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Abstract. For a finite group G, let nse(G) = {mk | k ∈ πe(G)}, where

mk is the number of elements of order k in G and πe(G) is the set of
element orders of G. In this paper, we prove that G ∼= Lm(2) if and only
if p | |G| and nse(G) = nse(Lm(2)), where m ∈ {n, n+1} and 2n − 1 = p
is a prime number.
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1. Introduction

For a finite group G and a positive integer t, let Mt(G) be the set of all
elements of G satisfying the equation xt = 1, that is Mt(G) = {g ∈ G | gt =
1}. The groups G1 and G2 are called of the same order type if and only if
|Mt(G1)| = |Mt(G2)|, t = 1, 2, . . . . In 1987, J.G. Thompson posed a question
as follows:
Thompson’s Problem. Suppose that G1 and G2 are of the same order type.
If G1 is solvable, is it true that G2 is necessarily solvable?

For a natural number n, let π(n) be the set of prime divisors of n. We denote
by π(G) the set of prime divisors of |G| and by πe(G) the set of element orders
of G. Let nse(G) = {mk | k ∈ πe(G)}, where mk is the number of elements of
order k in G. It is well known that if G1 and G2 are of the same order type, then
|G1| = |G2| and nse(G1) = nse(G2). So it is natural to investigate Thompson’s
problem by |G| and nse(G). The following example, due to Thompson, shows
that there are finite groups which are not characterizable by nse(G) and |G|.
For the groups G1 = (C2 × C2 × C2 × C2) ⋊ A7 and G2 = L3(4) ⋊ C2 (which
are maximal subgroups of the Mathieu group of degree 23), we have nse(G1) =
nse(G2) and |G1| = |G2| but G1 ≇ G2.
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The influence of nse(G) on the structure of finite groups was studied by some
authors (see [9,10,15]). We say that the group G is characterizable by nse in the
class A of groups, if every group H ∈ A with nse(G) = nse(H) is isomorphic
to G. Recently, Shao and Jiang [14] showed that the group L2(p), where p
is prime, is characterizable by nse in the class of finite groups whom orders
are divisible by p. They also showed [13] that the group L2(2

a), where either
2a − 1 or 2a + 1 is a prime, is characterizable by its order and nse in the class
of finite groups. Aslo in [1] and [2], the characterization of some alternating
groups, projective Symplectic groups and projective special orthogonal groups
have been studied. It is known that L3(2) ∼= L2(7) and L4(2) ∼= A8 (see [4]).
Authors in [9,10] showed that L2(7) and A8 are characterizable by nse. In this
paper, we focus on the group Lm(2), where 2n − 1 = p ≥ 31 is a prime number
and m ∈ {n, n+ 1}. In fact, we are going to prove the following theorem:

Theorem 1.1 (Main Theorem). Let G be a finite group, 2n − 1 = p ≥ 31 be a
prime number and m ∈ {n, n+ 1}. Then G ∼= Lm(2) if and only if p | |G| and
nse(G) = nse(Lm(2)).

To prove this theorem, we use the classification of finite simple groups with
disconnected prime graph. The prime graph GK(G) of G is the graph with
the vertex set π(G), where two distinct primes r and s are joined by an edge if
G contains an element of order rs. Let t(G) denote the number of connected
components of G and let π1(G), π2(G), . . . , πt(G)(G) be the sets of vertices of
the connected components of GK(G). We will use the notation πi instead of
πi(G), when it causes no ambiguity. If 2 ∈ π(G), then we always assume that
2 ∈ π1(G). Also, |G| can be expressed as a product of OC1, OC2, · · · , OCt(G),
where OCi is a positive integer with π(OCi) = πi. The OCi’s are called the
order components of G. In particular, an odd number OCi is called an odd
order component of G. The sets of order components of finite simple groups
with disconnected prime graph can be obtained using [11] and [17]. For a
natural number n and a prime number a, we use |n|a = ae, when ae∥n, i.e.,
ae | n but ae+1 ∤ n. All further unexplained notations are standard and can be
found in [4], for instance.

2. Preliminaries

In this section, we present some useful lemmas which will be used in the
proof of the main theorem.

Lemma 2.1 ([6]). Let G be a finite group and let t be a positive integer dividing
|G|. If Mt(G) = {g ∈ G | gt = 1}, then t | |Mt(G)|.

Lemma 2.2 ([3]). Let G be a Frobenius group of even order with kernel K and
complement H. Then t(G) = 2, the prime graph components of G are π(H)
and π(K), and the following assertions hold:
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(1) K is nilpotent;
(2) |K| ≡ 1 (mod |H|).

The group G is named a 2-Frobenius group, when there exists a normal
series 1⊴H ⊴K ⊴G such that K and G/H are Frobenius groups with kernels
H and K/H, respectively.

