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ABSTRACT. In this paper we consider some new classes of multivalent
functions by using Aouf-Silverman-Srivastava operator and we derive
some interesting results using convolution and subordination technique.
These new classes are the extensions of some classes introduced before.
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1. Introduction

Let A(p), p=1,2,3,..., be the class of p—valent analytic functions
(1.1) F2) =2+ 3 anspat e,
k=1

defined in the open unit disc U = {z : |z| < 1}.

We say f € A(p) is subordinate to g € A(p), written f < g, if and only
if there exists a Schwarz function w, w (0) = 0 and |w(z)| < 1 in U such that
f(2) = g(w(2)). The classes S* and K of starlike and convex functions consist

of all functions in A(1) such ) ez @R 12 2 € U, respectively.

f(2) I-z> = f(2) z
Ma and Minda type, [15], starlike and convex functions are given by
/
(12) 50 ={reaw: FE <o), sev}.

2f"(2)
f'(2)
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(1.3) IC(<p)={feA(1):{1+ ]<<p(z),zeU},
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where ¢ is analytic in U with ¢ (0) = 1. For ¢(z) = 1££ (1.2) and (1.3) reduce
to &* and K respectively. For different choice ¢ we can obtain some other well
known classes investigated earlier.

For p—valent analytic functions f given by (1.1) and g(z) = 2 +

S22, betpz™ P, the Hadamard product (convolution) is defined as;

(fxg)(2) =2+ Z ot pbigpz™ TP
k=1

The study of these operators play an important role in the geometric func-
tion theory. Many differential and integral operators can be written in terms
of convolution of certain analytic functions. Libera [14] introduced an inte-
gral operator and showed that the S§* and K classes are closed under this
operator. Bernardi [3] gave a generalized operator and studied its properties.
Ruscheweyh [19], Noor and Noor [17, 18], Noor [16] and many others, for ex-
ample, [4, 13], defined new operators and studied various classes of analytic
and univalent functions generalizing a number of previously known classes and
at times discovering new classes of analytic functions. Sokét introduced and
studied certain classes of p-valent functions using Aouf-Silverman-Srivastava
operator and derived some interesting results in [20], in the present paper we
extend this work, by using convolution and subordination technique.

Next we discuss an important operator as;

Let au, A1,...,0q4,Aq and 51, By,....0s, Bs (¢, s € N) be positive real pa-
rameters such that

q
1+§:Bi—ZAizo.
=1 =1

The Wright generalized hypergeometric function

q\Ils [(OllyAl) ey (alhAq) ; (ﬂl»Bl) ey (/65735);2]:q\115 |:(ai>Ai)17q ; (ﬂi,Bi)LS ; Zi|7
see [21], is defined by

_ o I T (s + kA 24
T 2T T (B + KBy B

aVs [(ai, Ai)Lq ; (Bis Bi)1,s ) Z}
IfA;=1(i=1,2,...,q) and B; =1(i = 1,2,...,s), we have

QW [ (@i A1y 5 (B Bi)y g 2] = Fo (000381, B 2),

where (F (a1,...,aq; 51, .., Bs; 2) is the generalized hypergeometric function
(for details see [6,8]) and
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Hg:1F (cvi)
Iz, T (8:)

In [2] Aouf considered the linear operator

(1.4) Q=

02 [(00 Ay g3 (B Bily ] A) — A(p)
defined by

O (@i Ay g5 (B Bi)y ] F(2) =4 08 [ (i, Ai)y g5 (B Bi)y2] + 1 (2).
For f(z) of the form (1.1), we have

(1L5) 02 (@i, Ai)y g (Bi By ] F(2) = 27 + Y Qon (a7,

k=1
where (2 is given by (1.4) and
I'(ar+ Ay (k—p))--T(op + A4y (k—p))
LB+ Br(k=p))---T(Bg + By (k= p)) (k—p)

For some interesting special cases we refer to [1]. Kanas introduced the concept
of k—uniform convexity and k—starlikeness of a function, using conic domain

Qpy = 7%+ (1—7)

Qk—{u—l—m u > ky/(u—1)>2 —|—v2} (see

The boundary 02, of the above set becomes the imaginary axis when k = 0, a
hyperbola when 0 < k < 1, a parabola when k =1, and an ellipse when k& > 1.
All of these curves have the vertex at the point =7 +1 Therefore the domain
Q. ~ is elliptic for & > 1, hyperbolic when 0 < k < 1, parabolic for £k = 1 and
right half plane when k = 0; ever symmetric with respect to the real axis. The
functions which play the role of extremal functions for these conic regions are
given as

(1.6) Trp (1) =

where

(1.7) 2
B2 gm0 1+ 3 (g ) k=1;

Qe (2) = 1, 0< k<1,
1+ kz'ylsin< TRE fo = 12\/1 = )2dx> + 7= k> 1,

where u(z) = f_*\/‘/i, and t € (0,1) is chosen such that k = cosh(ﬁllg(/t()t))7

R(t) is the Legendre’s complete elliptic integral of the first kind and
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R'(t) = +1—1t2 is the complementary integral of R(t).  Moreover,
gk~(U) = Qi and g ,(U) is convex univalent in U (see [11,12]. Using

the operator ,6% [(ai,Ai)l’q;(ﬁi Bi)l,s]? we shall introduce two new classes
P(A;, a5, Bj, B, A\, p, k,v) and Q (A;, s, Bj, B, A, p, p) of p-valent functions.

