Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 5, pp. 1531-1542

Title:

NSE characterization of some linear groups

Author(s):

N. Ahanjideh, L. Mousavi and B. Taeri

Published by the Iranian Mathematical Society

NSE CHARACTERIZATION OF SOME LINEAR GROUPS

N. AHANJIDEH, L. MOUSAVI AND B. TAERI*
(Communicated by Cheryl E. Praeger)

Abstract

For a finite group G, let $\operatorname{nse}(G)=\left\{m_{k} \mid k \in \pi_{e}(G)\right\}$, where m_{k} is the number of elements of order k in G and $\pi_{e}(G)$ is the set of element orders of G. In this paper, we prove that $G \cong L_{m}(2)$ if and only if $p\left||G|\right.$ and $\operatorname{nse}(G)=\operatorname{nse}\left(L_{m}(2)\right)$, where $m \in\{n, n+1\}$ and $2^{n}-1=p$ is a prime number. Keywords: Set of the numbers of elements of the same order, prime graph, Mersenne number. MSC(2010): Primary: 20D06; Secondary: 20D15.

1. Introduction

For a finite group G and a positive integer t, let $M_{t}(G)$ be the set of all elements of G satisfying the equation $x^{t}=1$, that is $M_{t}(G)=\left\{g \in G \mid g^{t}=\right.$ $1\}$. The groups G_{1} and G_{2} are called of the same order type if and only if $\left|M_{t}\left(G_{1}\right)\right|=\left|M_{t}\left(G_{2}\right)\right|, t=1,2, \ldots$ In 1987, J.G. Thompson posed a question as follows:
Thompson's Problem. Suppose that G_{1} and G_{2} are of the same order type. If G_{1} is solvable, is it true that G_{2} is necessarily solvable?

For a natural number n, let $\pi(n)$ be the set of prime divisors of n. We denote by $\pi(G)$ the set of prime divisors of $|G|$ and by $\pi_{e}(G)$ the set of element orders of G. Let $\operatorname{nse}(G)=\left\{m_{k} \mid k \in \pi_{e}(G)\right\}$, where m_{k} is the number of elements of order k in G. It is well known that if G_{1} and G_{2} are of the same order type, then $\left|G_{1}\right|=\left|G_{2}\right|$ and nse $\left(G_{1}\right)=\operatorname{nse}\left(G_{2}\right)$. So it is natural to investigate Thompson's problem by $|G|$ and $\operatorname{nse}(G)$. The following example, due to Thompson, shows that there are finite groups which are not characterizable by nse (G) and $|G|$. For the groups $G_{1}=\left(C_{2} \times C_{2} \times C_{2} \times C_{2}\right) \rtimes A_{7}$ and $G_{2}=L_{3}(4) \rtimes C_{2}$ (which are maximal subgroups of the Mathieu group of degree 23), we have nse $\left(G_{1}\right)=$ $\operatorname{nse}\left(G_{2}\right)$ and $\left|G_{1}\right|=\left|G_{2}\right|$ but $G_{1} \nsubseteq G_{2}$.

[^0]The influence of nse (G) on the structure of finite groups was studied by some authors (see $[9,10,15]$). We say that the group G is characterizable by nse in the class \mathfrak{A} of groups, if every group $H \in \mathfrak{A}$ with nse $(G)=\operatorname{nse}(H)$ is isomorphic to G. Recently, Shao and Jiang [14] showed that the group $L_{2}(p)$, where p is prime, is characterizable by nse in the class of finite groups whom orders are divisible by p. They also showed [13] that the group $L_{2}\left(2^{a}\right)$, where either $2^{a}-1$ or $2^{a}+1$ is a prime, is characterizable by its order and nse in the class of finite groups. Aslo in [1] and [2], the characterization of some alternating groups, projective Symplectic groups and projective special orthogonal groups have been studied. It is known that $L_{3}(2) \cong L_{2}(7)$ and $L_{4}(2) \cong A_{8}$ (see [4]). Authors in $[9,10]$ showed that $L_{2}(7)$ and A_{8} are characterizable by nse. In this paper, we focus on the group $L_{m}(2)$, where $2^{n}-1=p \geq 31$ is a prime number and $m \in\{n, n+1\}$. In fact, we are going to prove the following theorem:

Theorem 1.1 (Main Theorem). Let G be a finite group, $2^{n}-1=p \geq 31$ be a prime number and $m \in\{n, n+1\}$. Then $G \cong L_{m}(2)$ if and only if $p||G|$ and $\operatorname{nse}(G)=\operatorname{nse}\left(L_{m}(2)\right)$.

To prove this theorem, we use the classification of finite simple groups with disconnected prime graph. The prime graph $G K(G)$ of G is the graph with the vertex set $\pi(G)$, where two distinct primes r and s are joined by an edge if G contains an element of order rs. Let $t(G)$ denote the number of connected components of G and let $\pi_{1}(G), \pi_{2}(G), \ldots, \pi_{t(G)}(G)$ be the sets of vertices of the connected components of $G K(G)$. We will use the notation π_{i} instead of $\pi_{i}(G)$, when it causes no ambiguity. If $2 \in \pi(G)$, then we always assume that $2 \in \pi_{1}(G)$. Also, $|G|$ can be expressed as a product of $O C_{1}, O C_{2}, \cdots, O C_{t(G)}$, where $O C_{i}$ is a positive integer with $\pi\left(O C_{i}\right)=\pi_{i}$. The $O C_{i}$'s are called the order components of G. In particular, an odd number $O C_{i}$ is called an odd order component of G . The sets of order components of finite simple groups with disconnected prime graph can be obtained using [11] and [17]. For a natural number n and a prime number a, we use $|n|_{a}=a^{e}$, when $a^{e} \| n$, i.e., $a^{e} \mid n$ but $a^{e+1} \nmid n$. All further unexplained notations are standard and can be found in [4], for instance.

2. Preliminaries

In this section, we present some useful lemmas which will be used in the proof of the main theorem.

Lemma 2.1 ([6]). Let G be a finite group and let t be a positive integer dividing $|G|$. If $M_{t}(G)=\left\{g \in G \mid g^{t}=1\right\}$, then $t\left|\left|M_{t}(G)\right|\right.$.

Lemma 2.2 ([3]). Let G be a Frobenius group of even order with kernel K and complement H. Then $t(G)=2$, the prime graph components of G are $\pi(H)$ and $\pi(K)$, and the following assertions hold:
(1) K is nilpotent;
(2) $|K| \equiv 1(\bmod |H|)$.

The group G is named a 2 -Frobenius group, when there exists a normal series $1 \unlhd H \unlhd K \unlhd G$ such that K and G / H are Frobenius groups with kernels H and K / H, respectively.