Lemma 2.3 ([17, Theorem 2]). Let G be a 2-Frobenius group of even order,
which has a normal series 1⊴H ⊴K ⊴G such that K and G/H are Frobenius
groups with kernels H and K/H, respectively. Then

(i) t(G) = 2 and, π1 = π(H) ∪ π(G/K) and π2 = π(K/H).
(ii) G/K and K/H are cyclic, (|G/K|, |K/H|) = 1 and |G/K| divides

|Aut(K/H)|.
(iii) H is a nilpotent group and G is a solvable group.

Lemma 2.4 ( [17]). Let G be a finite group with t(G) ≥ 2. Then one of the
following statements holds:

(i) G is a Frobenius or 2-Frobenius group;
(ii) G has a normal series 1 ⊴H ⊴K ⊴G such that H and G/K are π1-

groups and K/H is a non abelian simple group, H is a nilpotent group
and |G/H| | |Aut(K/H)|. Moreover, any odd order component of G is
also an odd order component of K/H.

For a natural number k and a prime p, if pm∥k, then we say that pm is a
p-part of k and denote it by kp. The following result of Zsigmondy is used to
prove the main theorem.

Lemma 2.5 ([18, Zsigmondy’s Theorem]). Let n and a be integers greater than
1. Then there exists a prime divisor p of an − 1 such that p does not divide
ai − 1 for all i, 1 ≤ i ≤ n− 1, except in the following cases:

(i) n = 2 and a = 2k − 1, where k ≥ 2.
(ii) n = 6 and a = 2.

The prime p in Lemma 2.5 is called a Zsigmondy prime of an − 1.

Lemma 2.6 ([5]). Let p and q be prime and m, n > 1.

(i) With the exceptions of the relations (239)2 − 2(13)4 = 1 and (3)5 −
2(11)2 = 1 every solution of the equation pm − 2qn = 1 has exponents
m = n = 2.

(ii) The only solution of the equation pm − qn = 1 is 32 − 23 = 1.

Remark 2.7. Let H be a finite group. Clearly, for n ∈ πe(H), mn = kϕ(n),
where k is the number of cyclic subgroups of order n in H and ϕ(n) the Euler
totient function of n. By Lemma 2.1 and the discussion above we have:

(2.1)

{
ϕ(n) | mn

n | Σd|nmd.
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If n > 2, then ϕ(n) is even and hence, mn is even. If 2 ∈ π(H), then (2.1)
shows that 2 | 1 +m2 and hence, m2 is odd. This implies that a ∈ nse(H) is
odd if and only if 2 ∈ π(H) and m2(H) = a.

3. Main results

Suppose that clG(x) denotes the conjugacy class inG containing x. Through-
out this section, let n ≥ 5, 2n − 1 = p be a prime, m ∈ {n, n + 1}, G a finite
group such that p | |G| and nse(G) = nse(Lm(2)).

Lemma 3.1. For every 1 ̸= x ∈ Lm(2), either p | |clLm(2)(x)| or x has order

p and |clLm(2)(x)| = |Lm(2)|
p .

Proof. Let p ∤ |clLm(2)(x)|. Then [8] implies that there exists a divisor r of n

such that |clLm(2)(x)| = |Lm(2)|
|Ln/r(2r)|

and r ̸= 1. Since 2n − 1 is prime, n is prime

and hence, r = n. This forces |clLm(2)(x)| = |Lm(2)|
p . Thus |CLm(2)(x)| = p and

hence, x has order p, as claimed. □

Let r ∈ π(G). We denote by Sr(G), Sylr(G) and nr(G), a Sylow r-subgroup
of G, the set of Sylow r-subgroups of G and |Sylr(G)|, respectively. The fol-
lowing lemma is well-known and it can for example be extracted from [7]:

Lemma 3.2. np(Lm(2)) = |Lm(2)|
np .

Corollary 3.3. For u ∈ πe(Lm(2)), either p | mu(Lm(2)) or u = p and

mp(Lm(2)) = (p−1)|Lm(2)|
np .

Proof. Since |Sp(Lm(2))| = p, we deduce that Sp(Lm(2)) is cyclic. Thus
it is obvious that mp(Lm(2)) = ϕ(p).np(Lm(2)) and Lemma 3.2 shows that

mp(Lm(2)) = (p−1)|Lm(2)|
np .

On the other hand, mu(Lm(2)) =
∑

for some y∈Lm(2) with O(y)=u |clLm(2)(y)|,
so Lemma 3.1 completes the proof. □

Corollary 3.4. For every u ∈ πe(G), p ∤ mu(G) if and only if mu(G) =
mp(Lm(2)). In particular, mp(G) = mp(Lm(2)).

