < q \equiv \epsilon \pmod{3}$  and  $\epsilon = \pm 1$ , then  $q^2 - \epsilon q + 1 = 2^n - 1$ . First, assume that q is an odd number. Then  $q^2 - \epsilon q = 2(2^{n-1} - 1)$ , and hence  $q(q - \epsilon) = 2(2^{\frac{n-1}{2}} - 1)(2^{\frac{n-1}{2}} + 1)$ . Thus either  $q \mid (2^{\frac{n-1}{2}} - 1)$  or  $q \mid (2^{\frac{n-1}{2}} + 1)$ . If  $q \mid (2^{\frac{n-1}{2}} - 1)$ , then  $2^{\frac{n-1}{2}} - 1 = kq$ . Therefore,  $q(q - \epsilon) = 2kq(kq + 2)$  and hence,  $q - \epsilon = 2k^2q + 4k$ . Thus  $-\epsilon - 4k = q(2k^2 - 1)$ , which is a contradiction, since the right hand side is positive and the left hand side is negative. If  $q \mid (2^{\frac{n-1}{2}} + 1)$ , then  $2^{\frac{n-1}{2}} + 1 = kq$ . Thus  $q(q - \epsilon) = 2kq(kq - 2)$  and hence,  $q - \epsilon = 2k^2q - 4k$ . This implies that  $4k - \epsilon = q(2k^2 - 1)$ . Thus  $q = \frac{4k-\epsilon}{2k^2-1} \in \mathbb{N}$ . This forces k = 1 and so, q = 5. Thus  $2^n = 32$  and hence, n = 5. This gives that  $|S| \nmid \frac{(p-1)|L|}{n}$ , which is a contradiction.

Now, let  $q = 2^t > 2$ , then  $2^t(2^t - \epsilon) = 2(2^{n-1} - 1)$ . This forces t = 1 and hence q = 2, which is a contradiction.

**1.9.** If  $S \cong F_4(q)$ , where q is odd, then  $q^4 - q^2 + 1 = 2^n - 1$  and hence,  $q^2(q-1)(q+1) = 2(2^{n-1}-1)$ . This shows that  $4 \mid 2(2^{n-1}-1)$ , which is a contradiction. The same reasoning rules out the case when  $S \cong^3 D_4(q)$ .

**1.10.** If  $S \cong {}^{2}F_{4}(2)'$ , then  $|S| = 2^{11} \cdot 3^{3} \cdot 5^{2} \cdot 13$ . Thus  $2^{n} - 1 = 13$ , which is impossible.

**1.11.** If  $S \cong {}^{2}A_{3}(2)$ , then  $|S| = 2^{6} \cdot 3^{4} \cdot 5$ . Thus  $2^{n} - 1 = 5$ , which is impossible.