Lemma 2.3 ([17, Theorem 2]). Let G be a 2-Frobenius group of even order, which has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that K and G / H are Frobenius groups with kernels H and K / H, respectively. Then
(i) $t(G)=2$ and, $\pi_{1}=\pi(H) \cup \pi(G / K)$ and $\pi_{2}=\pi(K / H)$.
(ii) G / K and K / H are cyclic, $(|G / K|,|K / H|)=1$ and $|G / K|$ divides $|\operatorname{Aut}(K / H)|$.
(iii) H is a nilpotent group and G is a solvable group.

Lemma 2.4 ([17]). Let G be a finite group with $t(G) \geq 2$. Then one of the following statements holds:
(i) G is a Frobenius or 2-Frobenius group;
(ii) G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that H and G / K are π_{1} groups and K / H is a non abelian simple group, H is a nilpotent group and $|G / H|||\operatorname{Aut}(K / H)|$. Moreover, any odd order component of G is also an odd order component of K / H.
For a natural number k and a prime p, if $p^{m} \| k$, then we say that p^{m} is a p-part of k and denote it by k_{p}. The following result of Zsigmondy is used to prove the main theorem.
Lemma 2.5 ([18, Zsigmondy's Theorem $]$). Let n and a be integers greater than 1. Then there exists a prime divisor p of $a^{n}-1$ such that p does not divide $a^{i}-1$ for all $i, 1 \leq i \leq n-1$, except in the following cases:
(i) $n=2$ and $a=2^{k}-1$, where $k \geq 2$.
(ii) $n=6$ and $a=2$.

The prime p in Lemma 2.5 is called a Zsigmondy prime of $a^{n}-1$.
Lemma 2.6 ([5]). Let p and q be prime and $m, n>1$.
(i) With the exceptions of the relations $(239)^{2}-2(13)^{4}=1$ and $(3)^{5}-$ $2(11)^{2}=1$ every solution of the equation $p^{m}-2 q^{n}=1$ has exponents $m=n=2$.
(ii) The only solution of the equation $p^{m}-q^{n}=1$ is $3^{2}-2^{3}=1$.

Remark 2.7. Let H be a finite group. Clearly, for $n \in \pi_{e}(H), m_{n}=k \phi(n)$, where k is the number of cyclic subgroups of order n in H and $\phi(n)$ the Euler totient function of n. By Lemma 2.1 and the discussion above we have:

$$
\left\{\begin{array}{l}
\phi(n) \mid m_{n} \tag{2.1}\\
n \mid \Sigma_{d \mid n} m_{d}
\end{array}\right.
$$

If $n>2$, then $\phi(n)$ is even and hence, m_{n} is even. If $2 \in \pi(H)$, then (2.1) shows that $2 \mid 1+m_{2}$ and hence, m_{2} is odd. This implies that $a \in \operatorname{nse}(H)$ is odd if and only if $2 \in \pi(H)$ and $m_{2}(H)=a$.

3. Main results

Suppose that $c l_{G}(x)$ denotes the conjugacy class in G containing x. Throughout this section, let $n \geq 5,2^{n}-1=p$ be a prime, $m \in\{n, n+1\}, G$ a finite group such that $p\left||G|\right.$ and $\operatorname{nse}(G)=\operatorname{nse}\left(L_{m}(2)\right)$.

Lemma 3.1. For every $1 \neq x \in L_{m}(2)$, either $p\left|\left|c l_{L_{m}(2)}(x)\right|\right.$ or x has order p and $\left|c l_{L_{m}(2)}(x)\right|=\frac{\left|L_{m}(2)\right|}{p}$.
Proof. Let $p \nmid\left|c l_{L_{m}(2)}(x)\right|$. Then [8] implies that there exists a divisor r of n such that $\left|c l_{L_{m}(2)}(x)\right|=\frac{\left|L_{m}(2)\right|}{\left|L_{n / r}\left(2^{r}\right)\right|}$ and $r \neq 1$. Since $2^{n}-1$ is prime, n is prime and hence, $r=n$. This forces $\left|c l_{L_{m}(2)}(x)\right|=\frac{\left|L_{m}(2)\right|}{p}$. Thus $\left|C_{L_{m}(2)}(x)\right|=p$ and hence, x has order p, as claimed.

Let $r \in \pi(G)$. We denote by $S_{r}(G), \operatorname{Syl}_{r}(G)$ and $n_{r}(G)$, a Sylow r-subgroup of G, the set of Sylow r-subgroups of G and $\left|\operatorname{Syl}_{r}(G)\right|$, respectively. The following lemma is well-known and it can for example be extracted from [7]:

Lemma 3.2. $n_{p}\left(L_{m}(2)\right)=\frac{\left|L_{m}(2)\right|}{n p}$.
Corollary 3.3. For $u \in \pi_{e}\left(L_{m}(2)\right)$, either $p \mid m_{u}\left(L_{m}(2)\right)$ or $u=p$ and $m_{p}\left(L_{m}(2)\right)=\frac{(p-1)\left|L_{m}(2)\right|}{n p}$.
Proof. Since $\left|S_{p}\left(L_{m}(2)\right)\right|=p$, we deduce that $S_{p}\left(L_{m}(2)\right)$ is cyclic. Thus it is obvious that $m_{p}\left(L_{m}(2)\right)=\phi(p) \cdot n_{p}\left(L_{m}(2)\right)$ and Lemma 3.2 shows that $m_{p}\left(L_{m}(2)\right)=\frac{(p-1)\left|L_{m}(2)\right|}{n p}$.

On the other hand, $m_{u}\left(L_{m}(2)\right)=\sum_{\text {for some } y \in L_{m}(2) \text { with } O(y)=u}\left|c l_{L_{m}(2)}(y)\right|$, so Lemma 3.1 completes the proof.

Corollary 3.4. For every $u \in \pi_{e}(G), p \nmid m_{u}(G)$ if and only if $m_{u}(G)=$ $m_{p}\left(L_{m}(2)\right)$. In particular, $m_{p}(G)=m_{p}\left(L_{m}(2)\right)$.

Proof. Since $m_{u}(G) \in \operatorname{nse}\left(L_{m}(2)\right)$, Corollary 3.3 completes the proof. Also, by (2.1), $p \mid 1+m_{p}(G)$, so $p \nmid m_{p}(G)$. Thus $m_{p}(G)=m_{p}\left(L_{m}(2)\right)$, as claimed.