Proof. Since mu(G) ∈ nse(Lm(2)), Corollary 3.3 completes the proof. Also, by
(2.1), p | 1 +mp(G), so p ∤ mp(G). Thus mp(G) = mp(Lm(2)), as claimed. □

Lemma 3.5 ( [1]). Let t be the number of cyclic subgroups of order n in G,
namely H1, . . . , Ht and let for 1 ≤ i ≤ t, βi be the number of cyclic subgroups
of CG(Hi) of order r, where gcd(r, n) = 1. If β = min{βi : 1 ≤ i ≤ t}, then
mnϕ(r)β ≤ mnr(G).

Lemma 3.6. Let n ̸= 7 and s be a Zsigmondy prime of 2n−1 − 1.

(i) If t = 2s, then t ∈ πe(Ln+1(2)) and mt(Ln+1(2)) =
ϕ(t)|Ln+1(2)|

2(n−1)(2n−1−1) .
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(ii) If t = s, then t ∈ πe(Ln(2)) and mt(Ln(2)) =
ϕ(t)|Ln(2)|

(n−1)(2n−1−1) .

Proof. It is known that 2s ∈ πe(Ln+1(2)) and s ∈ πe(Ln(2)). Let x1 be
an element of Ln−1(2) of order s and S1 ∈ Syls(Ln−1(2)). Then [7, P. 187,
Satz 7.3] implies that all subgroups of Ln−1(2) of order s are conjugate with
⟨x1⟩, CLn−1(2)(⟨x1⟩) = CLn−1(2)(S1) is a cyclic group of order 2n−1 − 1, and

|NLn−1(2)(S1)|= |NLn−1(2)(⟨x1⟩)|=(n−1)(2n−1−1). Since S={diag(Im−n+1, y) :
y ∈ S1} ∈ Syls(Lm(2)), we can get that diag(Im−n+1, x1) is an element of
Lm(2) of order s and S is cyclic. On the other hand, we can see by Schur’s
lemma that

CLm(2)(S) = CLm(2)(⟨diag(Im−n+1, x1)⟩)
= {diag(y1, y2) : y1 ∈ Lm−n+1(2), y2 ∈ CLn−1(2)(S1)}

and

NLm(2)(S) = NLm(2)(⟨diag(Im−n+1, x1)⟩)
= {diag(y1, y2) : y1 ∈ Lm−n+1(2), y2 ∈ NLn−1(2)(S1)}.

This forces for every g ∈ Lm(2), Sg = S or Sg ∩ S = 1 and hence,

ms(Lm(2)) = ϕ(s)ns(Lm(2)) =
ϕ(s)|Lm(2)|

|Lm−n+1(2)|(n− 1)(2n−1 − 1)
.

If m = n + 1, then since m2(L2(2)) = m2(CLm(2)(⟨diag(Im−n+1, x1)⟩)) = 3,

Lemma 3.5 implies that m2s(Ln+1(2))) =
ϕ(s)|Ln+1(2)|

2(n−1)(2n−1−1) , as claimed in (i). If

m = n, then |Lm−n+1(2)| = 1 and hence, (ii) follows. □

Lemma 3.7. Let m ∈ {7, 8}. If 127 | |G| and nse(G) = nse(Lm(2)), then
1272 ∤ |G|.

Proof. Let P ∈ Syl127(G). If m = 7, then applying a simple GAP program [16]
shows that for every k ∈ nse(L7(2)) = nse(G), 1272 ∤ (1 + m127 + mk) and
hence 1272 /∈ πe(G). Therefore, every non-trivial element of P has order 127
and hence, Lemma 2.1 forces |P | to divide 1+m127(G) = 1+23222833643520,
considering Corollary 3.3. This implies that |P | = 127 and hence, 1272 ∤ |G|,
as desired. If m = 8, then applying a simple GAP program [16] shows that
k := 227.32.5.17.31.127.331 ∈ nse(L8(2)) = nse(G). Thus there exists l ∈ πe(G)
such that ml(G) = k. Since 126 ∤ ml(G), we get gcd(127, l) = 1. We claim
that P acts fixed point freely on the set {x ∈ G : O(x) = l}. If not, there
exists a natural number u such that 127ul ∈ πe(G) and hence, by Lemma 3.5,
m127ul(G) ≥ ϕ(127)ml(G) > |L8(2)|, which is a contradiction. This forces
|P | | ml(G) and hence |P | = 127, as desired. □

Lemma 3.8. If p | |G| and nse(G) = nse(Lm(2)) where m ∈ {n, n + 1}, then
p2 ∤ |G|.
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Proof. If n = 7, then Lemma 3.7 completes the proof. Now let n ̸= 7 and
let s be a Zsigmondy prime of 2n−1 − 1. If m = n + 1, then by Lemma