Definition 1.1. A function f € A(p) is said to be in the class P(4;, o;, Bj,
B, A, p, k,7) if it satisfies the condition

(1.8) ’ i S [[ﬁff(lz)]/ — )\} < qry(2), (2€U),
where
(1.9)
GO0 F(2) = [g02 (i, Ai)1.g; (Bi, Bi)1.sf(2) = 27 + Y Qo p(n)ax 2" 7.

k=1
Definition 1.2. A function f € A (p) is said to be in the class Q (4;, a;, B;, B;,
A, p, p) if it satisfies the condition

1 [[a027(2)) 1+[(1—p)A+pBlz
(1.10) — { = —/\} < e

or, equivalently if

027G q
(1.11) — 20 <1,
B (WEGS) — (pB + (1= p) (A= B) (0 - )

where — 1< A< B<1, 0<p<1.

For o; =1, 5; =1, Ay = a, By =c and p =0, the class Q (4;, a;, By, B, A,
p, p) was studied in [20].

2. Main results

Theorem 2.1. Let 0 < A < p, v € C\{0} and0 < k < 1. A function f € A(p)
is in the class P(A;, a4, Bj, B, A\, p, k,v) if and only if

(£xdpar,B1N) , [(Frdp(A1BIY) (2)

I

(2.1) po + » o < qry(2) (z€U),
where

o~ p o
(2.2) bp(A1, B, \) = 2P + ﬁzgak,p(al)zkﬂ).

k=1
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Proof. Let f € A(p). Then it is enough to show that

/

_’_7

| fior | (rdehm) L [(dwnn)o

p—A zp—1 zP p 2P
Therefore,
U [Lf2l(@i, Aid)rgs (B, Bi)usl ()]
p—A| zp—1
1 (2P + 3° Qo p(ar)ag4p2" P
k=1
= - A
p—A zp—1
_ f(®) 1 O k
= 1+ ﬁ;(k +p)Qoy p(ar)z
~ o~ !/
_ f(Z) " ¢p(A17B1u)\) _’_i ¢p(A17Bl7)\)
zP zP p zP
o~ —~ !/
_ [f*(bp(AlﬂBlv)‘)](z) +E [f*¢p(A17Bl7)‘)](z)
2P P 2P '
This completes the proof. O

Now, We need the following important Lemma for our next investigation.

Lemma 2.2. Let h be an analytic and convex univalent function in U. Let f

be analytic in U with h (0) = f(0) = 1. If v # 0, Rey > 0 and
2f'(2)

flz)+ < h(z) (z€U),

then
f(z) < a(z) < h(2),

where

q(z) = 2 /Z Y h(t)dt.

27 0

Moreover the function q(z) is convex univalent and it is the best dominant
of the above in the sense that if there exist a function q; such that f < q1, then
also q < q1.

Lemma 2.2 is due to Hallenbeck and Ruscheweyh [9].
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Theorem 2.3. Let f € P(A;, a4, Bj, B, \,p, k,v). Then

z

V*%““B“MK”<g@y:£/w4m@ﬁ<h@)@evy

2P zP

(2.3)

0

This result is best possible.
Moreover the function g(z) is convex univalent and it is the best dominant.

Proof. It f € P(A;, o, Bj, B, A\, p, k,7) then by using Theorem 2.1, we have

/

] < qr~(2), (2 €0),

zP p zP

Q*@mh&¢0+zlg*@mhaw)@

also gy ~(2) is convex univalent (see [11,12]) so, by Lemma 2.2, we obtain

[f % p(A1, B, V](2) <g(z) = %/tp_lh(t)dt < h(z) (z€U).

zP z
Hence, we have the required result. O

Theorem 2.4. Let f € A(p). Then

P P =< Gy (2)

(24) [f*¢p(A17B17)‘+ 1)](2) _’_2 [[f*¢P(A17B17A+ 1)](2)]

if and only if for z € U

P zP

{[f*asp(Al,Bl,A)](z) Lz [[f*%(Al,BM)](z)]/}
p

!/

(2.5) +z{[f*$p<A1,Bl,A>}<z> e [[f*$p<A1,Bl,A>1<z>]'} gl

13 zP P 2P

Proof. We want to show the equality of left-hand sides of (2.4) and (2.5). Notice
that

~ ~ > k
gf)p(Al,Bl, A =+ 1) = ¢p(A17B1, A) * {Zp + Zé.‘gzlwrp} .
k=1
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Consider

2P zP

[ #dp( A1 BLAT D) | 2 l[f*apthhAH)](z)}’
p

[f* (gp(Al,Bl,A) * {zp - i_ojfg’“zkﬂ'})] (2)

k=1

zP

o[ fo S

D zP

_ (ra LY <z>*{1+ig+kzk}

!