Lemma 3.5 ([1]). Let t be the number of cyclic subgroups of order n in G, namely H_{1}, \ldots, H_{t} and let for $1 \leq i \leq t$, β_{i} be the number of cyclic subgroups of $C_{G}\left(H_{i}\right)$ of order r, where $\operatorname{gcd}(r, n)=1$. If $\beta=\min \left\{\beta_{i}: 1 \leq i \leq t\right\}$, then $m_{n} \phi(r) \beta \leq m_{n r}(G)$.
Lemma 3.6. Let $n \neq 7$ and s be a Zsigmondy prime of $2^{n-1}-1$.
(i) If $t=2 s$, then $t \in \pi_{e}\left(L_{n+1}(2)\right)$ and $m_{t}\left(L_{n+1}(2)\right)=\frac{\phi(t)\left|L_{n+1}(2)\right|}{2(n-1)\left(2^{n-1}-1\right)}$.
(ii) If $t=s$, then $t \in \pi_{e}\left(L_{n}(2)\right)$ and $m_{t}\left(L_{n}(2)\right)=\frac{\phi(t)\left|L_{n}(2)\right|}{(n-1)\left(2^{n-1}-1\right)}$.

Proof. It is known that $2 s \in \pi_{e}\left(L_{n+1}(2)\right)$ and $s \in \pi_{e}\left(L_{n}(2)\right)$. Let x_{1} be an element of $L_{n-1}(2)$ of order s and $S_{1} \in \operatorname{Syl}_{s}\left(L_{n-1}(2)\right)$. Then [7, P. 187, Satz 7.3] implies that all subgroups of $L_{n-1}(2)$ of order s are conjugate with $\left\langle x_{1}\right\rangle, C_{L_{n-1}(2)}\left(\left\langle x_{1}\right\rangle\right)=C_{L_{n-1}(2)}\left(S_{1}\right)$ is a cyclic group of order $2^{n-1}-1$, and $\left|N_{L_{n-1}(2)}\left(S_{1}\right)\right|=\left|N_{L_{n-1}(2)}\left(\left\langle x_{1}\right\rangle\right)\right|=(n-1)\left(2^{n-1}-1\right)$. Since $S=\left\{\operatorname{diag}\left(I_{m-n+1}, y\right)\right.$: $\left.y \in S_{1}\right\} \in \operatorname{Syl}_{s}\left(L_{m}(2)\right)$, we can get that $\operatorname{diag}\left(I_{m-n+1}, x_{1}\right)$ is an element of $L_{m}(2)$ of order s and S is cyclic. On the other hand, we can see by Schur's lemma that

$$
\begin{aligned}
C_{L_{m}(2)}(S) & =C_{L_{m}(2)}\left(\left\langle\operatorname{diag}\left(I_{m-n+1}, x_{1}\right)\right\rangle\right) \\
& =\left\{\operatorname{diag}\left(y_{1}, y_{2}\right): y_{1} \in L_{m-n+1}(2), y_{2} \in C_{L_{n-1}(2)}\left(S_{1}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
N_{L_{m}(2)}(S) & =N_{L_{m}(2)}\left(\left\langle\operatorname{diag}\left(I_{m-n+1}, x_{1}\right)\right\rangle\right) \\
& =\left\{\operatorname{diag}\left(y_{1}, y_{2}\right): y_{1} \in L_{m-n+1}(2), y_{2} \in N_{L_{n-1}(2)}\left(S_{1}\right)\right\}
\end{aligned}
$$

This forces for every $g \in L_{m}(2), S^{g}=S$ or $S^{g} \cap S=1$ and hence,

$$
m_{s}\left(L_{m}(2)\right)=\phi(s) n_{s}\left(L_{m}(2)\right)=\frac{\phi(s)\left|L_{m}(2)\right|}{\left|L_{m-n+1}(2)\right|(n-1)\left(2^{n-1}-1\right)}
$$

If $m=n+1$, then since $m_{2}\left(L_{2}(2)\right)=m_{2}\left(C_{L_{m}(2)}\left(\left\langle\operatorname{diag}\left(I_{m-n+1}, x_{1}\right)\right\rangle\right)\right)=3$, Lemma 3.5 implies that $\left.m_{2 s}\left(L_{n+1}(2)\right)\right)=\frac{\phi(s)\left|L_{n+1}(2)\right|}{2(n-1)\left(2^{n-1}-1\right)}$, as claimed in (i). If $m=n$, then $\left|L_{m-n+1}(2)\right|=1$ and hence, (ii) follows.

Lemma 3.7. Let $m \in\{7,8\}$. If $127\left||G|\right.$ and $\operatorname{nse}(G)=\operatorname{nse}\left(L_{m}(2)\right)$, then $127^{2} \nmid|G|$.

Proof. Let $P \in \operatorname{Syl}_{127}(G)$. If $m=7$, then applying a simple GAP program [16] shows that for every $k \in \operatorname{nse}\left(L_{7}(2)\right)=\operatorname{nse}(G), 127^{2} \nmid\left(1+m_{127}+m_{k}\right)$ and hence $127^{2} \notin \pi_{e}(G)$. Therefore, every non-trivial element of P has order 127 and hence, Lemma 2.1 forces $|P|$ to divide $1+m_{127}(G)=1+23222833643520$, considering Corollary 3.3. This implies that $|P|=127$ and hence, $127^{2} \nmid|G|$, as desired. If $m=8$, then applying a simple GAP program [16] shows that $k:=2^{27} .3^{2} .5 \cdot 17.31 .127 .331 \in \operatorname{nse}\left(L_{8}(2)\right)=\operatorname{nse}(G)$. Thus there exists $l \in \pi_{e}(G)$ such that $m_{l}(G)=k$. Since $126 \nmid m_{l}(G)$, we get $\operatorname{gcd}(127, l)=1$. We claim that P acts fixed point freely on the set $\{x \in G: O(x)=l\}$. If not, there exists a natural number u such that $127^{u} l \in \pi_{e}(G)$ and hence, by Lemma 3.5, $m_{127^{u} l}(G) \geq \phi(127) m_{l}(G)>\left|L_{8}(2)\right|$, which is a contradiction. This forces $|P| \mid m_{l}(G)$ and hence $|P|=127$, as desired.

Lemma 3.8. If $p\left||G|\right.$ and $\operatorname{nse}(G)=\operatorname{nse}\left(L_{m}(2)\right)$ where $m \in\{n, n+1\}$, then $p^{2} \nmid|G|$.

Proof. If $n=7$, then Lemma 3.7 completes the proof. Now let $n \neq 7$ and let s be a Zsigmondy prime of $2^{n-1}-1$. If $m=n+1$, then by Lemma 3.6(i), $t=2 s \in \pi_{e}\left(L_{m}(2)\right)$ and $m_{t}\left(L_{m}(2)\right)=\frac{\phi(t)\left|L_{n+1}(2)\right|}{2 .(n-1) \cdot\left(2^{n-1}-1\right)} \in \operatorname{nse}(G)$. Thus there exists $l \in \pi_{e}(G)$ such that $m_{l}(G)=m_{t}\left(L_{m}(2)\right)$. Since $p-1 \nmid m_{l}(G)$, $\operatorname{gcd}(p, l)=1$. We claim that $P \in \operatorname{Syl}_{p}(G)$ acts fixed point freely on the set $\{x \in G: O(x)=l\}$. If not, then for some natural number $u, p^{u} l \in \pi_{e}(G)$ and by Lemma 3.5, $m_{p^{u} l}(G) \geq \phi(p) m_{l}(G) \geq\left|L_{m}(2)\right|$ and hence, $m_{p^{u} l}(G) \notin$ nse $\left(L_{m}(2)\right)$, which is a contradiction. Thus the fixed point free action of P on $\{x \in G \mid O(x)=l\}$ forces $|P|$ to divide $m_{l}(G)$ and hence, $|P| \leq p$, as desired. If $m=n$, then it is enough to replace $t=2 s$ with $t=s$ and use Lemma 3.6(ii) in the above argument.