3.6(i), t = 2s ∈ πe(Lm(2)) and mt(Lm(2)) = ϕ(t)|Ln+1(2)|
2.(n−1).(2n−1−1) ∈ nse(G). Thus

there exists l ∈ πe(G) such that ml(G) = mt(Lm(2)). Since p − 1 ∤ ml(G),
gcd(p, l) = 1. We claim that P ∈ Sylp(G) acts fixed point freely on the set
{x ∈ G : O(x) = l}. If not, then for some natural number u, pul ∈ πe(G)
and by Lemma 3.5, mpul(G) ≥ ϕ(p)ml(G) ≥ |Lm(2)| and hence, mpul(G) ̸∈
nse(Lm(2)), which is a contradiction. Thus the fixed point free action of P on
{x ∈ G | O(x) = l} forces |P | to divide ml(G) and hence, |P | ≤ p, as desired.
If m = n, then it is enough to replace t = 2s with t = s and use Lemma 3.6(ii)
in the above argument. □

Corollary 3.9. If p | |G|, then for every r ∈ πe(G)− {p}, rp ̸∈ πe(G).

Proof. Suppose on the contrary that rp ∈ πe(G). Since p2 ∤ |G|, we deduce that
Sp(G) is cyclic and hence, mrp(G) = mp(G)ϕ(r)k, for some natural number k.

Thus mrp(G) = (p−1)|Lm(2)|ϕ(r)k
np and hence, one of the following holds:

• p | mrp(G). Then p | ϕ(r)k and hence, mrp(G) ≥ (p−1)|Lm(2)|
n =

(2n−2)|Lm(2)|
n > |Lm(2)|, which is a contradiction.

• p ∤ mrp(G). Then Corollary 3.4 shows that mrp(G) = mp(G) and
hence, r = 2. But m2(G) = m2(Lm(2)). Thus Corollary 3.4 forces
p | m2(G). On the other hand, (2.1) forces 2p | (1 +mp +m2 +m2p)
and p | (1+mp). It follows that p | m2p = mp, which is a contradiction.

Hence rp /∈ πe(G), as desired. □

Corollary 3.10. (i) np(G) = |Lm(2)|
np | |G|.

(ii) |G| | (p−1)|Lm(2)|
n .

Proof. Since p∥|G|, Sp(G) is cyclic, so mp(G) = ϕ(p)np(G). Thus Corollary
3.4 completes the proof of (i). Let r ∈ π(G)− {p}. Then by Corollary 3.9, the
Sylow r-subgroup of G acts fixed point freely on the set of elements of order p in

G and hence, |G|r | mp(G). Also, |G|p = p. This forces |G| | (p−1)|Lm(2)|
n . □

Corollary 3.11. If r ∈ π(Lu(2)) − {2}, then |Lu(2)|r ≤ 23u/2. In particular,
if r ∈ π(G)− {2}, then |G|r < 22m.

Proof. By Corollary 3.10, we can assume that r is a Zsigmondy prime of 2t−1,
where 2 ≤ t ≤ m. Let (2t − 1)r = rs. It is known that (

∏m
i=1(2

i − 1))r ≤
((2t − 1)r)

[mt ]([mt ]!)r < ((2t − 1)r)
[mt ]r

m
t(r−1) (it can for example be extracted

from [12, Lemma 1]). Since r ≥ 3, Corollary 3.10(ii) shows that |G|r ≤ (2n−1−
1)r|Lm(2)|r < 22m, as claimed. □

Lemma 3.12. G is neither a Frobenius group nor a 2-Frobenius group.
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Proof. Suppose on the contrary that, G is a Frobenius group with kernel K
and complement H. We have π(H) = {p} or π(K) = {p}. If π(K) = {p},
then since K⊴G and p∥|G|, we deduce that Sp(G) = K is a normal and cyclic
subgroup of G. Thus mp(G) = p− 1, which is a contradiction with Corollaries

3.3 and 3.4. Now, let π(H) = {p}. By Corollary 3.10, we have |Lm(2)|
np | |G|

and |G| | (p−1)|Lm(2)|
n , so there exists a prime divisor r of 2n−2 − 1 such that

|G|r = |Lm(2)|r. Also, Lemma 2.1 shows that {π(K), π(H)} = {π1(G), π2(G)}.
Thus r ∈ π(K). Since K is nilpotent, Sr(G) is a normal subgroup of G, so
Sp(G) acts fixed point freely on Sr(G) and hence, p | |Sr(G)| − 1. This shows
that either m = 6 and 31 | 49 − 1 or p ≤ |Sr(G)| ≤ 2n−2 − 1 < p, which are
impossible. If G is a 2-Frobenius group, then it follows from Lemma 2.3 that
there exists a normal series 1 ⊴ H ⊴ K ⊴ G such that K/H is a cyclic group
of order p and |G/K| | (p − 1). Also, K/H acts fixed point freely on H and
hence, the previous argument rules out this case. □

The above results show that p is an isolated point in the prime graph of G
and so t(G) ≥ 2. Since G is not a Frobenius or 2-Frobenius group, Lemma 2.4
shows that there exists a normal series 1 ⊴ H ⊴ K ⊴ G such that K/H is a
simple group and p is an odd order component of K/H. In Theorem 3.13, fix
S := K/H and L := Lm(2), where m ∈ {n, n + 1}. In what follows we need
the sets of order components of finite simple groups with disconnected prime
graph, which are given in [11] and [17].

