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ABSTRACT. In this paper, we show that an L;-2-type surface in the three-
dimensional hyperbolic space H? C R‘ll either is an open piece of a stan-
dard Riemannian product H*(—+/1 + r2) x S!(r), or it has non constant
mean curvature, non constant Gaussian curvature, and non constant prin-
cipal curvatures.
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1. Introduction

During the late 1970s, B.Y. Chen introduced finite type submanifolds (that
is, submanifolds whose isometric immersion into the Euclidean, or pseudo-
Euclidean space is constructed by using eigenfunctions of their Laplacian). The
first results on this subject were collected in his book [7], and, in subsequent
papers, he has provided a detailed account of recent development on problems
and conjectures about this topic, [5,6]. It is well known that the Laplacian
operator A can be seen as the first one of a sequence of operators Ly = A,
Li,...,L,_1, n being the dimension of the submanifold, where Lj stands for
the linearized operator of the first variation of the (k + 1)-th mean curvature
arising from normal variations (see, for instance, [10]).

As might be expected, the notion of finite type submanifold can be defined
for any operator Ly, [8], and then it is natural to try to obtain new results and
compare them with the classical ones. For example, it is a well known result
that the only 2-type surfaces in the hyperbolic space H? are open pieces of the
Riemannian products H!(—+v/1 + 72) x S(r), [4,5].

What can we say about an L;-2-type surface M? in the hyperbolic space
H3? These surfaces are characterized by the following spectral decomposition
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of its position vector v : M? — H® C R}:
=1+ V1 + 2, Lir =M1, Lia = datha, A # Ao, A €R,

where 1 is a constant vector in R}, and 1, are Ri-valued non-constant
differentiable functions on M?. It is easy to see that open pieces of the stan-
dard Riemannian products H'(—+/1 + 72) x S!(r) are surfaces of L;-2-type (see
Example 3.2). Our main theorem is the following local result.
Theorem. Let 1) : M? — H3 C R} be a surface of Ly-2-type. Then either M?>
is an open piece of a standard Riemannian product H'(—+/1+12) x SY(r), or
M? has non constant mean curvature, non constant Gaussian curvature, and
non constant principal curvatures.

Our conjecture is that (open pieces of) standard Riemannian products
H'(—+/1 +72) x S'(r) are the only L;-2-type surfaces in the three-dimensional
hyperbolic space.

2. Preliminaries

Let R} denote the 4-dimensional Lorentz-Minkowski space with flat metric
given by
(-,-) = —da} + da3 + da3 + da?,
where (71,22, 23,74) is the usual rectangular coordinate system on Rf. We
denote by H® the (connected) unit hyperbolic space, which has the standard
embedding in R} as

H? = {z € R} : (z,z) = —1, and z; > 0}.

Let v : M? — H3 C R{ be an isometric immersion of a connected and orientable
surface M?, with Gauss map N. We denote by V°, V and V the Levi-Civita
connections on R}, H? and M?, respectively. Then the Gauss and Weingarten
formulas are given by

V%Y =VxY + (SX,Y)N + (X,Y) 9,
SX =-VxN=-V%N

for all tangent vector fields X,Y € X(M?), where S : X(M?) — X(M?) stands
for the shape operator (or Weingarten endomorphism) of M?, with respect to
the chosen orientation N. The mean curvature H and the curvature Hy of M?
are defined by 2H = k1 + ko and Hy = k1Ko, respectively, k; and ko being
the eigenvalues of S (that is, the principal curvatures of the surface). It is well
known that the Gaussian curvature K is given by K = —1 + Ho.

The Newton transformation of M? is the operator P : X(M?) — X(M?)
defined by

(2.1) P =2HI-S.
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Note that by the Cayley-Hamilton theorem we have So P = HsI. Observe also
that, at any point m € M?, S(m) and P(m) can be simultaneously diagonal-
ized: if {e1, ea} are the eigenvectors of S(m) corresponding to the eigenvalues
k1(m) and ka(m), respectively, then they are also the eigenvectors of P(m)
with corresponding eigenvalues k2(m) and r1(m).

According to [9, p. 86], the divergence of a vector field X is the differentiable
function defined by

div(X) = C(VX) = (Vg X, Ey) + (Vg X, Es),

{F1, B>} being any local orthonormal frame of tangent vectors fields. Analo-
gously, for an operator T : X(M?) — X(M?) the divergence associated to the
metric contraction C1o will be the vector field div(T) € X(M?) defined as

le(T) = 012(VT) = (VElT)El + (VEQT)EQ
The following properties of P are well known (see, for example, [1]).