Corollary 3.9. If $p\left||G|\right.$, then for every $r \in \pi_{e}(G)-\{p\}, r p \notin \pi_{e}(G)$.
Proof. Suppose on the contrary that $r p \in \pi_{e}(G)$. Since $p^{2} \nmid|G|$, we deduce that $S_{p}(G)$ is cyclic and hence, $m_{r p}(G)=m_{p}(G) \phi(r) k$, for some natural number k. Thus $m_{r p}(G)=\frac{(p-1)\left|L_{m}(2)\right| \phi(r) k}{n p}$ and hence, one of the following holds:

- $p \mid m_{r p}(G)$. Then $p \mid \phi(r) k$ and hence, $m_{r p}(G) \geq \frac{(p-1)\left|L_{m}(2)\right|}{n}=$ $\frac{\left(2^{n}-2\right)\left|L_{m}(2)\right|}{n}>\left|L_{m}(2)\right|$, which is a contradiction.
- $p \nmid m_{r p}(G)$. Then Corollary 3.4 shows that $m_{r p}(G)=m_{p}(G)$ and hence, $r=2$. But $m_{2}(G)=m_{2}\left(L_{m}(2)\right)$. Thus Corollary 3.4 forces $p \mid m_{2}(G)$. On the other hand, (2.1) forces $2 p \mid\left(1+m_{p}+m_{2}+m_{2 p}\right)$ and $p \mid\left(1+m_{p}\right)$. It follows that $p \mid m_{2 p}=m_{p}$, which is a contradiction.
Hence $r p \notin \pi_{e}(G)$, as desired.
Corollary 3.10. (i) $\left.n_{p}(G)=\frac{\left|L_{m}(2)\right|}{n p}| | G \right\rvert\,$.
(ii) $|G| \left\lvert\, \frac{(p-1)\left|L_{m}(2)\right|}{n}\right.$.

Proof. Since $p \||G|, S_{p}(G)$ is cyclic, so $m_{p}(G)=\phi(p) n_{p}(G)$. Thus Corollary 3.4 completes the proof of (i). Let $r \in \pi(G)-\{p\}$. Then by Corollary 3.9, the Sylow r-subgroup of G acts fixed point freely on the set of elements of order p in G and hence, $|G|_{r} \mid m_{p}(G)$. Also, $|G|_{p}=p$. This forces $|G| \left\lvert\, \frac{(p-1)\left|L_{m}(2)\right|}{n}\right.$.

Corollary 3.11. If $r \in \pi\left(L_{u}(2)\right)-\{2\}$, then $\left|L_{u}(2)\right|_{r} \leq 2^{3 u / 2}$. In particular, if $r \in \pi(G)-\{2\}$, then $|G|_{r}<2^{2 m}$.
Proof. By Corollary 3.10, we can assume that r is a Zsigmondy prime of $2^{t}-1$, where $2 \leq t \leq m$. Let $\left(2^{t}-1\right)_{r}=r^{s}$. It is known that $\left(\prod_{i=1}^{m}\left(2^{i}-1\right)\right)_{r} \leq$ $\left(\left(2^{t}-1\right)_{r}\right)^{\left[\frac{m}{t}\right]}\left(\left[\frac{m}{t}\right]!\right)_{r}<\left(\left(2^{t}-1\right)_{r}\right)^{\left[\frac{m}{t}\right]} r^{\frac{m}{t(r-1)}}$ (it can for example be extracted from [12, Lemma 1]). Since $r \geq 3$, Corollary 3.10(ii) shows that $|G|_{r} \leq\left(2^{n-1}-\right.$ $1)_{r}\left|L_{m}(2)\right|_{r}<2^{2 m}$, as claimed.

Lemma 3.12. G is neither a Frobenius group nor a 2-Frobenius group.

Proof. Suppose on the contrary that, G is a Frobenius group with kernel K and complement H. We have $\pi(H)=\{p\}$ or $\pi(K)=\{p\}$. If $\pi(K)=\{p\}$, then since $K \unlhd G$ and $p \||G|$, we deduce that $S_{p}(G)=K$ is a normal and cyclic subgroup of G. Thus $m_{p}(G)=p-1$, which is a contradiction with Corollaries 3.3 and 3.4. Now, let $\pi(H)=\{p\}$. By Corollary 3.10, we have $\frac{\left|L_{m}(2)\right|}{n p}||G|$ and $|G| \left\lvert\, \frac{(p-1)\left|L_{m}(2)\right|}{n}\right.$, so there exists a prime divisor r of $2^{n-2}-1$ such that $|G|_{r}=\left|L_{m}(2)\right|_{r}$. Also, Lemma 2.1 shows that $\{\pi(K), \pi(H)\}=\left\{\pi_{1}(G), \pi_{2}(G)\right\}$. Thus $r \in \pi(K)$. Since K is nilpotent, $S_{r}(G)$ is a normal subgroup of G, so $S_{p}(G)$ acts fixed point freely on $S_{r}(G)$ and hence, $p\left|\left|S_{r}(G)\right|-1\right.$. This shows that either $m=6$ and $31 \mid 49-1$ or $p \leq\left|S_{r}(G)\right| \leq 2^{n-2}-1<p$, which are impossible. If G is a 2-Frobenius group, then it follows from Lemma 2.3 that there exists a normal series $1 \unlhd H \unlhd K \unlhd G$ such that K / H is a cyclic group of order p and $|G / K| \mid(p-1)$. Also, K / H acts fixed point freely on H and hence, the previous argument rules out this case.

The above results show that p is an isolated point in the prime graph of G and so $t(G) \geq 2$. Since G is not a Frobenius or 2-Frobenius group, Lemma 2.4 shows that there exists a normal series $1 \unlhd H \unlhd K \unlhd G$ such that K / H is a simple group and p is an odd order component of K / H. In Theorem 3.13, fix $S:=K / H$ and $L:=L_{m}(2)$, where $m \in\{n, n+1\}$. In what follows we need the sets of order components of finite simple groups with disconnected prime graph, which are given in [11] and [17].

Theorem 3.13. S is isomorphic to L.
Proof. By the classification of finite simple groups, we proceed the proof in the following steps.