Theorem 3.13. S is isomorphic to L.

Proof. By the classification of finite simple groups, we proceed the proof in the
following steps.

Step 1. S can not be an alternating group Ar, r ≥ 5.

Proof. If S ∼= Ar, then since 2n−1 = p ∈ π(S), r ≥ 2n−1. Thus there exists a

prime number u ∈ π(Ar) such that 2n−1 − 1 = (p−1)
2 < u < p. But |G| divides

(p−1)|L|
n . Therefore u ∈ π( (p−1)|L|

n ), which is a contradiction. □

Step 2. S is not a sporadic simple group.

Proof. Suppose that S is a sporadic simple group. Since one of the odd order
components of S is p, which is a Mersenne prime, we deduce, by considering
the odd order components of sporadic simple groups, that p = 7 or p = 31.
This forces n = 3 or n = 5. By our assumption n ≥ 5. Also considering the
order of sporadic simple groups with 31 as one of their odd order components

shows that |S| ∤ (p−1)|L|
n , and so |G| ∤ (p−1)|L|

n , which is a contradiction. □

Step 3. S ∼= L. By Steps 1 and 2, and the classification of finite simple
groups, S is a simple group of Lie type with disconnected prime graph. We
continue the proof in the following cases:
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Case 1. Let t(S) = 2. Then OC2(S) = 2n − 1.

1.1. If S ∼= Cn′(q), where n′ = 2t ≥ 2, then qn
′
+1

(2,q−1) = 2n − 1. Thus p is

a Zsigmondy prime of q2n
′ − 1, and hence Fermat’s little theorem shows that

2n′ | p − 1 = 2(2n−1 − 1). This forces n′ = 1, which is a contradiction. The
same reasoning rules out the case when either S ∼= Bn′(q) or S ∼= 2Dn′(q),
where n′ = 2t ≥ 4.

1.2. If S ∼= Cr(3) or Br(3), then
3r−1

2 = 2n − 1. Thus 2n+1 − 3r = 1,
which is a contradiction with Lemma 2.6. The same reasoning rules out the
case when S ∼= Dr(3) or S ∼= Dr+1(3).

1.3. If S ∼= Cr(2), then 2r − 1 = 2n − 1, and hence r = n. This implies that

2n
2 | |G| and so |G| ∤ (p−1)|L|

n , which is a contradiction. The same reasoning
rules out the cases when S ∼= Dr(2) or S ∼= Dr+1(2).

1.4. If S ∼= Dr(5), where r ≥ 5, then (5r − 1)/4 = (2n − 1). Thus 5r − 1 =
2n+2−4 and hence, 5(5r−1+1) = 2(2n+1+1). But 5r−1+1 | |S|, so 2n+1+1 | |G|.
Let r be a Zsigmondy prime of 22(n+1)− 1, then r | 2n+1+1. Thus r | |G|, and
hence r | (p−1)|L|

n , which is impossible.

1.5. If S ∼= 2Dn′(3), where 9 ≤ n′ = 2m + 1 and n′ is not prime, then
3n

′−1+1
2 = 2n − 1, and hence 3n

′−1 = 2n+1 − 3, which is a contradiction.

1.6. If S ∼= 2Dn′(2), where n′ = 2m + 1 ≥ 5, then 2n
′−1 + 1 = 2n − 1, and

hence 2n
′−1 = 2(2n−1 − 1), which is a contradiction.

1.7. If S ∼= 2Dr(3), where 5 ≤ r ̸= 2m + 1, then 3r+1
4 = 2n − 1, and hence

3r = 2n+2 − 5 = 4(2n + 1)− 9. Thus 9 | 2n + 1. So 9 = gcd(23 + 1, 2n + 1) and
hence, 3 | n. But n is prime, and hence n = 3, which is a contradiction.