**1.12.** Let r be an odd prime and S be isomorphic to the one of the following simple groups:

a. Let  $S \cong L_r(q)$ , where  $(r,q) \neq (3,2)$ , (3,4) and for a prime  $u, q = u^{\alpha}$ . First let  $u \neq 2$ . Since  $\frac{q^{r-1}}{(r,q-1)(q-1)} = 2^n - 1$ ,  $2^n < q^r$ . So Corollary 3.11 forces  $2^{n(r-1)/2} < |S|_u = q^{\frac{r(r-1)}{2}} \leq |G|_u \leq 2^{2m}$ . Thus either r = 3 or r = 5 and m = n + 1. This shows that  $\frac{q^{5-1}}{(r,q-1)(q-1)} = 2^n - 1$  or  $\frac{q^{3-1}}{(r,q-1)(q-1)} = 2^n - 1$ . If r = 5, then  $q(q^4 - 1)/(q - 1) = 5(2^n - 1) - 1 = 2(5\cdot2^{n-1} - 5 + 2)$  or  $q(q^4 - 1)/(q - 1) = 2(2^{n-1} - 1)$ . Thus  $u \nmid 2^{n-1} - 1 = (p-1)/2$ , and hence Corollary 3.11 guarantees that  $|G|_u \leq |L_m(2)|_u \leq 2^{3m/2}$ . Thus  $2^{2n} < |S|_u = q^{\frac{r(r-1)}{2}} \leq |G|_u \leq 2^{3m/2}$ , which is a contradiction. If r = 3, then  $\frac{q^{3-1}}{(3,q-1)(q-1)} = 2^n - 1 = p$ . Thus by Fermat's little theorem  $3\alpha \mid p - 1 = 2(2^{n-1} - 1)$ , and hence if w is a Zsigmondy prime of  $2^{n-2} - 1$ , then an easy computation shows that  $w \notin \pi(S)$ . Also,  $\bar{G}/S \leq \operatorname{Out}(S)$ , where  $\bar{G} = G/H$ . So  $|\bar{G}/S| = 2(3, q - 1)\alpha$ . This forces  $w \in \pi(H)$  and  $|H|_w = |L|_w$ . But H is nilpotent, so  $S_p(G)$  acts fixed point freely on  $S_w(H)$  and hence,  $p \mid |S_w(H)| - 1$ . Thus either m = 6 and w = 7 and hence,  $31 \mid 49 - 1$  or  $2^n - 1 = p < 2^{n-2} - 1$ , which are impossible. Now let u = 2. Then p is a Zsigmondy prime of  $2^n - 1$  and  $2^{r\alpha} - 1$ . Thus  $n = r\alpha$ . But n is prime, so  $\alpha = 1$  and n = r. If m = n, then  $S \cong L_n(2)$ , as claimed. Now let m = n + 1 and r be a Zsigmondy prime of  $2^{n+1} - 1|_r$  and hence, applying the previous argument leads us to get a contradiction. If n = 5, then replacing r with 7 in the above argument leads us to get a contradiction.

**b.** Let  $S \cong L_{r+1}(q)$ , where  $(q-1) \mid (r+1)$  and for a prime  $u, q = u^{\alpha}$ . First let  $u \neq 2$ . Since  $\frac{q^r-1}{q-1} = 2^n - 1$ ,  $2^n < q^r$ . So Corollary 3.11 forces  $2^{n(r+1)/2} < |S|_u = q^{\frac{r(r+1)}{2}} \leq |G|_u \leq 2^{2m}$ . Thus m = n+1, r = 3 and  $q \in \{3,5\}$ . So  $\frac{3^3-1}{2} = 2^n - 1$  or  $\frac{5^3-1}{4} = 2^n - 1$ . This forces q = n = 5. But  $5^3 \mid |S|$ , while  $5^3 \nmid (p-1)|L_6(2)|/5$ , and hence  $|S| \nmid |G|$ , which is a contradiction. Now let u = 2. Then p is a Zsigmondy prime of  $2^n - 1$  and  $2^{r\alpha} - 1$ . Thus  $n = r\alpha$ . But n is prime, so  $\alpha = 1$  and n = r. This forces  $S \cong L_{n+1}(2)$ . If m = n, then,  $|S|_2 > |G|_2$ , which is a contradiction. If m = n + 1, then  $S \cong L$ , as claimed.

**c.** Let  $S \cong {}^{2}A_{r-1}(q)$ . Then applying the same reasoning as that in Subcase (a) we get a contradiction.

**d.** Let  $S \cong {}^{2}A_{r}(q)$ , where  $(q+1) \mid (r+1)$  and  $(r,q) \neq (3,3), (5,2)$ . Then applying the same reasoning as that of in Subcase (b) we get a contradiction.

**1.13.** If  $S \cong E_6(q)$ , where  $q = u^{\alpha}$ , then  $\frac{(q^6+q^3+1)}{(3,q-1)} = 2^n - 1$ . First let  $u \neq 2$ . Thus  $q^9 > 2^n$ , and hence Corollary 3.11 shows that  $2^{4n} < q^{36} = |S|_u \le |G|_u < 2^{2m}$ , which is a contradiction. Now let u = 2. Then p is a Zsigmondy prime of

 $2^n - 1$  and  $2^{9f} - 1$ . Thus n = 9f, which is a contradiction, because n is prime. The same reasoning rules out the case when  $S \cong {}^{2}E_{6}(q)$ , where q > 2. **Case 2.** Let t(S) = 3. Then  $2^n - 1 \in \{OC_2(S), OC_3(S)\}$ .