Step 1. S can not be an alternating group $\mathbb{A}_{r}, r \geq 5$.
Proof. If $S \cong \mathbb{A}_{r}$, then since $2^{n}-1=p \in \pi(S), r \geq 2^{n}-1$. Thus there exists a prime number $u \in \pi\left(\mathbb{A}_{r}\right)$ such that $2^{n-1}-1=\frac{(p-1)}{2}<u<p$. But $|G|$ divides $\frac{(p-1)|L|}{n}$. Therefore $u \in \pi\left(\frac{(p-1)|L|}{n}\right)$, which is a contradiction.

Step 2. S is not a sporadic simple group.
Proof. Suppose that S is a sporadic simple group. Since one of the odd order components of S is p, which is a Mersenne prime, we deduce, by considering the odd order components of sporadic simple groups, that $p=7$ or $p=31$. This forces $n=3$ or $n=5$. By our assumption $n \geq 5$. Also considering the order of sporadic simple groups with 31 as one of their odd order components shows that $|S| \nmid \frac{(p-1)|L|}{n}$, and so $|G| \nmid \frac{(p-1)|L|}{n}$, which is a contradiction.

Step 3. $S \cong L$. By Steps 1 and 2, and the classification of finite simple groups, S is a simple group of Lie type with disconnected prime graph. We continue the proof in the following cases:

Case 1. Let $t(S)=2$. Then $O C_{2}(S)=2^{n}-1$.
1.1. If $S \cong C_{n^{\prime}}(q)$, where $n^{\prime}=2^{t} \geq 2$, then $\frac{q^{n^{\prime}}+1}{(2, q-1)}=2^{n}-1$. Thus p is a Zsigmondy prime of $q^{2 n^{\prime}}-1$, and hence Fermat's little theorem shows that $2 n^{\prime} \mid p-1=2\left(2^{n-1}-1\right)$. This forces $n^{\prime}=1$, which is a contradiction. The same reasoning rules out the case when either $S \cong B_{n^{\prime}}(q)$ or $S \cong{ }^{2} D_{n^{\prime}}(q)$, where $n^{\prime}=2^{t} \geq 4$.
1.2. If $S \cong C_{r}(3)$ or $B_{r}(3)$, then $\frac{3^{r}-1}{2}=2^{n}-1$. Thus $2^{n+1}-3^{r}=1$, which is a contradiction with Lemma 2.6. The same reasoning rules out the case when $S \cong D_{r}(3)$ or $S \cong D_{r+1}(3)$.
1.3. If $S \cong C_{r}(2)$, then $2^{r}-1=2^{n}-1$, and hence $r=n$. This implies that $2^{n^{2}}| | G \mid$ and so $|G| \nmid \frac{(p-1)|L|}{n}$, which is a contradiction. The same reasoning rules out the cases when $S \cong D_{r}(2)$ or $S \cong D_{r+1}(2)$.
1.4. If $S \cong D_{r}(5)$, where $r \geq 5$, then $\left(5^{r}-1\right) / 4=\left(2^{n}-1\right)$. Thus $5^{r}-1=$ $2^{n+2}-4$ and hence, $5\left(5^{r-1}+1\right)=2\left(2^{n+1}+1\right)$. But $5^{r-1}+1| | S \mid$, so $2^{n+1}+1| | G \mid$. Let r be a Zsigmondy prime of $2^{2(n+1)}-1$, then $r \mid 2^{n+1}+1$. Thus $r||G|$, and hence $r \left\lvert\, \frac{(p-1)|L|}{n}\right.$, which is impossible.
1.5. If $S \cong{ }^{2} D_{n^{\prime}}(3)$, where $9 \leq n^{\prime}=2^{m}+1$ and n^{\prime} is not prime, then $\frac{3^{n^{\prime}-1}+1}{2}=2^{n}-1$, and hence $3^{n^{\prime}-1}=2^{n+1}-3$, which is a contradiction.
1.6. If $S \cong{ }^{2} D_{n^{\prime}}(2)$, where $n^{\prime}=2^{m}+1 \geq 5$, then $2^{n^{\prime}-1}+1=2^{n}-1$, and hence $2^{n^{\prime}-1}=2\left(2^{n-1}-1\right)$, which is a contradiction.
1.7. If $S \cong{ }^{2} D_{r}(3)$, where $5 \leq r \neq 2^{m}+1$, then $\frac{3^{r}+1}{4}=2^{n}-1$, and hence $3^{r}=2^{n+2}-5=4\left(2^{n}+1\right)-9$. Thus $9 \mid 2^{n}+1$. So $9=\operatorname{gcd}\left(2^{3}+1,2^{n}+1\right)$ and hence, $3 \mid n$. But n is prime, and hence $n=3$, which is a contradiction.
1.8. If $S \cong G_{2}(q)$, where $2<q \equiv \epsilon(\bmod 3)$ and $\epsilon= \pm 1$, then $q^{2}-\epsilon q+1=$ $2^{n}-1$. First, assume that q is an odd number. Then $q^{2}-\epsilon q=2\left(2^{n-1}-1\right)$, and hence $q(q-\epsilon)=2\left(2^{\frac{n-1}{2}}-1\right)\left(2^{\frac{n-1}{2}}+1\right)$. Thus either $q \left\lvert\,\left(2^{\frac{n-1}{2}}-1\right)\right.$ or $q \left\lvert\,\left(2^{\frac{n-1}{2}}+1\right)\right.$. If $q \left\lvert\,\left(2^{\frac{n-1}{2}}-1\right)\right.$, then $2^{\frac{n-1}{2}}-1=k q$. Therefore, $q(q-\epsilon)=$ $2 k q(k q+2)$ and hence, $q-\epsilon=2 k^{2} q+4 k$. Thus $-\epsilon-4 k=q\left(2 k^{2}-1\right)$, which is a contradiction, since the right hand side is positive and the left hand side is negative. If $q \left\lvert\,\left(2^{\frac{n-1}{2}}+1\right)\right.$, then $2^{\frac{n-1}{2}}+1=k q$. Thus $q(q-\epsilon)=2 k q(k q-2)$ and hence, $q-\epsilon=2 k^{2} q-4 k$. This implies that $4 k-\epsilon=q\left(2 k^{2}-1\right)$. Thus $q=\frac{4 k-\epsilon}{2 k^{2}-1} \in \mathbb{N}$. This forces $k=1$ and so, $q=5$. Thus $2^{n}=32$ and hence, $n=5$. This gives that $|S| \nmid \frac{(p-1)|L|}{n}$, which is a contradiction.