1.8. If S ∼= G2(q), where 2 < q ≡ ϵ (mod 3) and ϵ = ±1, then q2 − ϵq+1 =
2n − 1. First, assume that q is an odd number. Then q2 − ϵq = 2(2n−1 − 1),

and hence q(q − ϵ) = 2(2
n−1
2 − 1)(2

n−1
2 + 1). Thus either q | (2n−1

2 − 1) or

q | (2n−1
2 + 1). If q | (2n−1

2 − 1), then 2
n−1
2 − 1 = kq. Therefore, q(q − ϵ) =

2kq(kq + 2) and hence, q − ϵ = 2k2q + 4k. Thus −ϵ − 4k = q(2k2 − 1), which
is a contradiction, since the right hand side is positive and the left hand side

is negative. If q | (2n−1
2 + 1), then 2

n−1
2 + 1 = kq. Thus q(q − ϵ) = 2kq(kq − 2)

and hence, q − ϵ = 2k2q − 4k. This implies that 4k − ϵ = q(2k2 − 1). Thus
q = 4k−ϵ

2k2−1 ∈ N. This forces k = 1 and so, q = 5. Thus 2n = 32 and hence,

n = 5. This gives that |S| ∤ (p−1)|L|
n , which is a contradiction.

Now, let q = 2t > 2, then 2t(2t − ϵ) = 2(2n−1 − 1). This forces t = 1 and
hence q = 2, which is a contradiction.

1.9. If S ∼= F4(q), where q is odd, then q4 − q2 + 1 = 2n − 1 and hence,
q2(q − 1)(q + 1) = 2(2n−1 − 1). This shows that 4 | 2(2n−1 − 1), which is a
contradiction. The same reasoning rules out the case when S ∼=3 D4(q).

1.10. If S ∼= 2F4(2)
′, then |S| = 211 · 33 · 52 · 13. Thus 2n − 1 = 13, which is

impossible.
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1.11. If S ∼= 2A3(2), then |S| = 26 · 34 · 5. Thus 2n − 1 = 5, which is
impossible.

1.12. Let r be an odd prime and S be isomorphic to the one of the following
simple groups:

a. Let S ∼= Lr(q), where (r, q) ̸= (3, 2), (3, 4) and for a prime u, q = uα.

First let u ̸= 2. Since qr−1
(r,q−1)(q−1) = 2n − 1, 2n < qr. So Corollary 3.11 forces

2n(r−1)/2 < |S|u = q
r(r−1)

2 ≤ |G|u ≤ 22m. Thus either r = 3 or r = 5 and

m = n + 1. This shows that q5−1
(r,q−1)(q−1) = 2n − 1 or q3−1

(r,q−1)(q−1) = 2n − 1.

If r = 5, then q(q4 − 1)/(q − 1) = 5(2n − 1) − 1 = 2(5.2n−1 − 5 + 2) or
q(q4 − 1)/(q − 1) = 2(2n−1 − 1). Thus u ∤ 2n−1 − 1 = (p − 1)/2, and hence
Corollary 3.11 guarantees that |G|u ≤ |Lm(2)|u ≤ 23m/2. Thus 22n < |S|u =

q
r(r−1)

2 ≤ |G|u ≤ 23m/2, which is a contradiction. If r = 3, then q3−1
(3,q−1)(q−1) =

2n−1 = p. Thus by Fermat’s little theorem 3α | p−1 = 2(2n−1−1), and hence
if w is a Zsigmondy prime of 2n−2 − 1, then an easy computation shows that
w ̸∈ π(S). Also, Ḡ/S ≤ Out(S), where Ḡ = G/H. So |Ḡ/S| = 2(3, q − 1)α.
This forces w ∈ π(H) and |H|w = |L|w. But H is nilpotent, so Sp(G) acts
fixed point freely on Sw(H) and hence, p | |Sw(H)|−1. Thus either m = 6 and
w = 7 and hence, 31 | 49 − 1 or 2n − 1 = p < 2n−2 − 1, which are impossible.
Now let u = 2. Then p is a Zsigmondy prime of 2n − 1 and 2rα − 1. Thus
n = rα. But n is prime, so α = 1 and n = r. If m = n, then S ∼= Ln(2), as
claimed. Now let m = n + 1 and r be a Zsigmondy prime of 2n+1 − 1. Then
r ∤ |Out(S)||S| = 2|S| and hence, r | |H|. But |H|r = |L|r = |2n+1 − 1|r and
hence, applying the previous argument leads us to get a contradiction. If n = 5,
then replacing r with 7 in the above argument leads us to get a contradiction.

b. Let S ∼= Lr+1(q), where (q − 1) | (r + 1) and for a prime u, q = uα.