**2.1.** If  $S \cong L_2(q)$ , where  $4 \mid q+1$ , then  $\frac{q-1}{2} = 2^n - 1$  or  $q = 2^n - 1$ . If  $q = 2^n - 1$ , then q = p and

$$|S| = |L_2(p)| = \frac{1}{(2, p-1)}p(p^2 - 1) = 2^n(2^{n-1} - 1)(2^n - 1).$$

On the other hand,  $S \leq G/H \leq \operatorname{Aut}(S)$  and  $\operatorname{Out}(S) \cong \mathbb{Z}_2$ . Therefore  $2^{n-2}$  – 1 | |H|. Let r be a Zsigmondy prime of  $2^{n-2} - 1$ . Since H is nilpotent,  $S_r(H) \leq G$ . Thus Corollary 3.9 shows that  $S_p(G)$  acts fixed point freely on  $S_r(H)$ . Therefore,  $|S_p(G)| \mid |S_r(H)| - 1$ , and hence Corollary 3.10 shows that either  $p = 2^n - 1 < 2^{n-2} - 1$  or  $31 \mid 49 - 1$ , which is a contradiction.

If  $\frac{q-1}{2} = 2^n - 1$ , then  $q = 2^{n+1} - 1$ , and hence Lemma 2.6 shows that q is prime. But  $3 = 2^2 - 1 \mid 2^{n+1} - 1 = q$ , and hence  $3 = q = 2^{n+1} - 1$ , which is impossible.

**2.2.** If  $S \cong L_2(q)$ , where  $4 \mid q-1$ , then  $q = 2^n - 1$  or  $\frac{q+1}{2} = 2^n - 1$ . If  $q = 2^{n} - 1$ , then  $q - 1 = 2(2^{n-1} - 1)$ . But 4 | q - 1, which is a contradiction. If  $\frac{q+1}{2} = 2^{n} - 1$ , then  $q = 2^{n+1} - 3$ . Thus  $|S| = q(q^{2} - 1)/(2, q - 1) = 1$  $4(2^{n+1}-3)(2^n-1)(2^{n-1}-1)$ . Therefore  $2^{n-2}-1 \mid |H|$ , and hence repeating the same argument as that of in Case 2.1 leads us to get a contradiction.

**2.3.** If  $S \cong L_2(q)$ , where q > 2 and q is even, then |S| = q(q-1)(q+1). If  $q-1=2^n-1$ , then  $q=2^n$ . Thus  $|S|=2^n(2^n-1)(2^n+1) ||G|$ , and hence  $(2^n+1) \mid \frac{(p-1)|L|}{n}$ , which is a contradiction by considering the Zsigmondy prime of  $2^{2n}-1$ . If  $q+1=2^n-1$ , then  $q=2(2^{n-1}-1)$ . But q is a power of 2 and q > 2, so  $2 \mid (2^{n-1} - 1)$ , which is a contradiction.

**2.4.** If  $S \cong {}^{2}A_{5}(2)$  or  $S \cong A_{2}(2)$ , then  $|S| = 2^{15} \cdot 3^{6} \cdot 7 \cdot 11$  or  $|S| = 8 \cdot 3 \cdot 7$ .

Clearly,  $2^n - 1 \neq 11$ . If  $2^n - 1 = 7$ , then n = 3, which is a contradiction. **2.5.** If  $S \cong {}^2D_r(3)$ , where  $r = 2^t + 1 \ge 5$ , then  $\frac{3^r + 1}{4} = 2^n - 1$  or  $\frac{3^{r-1} + 1}{2} = 2^n - 1$ . If  $\frac{3^r + 1}{4} = 2^n - 1$ , then the same reasoning as that of in Subcase 1.7 shows that r = 3 < 5, which is a contradiction. If  $\frac{3^{r-1}+1}{2} = 2^n - 1$ , then  $2^{n+1} = 3^{r-1} - 3$ , which is impossible.

**2.6.** If  $S \cong {}^{2}D_{r+1}(2)$ , where  $r = 2^{n'} - 1$  and  $n' \ge 2$ , then  $2^{r} + 1 = 2^{n} - 1$ or  $2^{r+1} + 1 = 2^n - 1$ . Hence  $2 \mid 2^{n-1} - 1$ , which is a contradiction.