Lemma 2.1. The Newton transformation P satisfies:
(a) tr(P) = 2H.
(b) tr(S o P) = 2H,.
(c) tr(S% o P) = 2HH,.
(d) tr(VxSoP)=(VHs, X), where VHy stands for the gradient of Ho.
(e) div(P) =0.

Associated to the Newton transformation P, we can define a second-order
linear differential operator Ly : C*°(M?) — C>°(M?) by
(2.2) Li(f) = tr(Po V2f) = div(P(Vf)),

where V2f : X(M?) — X(M?) denotes the self-adjoint linear operator metri-
cally equivalent to the Hessian of f, given by (V2f(X),Y) = (Vx(Vf),Y).
An interesting property of L, is the following: for every couple of differentiable
functions f, g € C°°(M?) we have

(2.3) Li(fg) = gL1(f) + fL1(g) +2(P(V[),Vyg).

Note that the operator Ly can be naturally extended to vector valued functions.

3. First formulas, examples and results

Let a € R} be an arbitrary fixed vector. A direct computation shows that
the gradient of the height function (1, a) is given by

(3.1) V(p,a)=a" =a— (N,a) N + (¢,a) 9,

where a' € X(M?) denotes the tangential component of a. Taking covariant
derivative in (3.1), and using the Gauss and Weingarten formulas, we obtain

(3.2) VxV (h,a) = Vxa' = (N,a)SX + (4, a) X,
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for every vector field X € X(M?). Finally, by using (2.2) and Lemma 2.1, we
find

(3.3) L1 (®h,a) = (N,a)tr(SoP)+ (,a)tr(P) =2Hy (N,a) + 2H (¢, a),
and therefore
(3.4) L1y = 2Ho N + 2Hip.
A straightforward computation yields V (N,a) = —Sa', and then, from the
Weingarten formula and (3.2), we get
VxV(N,a) = —(V,rS)X — (N,a) S®X — (¢,a) SX,
for every tangent vector field X. This equation, jointly with (2.2) and
Lemma 2.1, yields
(3.5)  Li(N,a) = —tr(V,rS o P)— (N,a)tr(S? o P) — (1, a) tr(S o P)
= — (VHy,a) — 2HH; (N, a) — 2H, (1, a) .
In other words,
LN =—-VHy; —2HHyN — 2Hs1).
On the other hand, equations (2.3), (3.3) and (3.5) lead to
L3 (¢,a) = 2H5Ly (N, a) + 2L (Hs) (N,a) + 4(P(VH,),V (N, a) )
+2HL, (¢, a) + 2L1(H) (¢, a) + 4(P(VH),V (¢, a) ),
— 20, (VHz, a) — 4((S o P)(VHy),a) + 4(P(VH),a)

+ [20yHy — 4AHHy(H, — 1)] (N, a)

+ [ —4H3 +4H? + 2L, H] (¢, a)
and then we obtain
(3.6) L3y =4P(VH) — 3VH2

+2[L1Hy —2HHy(Hy — 1)|N
+2[L1H — 2H3 + 2H?].

3.1. Examples.

Example 3.1 (Surfaces of Li-1-type). In this example we present some sur-
faces M? C H? of Li-1-type in R}, that is, surfaces whose position vector 1
can be written as 1) = 1)y + 11, where 1) is a constant vector in R} and 1 is an
R{-valued non-constant differentiable function satisfying Ly = M1, A € R.
In the case A = 0, M? is said to be an L;-null-1-type surface or an L;-harmonic
surface.

As is well known, totally umbilical surfaces in H? are obtained as the in-
tersection of H® with a hyperplane of R}, and the causal character of the
hyperplane determines the type of the surface. More precisely, let a € R} be
a non-zero constant vector with (a,a) € {1,0,—1}, and take the differentiable
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function f, : H® — R defined by f,(z) = (z,a). It is not difficult to see that

for every 7 € R, with (a,a) + 72 = 62 > 0, the set M, = f;(7) is a totally

umbilical surface in H3, with Gauss map N(x) = (1/6)(a + 7), and shape op-

erator S = —(7/§)I. From here, we get that M, has constant mean curvature

H = —7/§ and constant Gaussian curvature K = — (a, a) /2. Now we will see
the different possibilities:

(i) If (a,a) = —1, then K = 1/(7% —1) is positive, and M, C S*(v/72 — 1).