First let u ̸= 2. Since qr−1
q−1 = 2n − 1, 2n < qr. So Corollary 3.11 forces

2n(r+1)/2 < |S|u = q
r(r+1)

2 ≤ |G|u ≤ 22m. Thus m = n + 1, r = 3 and

q ∈ {3, 5}. So 33−1
2 = 2n − 1 or 53−1

4 = 2n − 1. This forces q = n = 5. But

53 | |S|, while 53 ∤ (p−1)|L6(2)|/5, and hence |S| ∤ |G|, which is a contradiction.
Now let u = 2. Then p is a Zsigmondy prime of 2n − 1 and 2rα − 1. Thus
n = rα. But n is prime, so α = 1 and n = r. This forces S ∼= Ln+1(2). If
m = n, then, |S|2 > |G|2, which is a contradiction. If m = n+ 1, then S ∼= L,
as claimed.

c. Let S ∼= 2Ar−1(q). Then applying the same reasoning as that in Subcase
(a) we get a contradiction.

d. Let S ∼= 2Ar(q), where (q + 1) | (r + 1) and (r, q) ̸= (3, 3), (5, 2). Then
applying the same reasoning as that of in Subcase (b) we get a contradiction.

1.13. If S ∼= E6(q), where q = uα, then (q6+q3+1)
(3,q−1) = 2n − 1. First let u ̸= 2.

Thus q9 > 2n, and hence Corollary 3.11 shows that 24n < q36 = |S|u ≤ |G|u <
22m, which is a contradiction. Now let u = 2. Then p is a Zsigmondy prime of
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2n − 1 and 29f − 1. Thus n = 9f , which is a contradiction, because n is prime.
The same reasoning rules out the case when S ∼= 2E6(q), where q > 2.
Case 2. Let t(S) = 3. Then 2n − 1 ∈ {OC2(S), OC3(S)}.

2.1. If S ∼= L2(q), where 4 | q + 1, then q−1
2 = 2n − 1 or q = 2n − 1.

If q = 2n − 1, then q = p and

|S| = |L2(p)| =
1

(2, p− 1)
p(p2 − 1) = 2n(2n−1 − 1)(2n − 1).

On the other hand, S ≤ G/H ≤ Aut(S) and Out(S) ∼= Z2. Therefore 2n−2 −
1 | |H|. Let r be a Zsigmondy prime of 2n−2 − 1. Since H is nilpotent,
Sr(H) ⊴ G. Thus Corollary 3.9 shows that Sp(G) acts fixed point freely on
Sr(H). Therefore, |Sp(G)| | |Sr(H)| − 1, and hence Corollary 3.10 shows that
either p = 2n − 1 < 2n−2 − 1 or 31 | 49− 1, which is a contradiction.

If q−1
2 = 2n − 1, then q = 2n+1 − 1, and hence Lemma 2.6 shows that q is

prime. But 3 = 22 − 1 | 2n+1 − 1 = q, and hence 3 = q = 2n+1 − 1, which is
impossible.

2.2. If S ∼= L2(q), where 4 | q − 1, then q = 2n − 1 or q+1
2 = 2n − 1. If

q = 2n − 1, then q − 1 = 2(2n−1 − 1). But 4 | q − 1, which is a contradiction.
If q+1

2 = 2n − 1, then q = 2n+1 − 3. Thus |S| = q(q2 − 1)/(2, q − 1) =

4(2n+1 − 3)(2n − 1)(2n−1 − 1). Therefore 2n−2 − 1 | |H|, and hence repeating
the same argument as that of in Case 2.1 leads us to get a contradiction.

2.3. If S ∼= L2(q), where q > 2 and q is even, then |S| = q(q − 1)(q + 1). If
q − 1 = 2n − 1, then q = 2n. Thus |S| = 2n(2n − 1)(2n + 1) | |G|, and hence

(2n+1) | (p−1)|L|
n , which is a contradiction by considering the Zsigmondy prime

of 22n − 1. If q + 1 = 2n − 1, then q = 2(2n−1 − 1). But q is a power of 2 and
q > 2, so 2 | (2n−1 − 1), which is a contradiction.

2.4. If S ∼= 2A5(2) or S ∼= A2(2), then |S| = 215 · 36 · 7 · 11 or |S| = 8 · 3 · 7.
Clearly, 2n − 1 ̸= 11. If 2n − 1 = 7, then n = 3, which is a contradiction.

2.5. If S ∼= 2Dr(3), where r = 2t + 1 ≥ 5, then 3r+1
4 = 2n − 1 or 3r−1+1

2 =

2n − 1. If 3r+1
4 = 2n − 1, then the same reasoning as that of in Subcase 1.7

shows that r = 3 < 5, which is a contradiction. If 3r−1+1
2 = 2n − 1, then

2n+1 = 3r−1 − 3, which is impossible.
2.6. If S ∼= 2Dr+1(2), where r = 2n

′ − 1 and n′ ≥ 2, then 2r + 1 = 2n − 1
or 2r+1 + 1 = 2n − 1. Hence 2 | 2n−1 − 1, which is a contradiction.