Now, let $q=2^{t}>2$, then $2^{t}\left(2^{t}-\epsilon\right)=2\left(2^{n-1}-1\right)$. This forces $t=1$ and hence $q=2$, which is a contradiction.
1.9. If $S \cong F_{4}(q)$, where q is odd, then $q^{4}-q^{2}+1=2^{n}-1$ and hence, $q^{2}(q-1)(q+1)=2\left(2^{n-1}-1\right)$. This shows that $4 \mid 2\left(2^{n-1}-1\right)$, which is a contradiction. The same reasoning rules out the case when $S \cong{ }^{3} D_{4}(q)$.
1.10. If $S \cong{ }^{2} F_{4}(2)^{\prime}$, then $|S|=2^{11} \cdot 3^{3} \cdot 5^{2} \cdot 13$. Thus $2^{n}-1=13$, which is impossible.
1.11. If $S \cong{ }^{2} A_{3}(2)$, then $|S|=2^{6} \cdot 3^{4} \cdot 5$. Thus $2^{n}-1=5$, which is impossible.
1.12. Let r be an odd prime and S be isomorphic to the one of the following simple groups:
a. Let $S \cong L_{r}(q)$, where $(r, q) \neq(3,2),(3,4)$ and for a prime $u, q=u^{\alpha}$. First let $u \neq 2$. Since $\frac{q^{r}-1}{(r, q-1)(q-1)}=2^{n}-1,2^{n}<q^{r}$. So Corollary 3.11 forces $2^{n(r-1) / 2}<|S|_{u}=q^{\frac{r(r-1)}{2}} \leq|G|_{u} \leq 2^{2 m}$. Thus either $r=3$ or $r=5$ and $m=n+1$. This shows that $\frac{q^{5}-1}{(r, q-1)(q-1)}=2^{n}-1$ or $\frac{q^{3}-1}{(r, q-1)(q-1)}=2^{n}-1$. If $r=5$, then $q\left(q^{4}-1\right) /(q-1)=5\left(2^{n}-1\right)-1=2\left(5.2^{n-1}-5+2\right)$ or $q\left(q^{4}-1\right) /(q-1)=2\left(2^{n-1}-1\right)$. Thus $u \nmid 2^{n-1}-1=(p-1) / 2$, and hence Corollary 3.11 guarantees that $|G|_{u} \leq\left|L_{m}(2)\right|_{u} \leq 2^{3 m / 2}$. Thus $2^{2 n}<|S|_{u}=$ $q^{\frac{r(r-1)}{2}} \leq|G|_{u} \leq 2^{3 m / 2}$, which is a contradiction. If $r=3$, then $\frac{q^{3}-1}{(3, q-1)(q-1)}=$ $2^{n}-1=p$. Thus by Fermat's little theorem $3 \alpha \mid p-1=2\left(2^{n-1}-1\right)$, and hence if w is a Zsigmondy prime of $2^{n-2}-1$, then an easy computation shows that $w \notin \pi(S)$. Also, $\bar{G} / S \leq \operatorname{Out}(S)$, where $\bar{G}=G / H$. So $|\bar{G} / S|=2(3, q-1) \alpha$. This forces $w \in \pi(H)$ and $|H|_{w}=|L|_{w}$. But H is nilpotent, so $S_{p}(G)$ acts fixed point freely on $S_{w}(H)$ and hence, $p\left|\left|S_{w}(H)\right|-1\right.$. Thus either $m=6$ and $w=7$ and hence, $31 \mid 49-1$ or $2^{n}-1=p<2^{n-2}-1$, which are impossible. Now let $u=2$. Then p is a Zsigmondy prime of $2^{n}-1$ and $2^{r \alpha}-1$. Thus $n=r \alpha$. But n is prime, so $\alpha=1$ and $n=r$. If $m=n$, then $S \cong L_{n}(2)$, as claimed. Now let $m=n+1$ and r be a Zsigmondy prime of $2^{n+1}-1$. Then $r \nmid|\operatorname{Out}(S)||S|=2|S|$ and hence, $\left.r||H|$. But $| H\right|_{r}=|L|_{r}=\left|2^{n+1}-1\right|_{r}$ and hence, applying the previous argument leads us to get a contradiction. If $n=5$, then replacing r with 7 in the above argument leads us to get a contradiction.
b. Let $S \cong L_{r+1}(q)$, where $(q-1) \mid(r+1)$ and for a prime $u, q=u^{\alpha}$. First let $u \neq 2$. Since $\frac{q^{r}-1}{q-1}=2^{n}-1,2^{n}<q^{r}$. So Corollary 3.11 forces $2^{n(r+1) / 2}<|S|_{u}=q^{\frac{r(r+1)}{2}} \leq|G|_{u} \leq 2^{2 m}$. Thus $m=n+1, r=3$ and $q \in\{3,5\}$. So $\frac{3^{3}-1}{2}=2^{n}-1$ or $\frac{5^{3}-1}{4}=2^{n}-1$. This forces $q=n=5$. But $5^{3}| | S \mid$, while $5^{3} \nmid(p-1)\left|L_{6}(2)\right| / 5$, and hence $|S| \nmid|G|$, which is a contradiction. Now let $u=2$. Then p is a Zsigmondy prime of $2^{n}-1$ and $2^{r \alpha}-1$. Thus $n=r \alpha$. But n is prime, so $\alpha=1$ and $n=r$. This forces $S \cong L_{n+1}(2)$. If $m=n$, then, $|S|_{2}>|G|_{2}$, which is a contradiction. If $m=n+1$, then $S \cong L$, as claimed.
c. Let $S \cong{ }^{2} A_{r-1}(q)$. Then applying the same reasoning as that in Subcase (a) we get a contradiction.
d. Let $S \cong{ }^{2} A_{r}(q)$, where $(q+1) \mid(r+1)$ and $(r, q) \neq(3,3),(5,2)$. Then applying the same reasoning as that of in Subcase (b) we get a contradiction.
1.13. If $S \cong E_{6}(q)$, where $q=u^{\alpha}$, then $\frac{\left(q^{6}+q^{3}+1\right)}{(3, q-1)}=2^{n}-1$. First let $u \neq 2$. Thus $q^{9}>2^{n}$, and hence Corollary 3.11 shows that $2^{4 n}<q^{36}=|S|_{u} \leq|G|_{u}<$ $2^{2 m}$, which is a contradiction. Now let $u=2$. Then p is a Zsigmondy prime of
$2^{n}-1$ and $2^{9 f}-1$. Thus $n=9 f$, which is a contradiction, because n is prime. The same reasoning rules out the case when $S \cong{ }^{2} E_{6}(q)$, where $q>2$.
Case 2. Let $t(S)=3$. Then $2^{n}-1 \in\left\{O C_{2}(S), O C_{3}(S)\right\}$.
2.1. If $S \cong L_{2}(q)$, where $4 \mid q+1$, then $\frac{q-1}{2}=2^{n}-1$ or $q=2^{n}-1$. If $q=2^{n}-1$, then $q=p$ and

$$
|S|=\left|L_{2}(p)\right|=\frac{1}{(2, p-1)} p\left(p^{2}-1\right)=2^{n}\left(2^{n-1}-1\right)\left(2^{n}-1\right)
$$

On the other hand, $S \leq G / H \leq \operatorname{Aut}(S)$ and $\operatorname{Out}(S) \cong \mathbb{Z}_{2}$. Therefore $2^{n-2}-$ $1\left||H|\right.$. Let r be a Zsigmondy prime of $2^{n-2}-1$. Since H is nilpotent, $S_{r}(H) \unlhd G$. Thus Corollary 3.9 shows that $S_{p}(G)$ acts fixed point freely on $S_{r}(H)$. Therefore, $\left|S_{p}(G)\right|\left|\left|S_{r}(H)\right|-1\right.$, and hence Corollary 3.10 shows that either $p=2^{n}-1<2^{n-2}-1$ or $31 \mid 49-1$, which is a contradiction.