**2.7.** If  $S \cong G_2(q)$ , where  $q \equiv 0 \pmod{3}$ , then  $q^2 - q + 1 = 2^n - 1$  or  $q^2 + q + 1 = 2^n - 1$ , and hence  $q(q \pm 1) = 2(2^{n-1} - 1)$ . Thus the same reasoning as that of in Subcase 1.8 leads us to get a contradiction.

**2.8.** If  $S \cong {}^{2}G_{2}(q)$ , where  $q = 3^{2t+1} > 3$ , then  $q - \sqrt{3q} + 1 = 2^{n} - 1$  or  $q + \sqrt{3q} + 1 = 2^n - 1$ . Thus  $3^{t+1}(3^t + \epsilon) = 2(2^{n-1} - 1)$ , where  $\epsilon = \pm 1$ . Thus the same reasoning as that of in subcase 1.8 leads us to get a contradiction.

**2.9.** If  $S \cong F_4(q)$ , where q is even, then  $q^4 + 1 = 2^n - 1$  or  $q^4 - q^2 + 1 = 2^n - 1$  $2^{n} - 1$ . If  $q^{4} + 1 = 2^{n} - 1$ , then  $2 \mid (2^{n-1} - 1)$ , which is a contradiction. If  $q^4 - q^2 + 1 = 2^n - 1$ , then  $q^2(q^2 - 1) = 2(2^{n-1} - 1)$ , which is a contradiction because q is a power of 2.

**2.10.** If  $S \cong {}^{2}F_{4}(q)$ , where  $q = 2^{2t+1} > 2$ , then  $OC_{2} = q^{2} + \sqrt{2q^{3}} + q - \sqrt{2q} + 1$ and  $OC_{3} = q^{2} - \sqrt{2q^{3}} + q - \sqrt{2q} + 1$ . Thus  $2^{n} - 1 = 2^{2(2t+1)} + \epsilon 2^{3t+2} + 2^{2t+1} + \epsilon 2^{t+1} + 1$ , where  $\epsilon = \pm 1$ , and hence  $2(2^{n-1} - 1) = 2^{t+1}(2^{3t+1} + \epsilon 2^{2t+1} + \epsilon 2^{t} - 1)$ . This forces t = 0, which is a contradiction.

**2.11.** If  $S \cong E_7(2)$ , then  $2^n - 1 \in \{73, 127\}$ . It is evident  $2^n - 1 \neq 73$ , and hence  $2^n - 1 = 127$ , so n = 7. Thus  $|S| = |E_7(2)| \mid \frac{126 \cdot |L_7(2)|}{7}$  or  $|S| \mid \frac{126 \cdot |L_8(2)|}{7}$ , which is impossible.

**2.12.** If  $S \cong E_7(3)$ , then  $2^n - 1 \in \{757, 1093\}$ , which is impossible.

**Case 3.** Let  $t(S) \in \{4, 5\}$ . Then

 $2^n - 1 \in \{OC_2(S), OC_3(S), OC_4(S), OC_5(S)\}.$ 

**3.1.** If  $S \cong A_2(4)$ , then n = 3 or n = 2, which is a contradiction.

The same reasoning rules out the case when  $S \cong {}^{2}E_{6}(2)$ .

**3.2.** If  $S \cong {}^{2}B_{2}(q)$ , where  $q = 2^{2t+1}$  and  $t \ge 1$ , then  $2^{n} - 1$  is one of the following values:  $q - 1 = 2^{n} - 1$ . Thus  $2^{2t+1} - 1 = 2^{n} - 1$ , and hence n = 2t + 1. But  $(q - \sqrt{2q} + 1)(q + \sqrt{2q} + 1) = (q^{2} + 1) | |S|$ , so  $(2^{2n} + 1) | |G|$ , and hence Corollary 3.10 shows that  $(2^{2n} + 1) | \frac{(p-1)|L|}{n}$ , which is a contradiction. If  $q \pm \sqrt{2q} + 1 = 2^{n} - 1$ , then  $2^{t+1}(2^{t} \pm 1) = 2(2^{n-1} - 1)$ . This forces t = 0, which is a contradiction.

 $\begin{array}{l} q_{\perp} \sqrt{2q+1-2} & \text{i, dial } 2 & (2 \pm 1) & 2(2 \pm 1) & 2(2$ 

The above steps show that  $S \cong L$ , as claimed.