2.7. If S ∼= G2(q), where q ≡ 0 (mod 3), then q2 − q + 1 = 2n − 1 or
q2+ q+1 = 2n−1, and hence q(q±1) = 2(2n−1−1). Thus the same reasoning
as that of in Subcase 1.8 leads us to get a contradiction.

2.8. If S ∼= 2G2(q), where q = 32t+1 > 3, then q −
√
3q + 1 = 2n − 1 or

q +
√
3q + 1 = 2n − 1. Thus 3t+1(3t + ϵ) = 2(2n−1 − 1), where ϵ = ±1. Thus

the same reasoning as that of in subcase 1.8 leads us to get a contradiction.
2.9. If S ∼= F4(q), where q is even, then q4 + 1 = 2n − 1 or q4 − q2 + 1 =

2n − 1. If q4 + 1 = 2n − 1, then 2 | (2n−1 − 1), which is a contradiction. If
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q4 − q2 + 1 = 2n − 1, then q2(q2 − 1) = 2(2n−1 − 1), which is a contradiction
because q is a power of 2.

2.10. If S ∼= 2F4(q), where q = 22t+1 > 2, thenOC2 = q2+
√
2q3+q−

√
2q+1

and OC3 = q2−
√

2q3+ q−
√
2q+1. Thus 2n− 1 = 22(2t+1)+ ϵ23t+2+22t+1+

ϵ2t+1+1, where ϵ = ±1, and hence 2(2n−1−1) = 2t+1(23t+1+ϵ22t+1+ϵ2t−1).
This forces t = 0, which is a contradiction.

2.11. If S ∼= E7(2), then 2n − 1 ∈ {73, 127}. It is evident 2n − 1 ̸= 73, and

hence 2n − 1 = 127, so n = 7. Thus |S| = |E7(2)| | 126·|L7(2)|
7 or |S| | 126·|L8(2)|

7 ,
which is impossible.

2.12. If S ∼= E7(3), then 2n − 1 ∈ {757, 1093}, which is impossible.
Case 3. Let t(S) ∈ {4, 5}. Then
2n − 1 ∈ {OC2(S), OC3(S), OC4(S), OC5(S)}.
3.1. If S ∼= A2(4), then n = 3 or n = 2, which is a contradiction.

The same reasoning rules out the case when S ∼= 2E6(2).
3.2. If S ∼= 2B2(q), where q = 22t+1 and t ≥ 1, then 2n − 1 is one of the

following values: q−1 = 2n−1. Thus 22t+1−1 = 2n−1, and hence n = 2t+1.
But (q −

√
2q + 1)(q +

√
2q + 1) = (q2 + 1) | |S|, so (22n + 1) | |G|, and hence

Corollary 3.10 shows that (22n + 1) | (p−1)|L|
n , which is a contradiction. If

q±
√
2q+1 = 2n− 1, then 2t+1(2t± 1) = 2(2n−1− 1). This forces t = 0, which

is a contradiction.
3.3. If S ∼= E8(q), then 2n− 1 = q10+q5+1

q2−q+1 = q8− q7+ q5− q4+ q3− q+1 or

2n−1 = q10−q5+1
q2−q+1 = q8+q7−q5−q4−q3+q+1 or 2n−1 = q10+1

q2+1 = q8−q6+q4−
q2+1 or 2n−1 = q8−q4+1. Thus q(q−1)(q+1)(q5−q4+q3+1) = 2(2n−1−1)
or q(q−1)(q+1)(q5+q4+q3−1) = 2(2n−1−1) or q2(q−1)(q+1)(q4+q2−1) =
2(2n−1 − 1) or q4(q − 1)(q + 1)(q2 + 1) = 2(2n−1 − 1). If q is odd, then q − 1
and q + 1 are even and so, 2 divides (2n−1 − 1), which is a contradiction. If
q is even, then q = 2 and 2n < 210. Thus 2120 = |E8(2)|2 > |G|2, which is a
contradiction.

The above steps show that S ∼= L, as claimed. □

Proof of the Main Theorem. By Lemma 2.4, we have L ≤ G/H ≤ Aut(L).
Since |Out(L)| = 2, we have G/H ∼= L or G/H ∼= Aut(L). Thus Corollary
3.10 shows that |H| | 2(2n−1 − 1)/n. However, by Corollary 3.9, Sp(G) acts
fixed point freely on H, so p = 2n − 1 | |H| − 1, while |H| < 2n−1 − 1. Thus
H = 1, and hence either G ∼= Lm(2) or G ∼= Aut(Lm(2)). But m2(Lm(2)) <
m2(Aut(Lm(2))) and since by Remark 2.7, m2(G) is the only odd element
of nse(G) and m2(Aut(Lm(2))) is an odd number too, we deduce that G ̸∼=
Aut(Lm(2)). Thus G ∼= Lm(2), as claimed. □
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