If $\frac{q-1}{2}=2^{n}-1$, then $q=2^{n+1}-1$, and hence Lemma 2.6 shows that q is prime. But $3=2^{2}-1 \mid 2^{n+1}-1=q$, and hence $3=q=2^{n+1}-1$, which is impossible.
2.2. If $S \cong L_{2}(q)$, where $4 \mid q-1$, then $q=2^{n}-1$ or $\frac{q+1}{2}=2^{n}-1$. If $q=2^{n}-1$, then $q-1=2\left(2^{n-1}-1\right)$. But $4 \mid q-1$, which is a contradiction. If $\frac{q+1}{2}=2^{n}-1$, then $q=2^{n+1}-3$. Thus $|S|=q\left(q^{2}-1\right) /(2, q-1)=$ $4\left(2^{n+1}-3\right)\left(2^{n}-1\right)\left(2^{n-1}-1\right)$. Therefore $2^{n-2}-1| | H \mid$, and hence repeating the same argument as that of in Case 2.1 leads us to get a contradiction.
2.3. If $S \cong L_{2}(q)$, where $q>2$ and q is even, then $|S|=q(q-1)(q+1)$. If $q-1=2^{n}-1$, then $q=2^{n}$. Thus $|S|=2^{n}\left(2^{n}-1\right)\left(2^{n}+1\right)| | G \mid$, and hence $\left(2^{n}+1\right) \left\lvert\, \frac{(p-1)|L|}{n}\right.$, which is a contradiction by considering the Zsigmondy prime of $2^{2 n}-1$. If $q+1=2^{n}-1$, then $q=2\left(2^{n-1}-1\right)$. But q is a power of 2 and $q>2$, so $2 \mid\left(2^{n-1}-1\right)$, which is a contradiction.
2.4. If $S \cong{ }^{2} A_{5}(2)$ or $S \cong A_{2}(2)$, then $|S|=2^{15} \cdot 3^{6} \cdot 7 \cdot 11$ or $|S|=8 \cdot 3 \cdot 7$. Clearly, $2^{n}-1 \neq 11$. If $2^{n}-1=7$, then $n=3$, which is a contradiction.
2.5. If $S \cong{ }^{2} D_{r}(3)$, where $r=2^{t}+1 \geq 5$, then $\frac{3^{r}+1}{4}=2^{n}-1$ or $\frac{3^{r-1}+1}{2}=$ $2^{n}-1$. If $\frac{3^{r}+1}{4}=2^{n}-1$, then the same reasoning as that of in Subcase 1.7 shows that $r=3<5$, which is a contradiction. If $\frac{3^{r-1}+1}{2}=2^{n}-1$, then $2^{n+1}=3^{r-1}-3$, which is impossible.
2.6. If $S \cong{ }^{2} D_{r+1}(2)$, where $r=2^{n^{\prime}}-1$ and $n^{\prime} \geq 2$, then $2^{r}+1=2^{n}-1$ or $2^{r+1}+1=2^{n}-1$. Hence $2 \mid 2^{n-1}-1$, which is a contradiction.
2.7. If $S \cong G_{2}(q)$, where $q \equiv 0(\bmod 3)$, then $q^{2}-q+1=2^{n}-1$ or $q^{2}+q+1=2^{n}-1$, and hence $q(q \pm 1)=2\left(2^{n-1}-1\right)$. Thus the same reasoning as that of in Subcase 1.8 leads us to get a contradiction.
2.8. If $S \cong{ }^{2} G_{2}(q)$, where $q=3^{2 t+1}>3$, then $q-\sqrt{3 q}+1=2^{n}-1$ or $q+\sqrt{3 q}+1=2^{n}-1$. Thus $3^{t+1}\left(3^{t}+\epsilon\right)=2\left(2^{n-1}-1\right)$, where $\epsilon= \pm 1$. Thus the same reasoning as that of in subcase 1.8 leads us to get a contradiction.
2.9. If $S \cong F_{4}(q)$, where q is even, then $q^{4}+1=2^{n}-1$ or $q^{4}-q^{2}+1=$ $2^{n}-1$. If $q^{4}+1=2^{n}-1$, then $2 \mid\left(2^{n-1}-1\right)$, which is a contradiction. If
$q^{4}-q^{2}+1=2^{n}-1$, then $q^{2}\left(q^{2}-1\right)=2\left(2^{n-1}-1\right)$, which is a contradiction because q is a power of 2 .
2.10. If $S \cong{ }^{2} F_{4}(q)$, where $q=2^{2 t+1}>2$, then $O C_{2}=q^{2}+\sqrt{2 q^{3}}+q-\sqrt{2 q}+1$ and $O C_{3}=q^{2}-\sqrt{2 q^{3}}+q-\sqrt{2 q}+1$. Thus $2^{n}-1=2^{2(2 t+1)}+\epsilon 2^{3 t+2}+2^{2 t+1}+$ $\epsilon 2^{t+1}+1$, where $\epsilon= \pm 1$, and hence $2\left(2^{n-1}-1\right)=2^{t+1}\left(2^{3 t+1}+\epsilon 2^{2 t+1}+\epsilon 2^{t}-1\right)$. This forces $t=0$, which is a contradiction.
2.11. If $S \cong E_{7}(2)$, then $2^{n}-1 \in\{73,127\}$. It is evident $2^{n}-1 \neq 73$, and hence $2^{n}-1=127$, so $n=7$. Thus $|S|=\left|E_{7}(2)\right| \left\lvert\, \frac{126 \cdot\left|L_{7}(2)\right|}{7}\right.$ or $|S| \left\lvert\, \frac{126 \cdot\left|L_{8}(2)\right|}{7}\right.$, which is impossible.
2.12. If $S \cong E_{7}(3)$, then $2^{n}-1 \in\{757,1093\}$, which is impossible.