Proof of the Main Theorem. By Lemma 2.4, we have  $L \leq G/H \leq \operatorname{Aut}(L)$ . Since  $|\operatorname{Out}(L)| = 2$ , we have  $G/H \cong L$  or  $G/H \cong \operatorname{Aut}(L)$ . Thus Corollary 3.10 shows that  $|H| | 2(2^{n-1} - 1)/n$ . However, by Corollary 3.9,  $S_p(G)$  acts fixed point freely on H, so  $p = 2^n - 1 | |H| - 1$ , while  $|H| < 2^{n-1} - 1$ . Thus H = 1, and hence either  $G \cong L_m(2)$  or  $G \cong \operatorname{Aut}(L_m(2))$ . But  $m_2(L_m(2)) < m_2(\operatorname{Aut}(L_m(2)))$  and since by Remark 2.7,  $m_2(G)$  is the only odd element of nse(G) and  $m_2(\operatorname{Aut}(L_m(2)))$  is an odd number too, we deduce that  $G \ncong$  $\operatorname{Aut}(L_m(2))$ . Thus  $G \cong L_m(2)$ , as claimed.  $\Box$ 

#### References

N. Ahanjideh and B. Asadian, NSE characterization of some alternating groups, J. Algebra Appl. 14 (2015), no. 2, 1550012, 14 pages.

- [2] S. Asgary and N. Ahanjideh, Nse characterization of some finite simple groups, An. Stiin. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 62 (2016), no. 2, vol. 3, 797–806.
- [3] G.Y. Chen, On Frobenius and 2-Frobenius group, J. Southwest China Normal Univ. 20 (1995), no. 5, 485–487.
- [4] J.H. Conway, R. Curtis, S. Norton and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
- [5] P. Crescenzo, A diophantine equation which arises in the theory of finite groups, Adv. Math. 17 (1975), 25–29.
- [6] J.D. Frobenius, Verallgemeinerung des Sylowschen Satse, Berliner Sitz (1895), 981-993.
- [7] B. Huppert, Endliche Gruppen, Springer-verlag, 1967.
- [8] W. Kantor, Linear groups containing a Singer cycle, J. Algebra 62 (1980), 232–234.
- [9] A. Khalili Asboei, A new characterization of A<sub>7</sub> and A<sub>8</sub>, An. St. Univ. Ovidius Constanta 21 (2013), no. 3, 43–50.
- [10] M. Khatami, B. Khosravi and Z. Akhlaghi, A new characterization for some linear groups, *Monatsh. Math.* 163 (2009), 39–50.
- [11] A. S. Kondratév, Prime graph components of finite simple groups, Math. USSR-Sb. 67 (1990), no. 1, 235–247.
- [12] X. Li, Characterization of the finite simple groups, J. Algebra 254 (2001), 620-649.
- [13] C. Shao and Q. Jiang, A new characterization of some linear group by nse, J. Algebra Appl. 13 (2014), no. 2, 1350094, 9 pages.
- [14] C. Shao and Q. Jiang, A new characterization of PSL<sub>2</sub>(p) by nse, J. Algebra Appl. 13 (2014), no. 4, 1350123, 5 pages.
- [15] R. Shen, C. Shao, Q. Jiang, W. Shi and V. Mazurov, A new characterization of A<sub>5</sub>, Monatsh. Math. 160 (2010), 337–341.
- [16] The GAP Group, GAP-Groups, Algorithms and Programming, Vers. 4.6.12, 2008, http: //www.gap-system.org.
- [17] J. S. Williams, Prime graph components of finite groups, J. Algebra 69 (1981), 487–513.
- [18] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), 265–284.

(Neda Ahanjideh) FACULTY OF MATHEMATICAL SCIENCES, DEPARTMENT OF PURE MATH-EMATICS, SHAHREKORD UNIVERSITY, SHAHREKORD, IRAN.

 $E\text{-}mail \ address:$  ahanjideh.neda@sci.sku.ac.ir

(Leila Mousavi) Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran.

*E-mail address:* 1.mousavi@math.iut.ac.ir

(Bijan Taeri) DEPARTMENT OF MATHEMATICAL SCIENCES, ISFAHAN UNIVERSITY OF TECHNOLOGY, ISFAHAN 84156-83111, IRAN.

E-mail address: b.taeri@cc.iut.ac.ir