2P

+5 S

(%341, B1, ) (2)

L (7 #5840 B10) (2) ) {ik(gmzk}

zp

(/+ 6p(41,B1.Y) (2)

{
- > *{1+izk+ikzk}
)

= —"——
zP P

zP

(£#00(A1.BLN) () [(£ %6041, B1 ) <z>]

¢ 2P P 2P

e { (f=5B10) @) [(f <Gyl A1, B1, ) <z>] } |

Using the steps as outlines in Theorem 2.1 and Theorem 2.3 the following
results can be easily obtained.
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Theorem 2.5. A function f € A(p) is in the class Q (A, i, By, B, A\, p, p) if
and only if
(2.6)

(f+dp(a, B Y)

_|_7
zP P

(£ 8040, BL) (2 /

zp

1+[(1—pA+pB]z
14+ Bz '

Theorem 2.6. Let f € A(p) and h be a convex univalent function. If
f # Gpl(A1 BiNIE) | = [[f . ¢?p<A1,Bm>1<z>]’ <h(E)

2P P ZP
then
@n d’P(AZpB“ M@ o0 = :ip/tpflh(t)dt < h(z) (z € U).

0

Moreover the function g(z) given by (2.7) is convex univalent and it is the best
dominant.

Corollary 2.7. Let f € A(p) is in the class Q (A;, o, By, B, \, p, p) and (Zp 18
given by (2.2), then

where
gm(z) = 1+ T [{(1-p)A+pB} - B2
— (=B)
(= pA+pB) = BIY Rk e V)

Proof. From Theorem 2.6, substituting
1+ [(1-p)A+pB]t

h(t)

1+ Bt
in (2.7) we obtain
6p(A1, By, A
[f*d)}?( lvp 1, )](2) ‘<gm(z)
z
_ ﬁ/tp_ll—k[(l—p)A—i-pB]tdt 1+[(1—p)A+pB]z
2P 1+ Bt 1+ Bz '

0
For B # 0 the function g,,(z) becomes

_ . _ — (—B)k! k
() =1 +pll0 -9+ o3y B T2
k=1
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If we consider the function f, such that (fp * ap(Al, By, /\)) (2)=2Pgm(z), then

we have

— (=B)k-! ket
) _ _ _ P
fo(#) =27+ (0 = N [{(1 = ) A+ pB} B]k;(pmm,p(al) '
U
Corollary 2.8. If A =0 or Re(\) > 0, then
(28) Q(AiaaiaBj7ﬁj7)\ + 1apa p) - Q(A%O‘thvﬁjaAvp?p) .
Moreover if f € Q (Ai, a4, By, Bj, A\, p,p) and X\ # 0, then
(FouaBLN) ), [(£50ALBLY) )]
P T P < 9a(2)
z P z
1 1-p)A B
(29) <« LU 1?3;’) 12 e,
where
A
g(z) = 1+ i1 {(1—p)A+pB}—Blz

A=A+ pB} - B Y S

(=B)F 1!,
k=2

Moreover, the function gx(z) is convexr univalent and it is the best dominant of
(2.9).

Proof. The inclusion (2.8) is trivial for A = 0. Now let f €

Q (Ai, o4, By, Bj, A+ 1,p, p) with A # 0, so we have

(2.10)

(£#3AnBLA+D)) (), [(FrduAn BLA+ D) )] 14 (1= pyas pB) -
2P +E 2P = 14 Bz ’

Using the steps as outlined in the proof of Theorem 2.4, and some properties
of convolution, we obtain

(B BiN) () [(f*$p<A1,Bl,A>) <z>]'

zP zP

!

| (FrdanBLy) ) [(f*apml,Bm) (z)]' L= p)A+pB)

— Il
+§ zP p 1+ Bz

2P
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By Lemma 2.2, we have

(%0541, B1.0)) (2)

!/

2 [(£ 4041 B1Y) (2)

+7
2P p zP
XN T [141(—p)A+ pBIt
= gk(z)—z)\/t [ T dt
. 1+[(1—-p)A+pB]z
1+ Bz ’
where
(5) = 14— [{(1— A+ pB} — Bl =4 A[{(1 - p)A+pp} - B) S EEL
9(2) = 145757 p)A+p z p)A+p 2k
So f € Q(Al7a7,7B]aﬂj7Aap7p) Fina‘HY7
Q (A, a4, By, B, A+ 1,p,p) C Q (Ai, i, By, B, A p, p) -
O
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