Case 3. Let $t(S) \in\{4,5\}$. Then
$2^{n}-1 \in\left\{O C_{2}(S), O C_{3}(S), O C_{4}(S), O C_{5}(S)\right\}$.
3.1. If $S \cong A_{2}(4)$, then $n=3$ or $n=2$, which is a contradiction. The same reasoning rules out the case when $S \cong{ }^{2} E_{6}(2)$.
3.2. If $S \cong{ }^{2} B_{2}(q)$, where $q=2^{2 t+1}$ and $t \geq 1$, then $2^{n}-1$ is one of the following values: $q-1=2^{n}-1$. Thus $2^{2 t+1}-1=2^{n}-1$, and hence $n=2 t+1$. But $(q-\sqrt{2 q}+1)(q+\sqrt{2 q}+1)=\left(q^{2}+1\right)| | S \mid$, so $\left(2^{2 n}+1\right)||G|$, and hence Corollary 3.10 shows that $\left(2^{2 n}+1\right) \left\lvert\, \frac{(p-1)|L|}{n}\right.$, which is a contradiction. If $q \pm \sqrt{2 q}+1=2^{n}-1$, then $2^{t+1}\left(2^{t} \pm 1\right)=2\left(2^{n-1}-1\right)$. This forces $t=0$, which is a contradiction.
3.3. If $S \cong E_{8}(q)$, then $2^{n}-1=\frac{q^{10}+q^{5}+1}{q^{2}-q+1}=q^{8}-q^{7}+q^{5}-q^{4}+q^{3}-q+1$ or $2^{n}-1=\frac{q^{10}-q^{5}+1}{q^{2}-q+1}=q^{8}+q^{7}-q^{5}-q^{4}-q^{3}+q+1$ or $2^{n}-1=\frac{q^{10}+1}{q^{2}+1}=q^{8}-q^{6}+q^{4}-$ $q^{2}+1$ or $2^{n}-1=q^{8}-q^{4}+1$. Thus $q(q-1)(q+1)\left(q^{5}-q^{4}+q^{3}+1\right)=2\left(2^{n-1}-1\right)$ or $q(q-1)(q+1)\left(q^{5}+q^{4}+q^{3}-1\right)=2\left(2^{n-1}-1\right)$ or $q^{2}(q-1)(q+1)\left(q^{4}+q^{2}-1\right)=$ $2\left(2^{n-1}-1\right)$ or $q^{4}(q-1)(q+1)\left(q^{2}+1\right)=2\left(2^{n-1}-1\right)$. If q is odd, then $q-1$ and $q+1$ are even and so, 2 divides $\left(2^{n-1}-1\right)$, which is a contradiction. If q is even, then $q=2$ and $2^{n}<2^{10}$. Thus $2^{120}=\left|E_{8}(2)\right|_{2}>|G|_{2}$, which is a contradiction.

The above steps show that $S \cong L$, as claimed.
Proof of the Main Theorem. By Lemma 2.4, we have $L \leq G / H \leq \operatorname{Aut}(L)$. Since $|\operatorname{Out}(L)|=2$, we have $G / H \cong L$ or $G / H \cong \operatorname{Aut}(L)$. Thus Corollary 3.10 shows that $|H| \mid 2\left(2^{n-1}-1\right) / n$. However, by Corollary 3.9, $S_{p}(G)$ acts fixed point freely on H, so $p=2^{n}-1| | H \mid-1$, while $|H|<2^{n-1}-1$. Thus $H=1$, and hence either $G \cong L_{m}(2)$ or $G \cong \operatorname{Aut}\left(L_{m}(2)\right)$. But $m_{2}\left(L_{m}(2)\right)<$ $m_{2}\left(\operatorname{Aut}\left(L_{m}(2)\right)\right)$ and since by Remark 2.7, $m_{2}(G)$ is the only odd element of $\operatorname{nse}(G)$ and $m_{2}\left(\operatorname{Aut}\left(L_{m}(2)\right)\right)$ is an odd number too, we deduce that $G \not \approx$ $\operatorname{Aut}\left(L_{m}(2)\right)$. Thus $G \cong L_{m}(2)$, as claimed.

References

[1] N. Ahanjideh and B. Asadian, NSE characterization of some alternating groups, J. Algebra Appl. 14 (2015), no. 2, 1550012, 14 pages.
[2] S. Asgary and N. Ahanjideh, Nse characterization of some finite simple groups, An. Ştiin. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 62 (2016), no. 2, vol. 3, 797-806.
[3] G.Y. Chen, On Frobenius and 2-Frobenius group, J. Southwest China Normal Univ. 20 (1995), no. 5, 485-487.
[4] J.H. Conway, R. Curtis, S. Norton and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[5] P. Crescenzo, A diophantine equation which arises in the theory of finite groups, $A d v$. Math. 17 (1975), 25-29.
[6] J.D. Frobenius, Verallgemeinerung des Sylowschen Satse, Berliner Sitz (1895), 981-993.
[7] B. Huppert, Endliche Gruppen, Springer-verlag, 1967.
[8] W. Kantor, Linear groups containing a Singer cycle, J. Algebra 62 (1980), 232-234.
[9] A. Khalili Asboei, A new characterization of A_{7} and A_{8}, An. St. Univ. Ovidius Constanta 21 (2013), no. 3, 43-50.
[10] M. Khatami, B. Khosravi and Z. Akhlaghi, A new characterization for some linear groups, Monatsh. Math. 163 (2009), 39-50.
[11] A. S. Kondratév, Prime graph components of finite simple groups, Math. USSR-Sb. 67 (1990), no. 1, 235-247.
[12] X. Li, Characterization of the finite simple groups, J. Algebra 254 (2001), 620-649.
[13] C. Shao and Q. Jiang, A new characterization of some linear group by nse, J. Algebra Appl. 13 (2014), no. 2, 1350094, 9 pages.
[14] C. Shao and Q. Jiang, A new characterization of $\mathrm{PSL}_{2}(p)$ by nse, J. Algebra Appl. 13 (2014), no. 4, 1350123, 5 pages.
[15] R. Shen, C. Shao, Q. Jiang, W. Shi and V. Mazurov, A new characterization of A_{5}, Monatsh. Math. 160 (2010), 337-341.
[16] The GAP Group, GAP-Groups, Algorithms and Programming, Vers. 4.6.12, 2008, http: //www.gap-system.org.
[17] J. S. Williams, Prime graph components of finite groups, J. Algebra 69 (1981), 487-513.
[18] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), 265-284.
(Neda Ahanjideh) Faculty of Mathematical Sciences, Department of Pure Mathematics, Shahrekord University, Shahrekord, Iran.

E-mail address: ahanjideh.neda@sci.sku.ac.ir
(Leila Mousavi) Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran.

E-mail address: l.mousavi@math.iut.ac.ir
(Bijan Taeri) Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran.

E-mail address: b.taeri@cc.iut.ac.ir

[^0]: Article electronically published on 31 October, 2017.
 Received: 24 April 2016, Accepted: 9 October 2016.

 * Corresponding author.