(ii) If {(a,a) = 0, then K = 0, and M, C R%. M, is said to be a flat totally
umbilical surface.

(iii) If (a,a) = 1, then K = —1/(72 + 1) is negative, and M, C

H2(—v72 + 1).

Bearing (3.4) in mind, we obtain

2 2
Liy=XMp+b, A= %(%—1) b= 2T 4
We distinguish three cases:
(i) If 7 = 0 (and so S = 0), then L3 = 0 and M, C H? is of L;-null-1-
type.
(ii) If 72 =62 > 0, then Litp = b # 0, (b,b) = 0, and M, C R? is of infinite
L+-type.
(iii) If A # 0, then we write ¥ = g + 11, with g = —(1/A\)b and 9 =
¥+ (1/A\)b, showing M, is of L;-1-type.

Example 3.2 (Surfaces of L;-2-type). We will see that the standard Riemann-
ian product M2(r) = H'(—+/1 + r2) x S!(r) is a surface in H? of L;-2-type in
R?. Let us suppose M?(r) = {z € H? : 2% + 23 = r?}, then the Gauss map is
given by

N() T r V1472 V1472

xXr) = I, T2, s, xZ 9
Ve UV e e

and the principal curvatures are computed as

—r —V1+7r?

= —— d =
K1 11,2 T2 an K2 r
Hence, we get
2r2 4+ 1
H=—"F1 ad Hy=1

Tl
If we put 1 = (21,22,0,0) and ¥o = (0,0, x3,z4), then ¢p = 91 + 19, and from
(3.4) we obtain L1ty = A1 and Lytg = Agthe, where
1

—1
M=——— and A= ——+—.
! ? 1+ r?

r1+1r2

Therefore, M?2(r) is an L;-2-type surface in R.
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3.2. First results.

Proposition 3.3. Let ¢ : M? — H3 C R} be an isometric immersion. Then
Y is of Ly-1-type if and only if M? is a non-flat totally umbilical surface in H3.

Proof. We have already checked in example 3.1 that non-flat totally umbilical
surfaces are of Li-1-type. Conversely, let us assume that ¢ : M? — H3 C R}
is of Li-1-type. Then it is easy to get L1y = M) + b, b = —Ai)g, and by using
(3.4) we obtain
2HsN + (2H — M)y = b.
Taking covariant derivative here, we get
—2H5SX + (2H — )X +2X(Hy)N + 2X (H)y =0,

for every tangent vector field X. As a consequence, M? has constant curvatures
H and H,, that is, M? is an isoparametric surface in H3. Bearing in mind
examples 3.1 and 3.2, and the classification of isoparametric surfaces in H? [3],
we easily obtain the result. d

The following result is also deduced from examples 3.1 and 3.2, taking into
account [3].

Proposition 3.4. Let v : M? — H? C R} be an isoparametric surface. Then
M? is of Li-2-type in R} if and only if M? is an open piece of a standard
Riemannian product H'(—+/1 +r2) x St(r).

The following definition appears in a natural way, [2].

Definition 3.5. An isometric immersion v : M? — R} is said to be L;-
biharmonic if L2¢) = 0. In the case L3¢ = 0 and Ly # 0, we will say that 1
is a proper Li-biharmonic immersion.

Observe that, from (3.4), any totally geodesic surface of H? is trivially an
L;-biharmonic surface in Rf.
Let 1 : M? — H3 C R{ be an L;-biharmonic surface. Then (3.6) yields

(3.7) 4P(VH)—3VH3 =0,
(3.8) LiHy —2HHy(Hy — 1) = 0,
(3.9) LiH +2(H* — H3) = 0.

If H is constant, then (3.9) yields M? is an isoparametric surface in H3. If K is
constant (and so is Hs), by taking divergence in (3.7), we get L1 H = 0. Then
from (3.9) we also deduce M? is an isoparametric surface in H?. Therefore,
bearing [3] in mind, we have obtained the following result.

Proposition 3.6. Let ¢ : M? — H? C R} be an Ly-biharmonic surface. Then
one of the following claims holds:
(a) M? is an open piece of a totally geodesic hyperbolic plane.
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(b) M? is an open piece of a flat totally umbilical surface.
(c) M? has non constant curvatures H and K.

This result can be improved as follows. If H is an Li-harmonic function (that
is, LyH = 0), then (3.9) implies again M? is an isoparametric surface. The
same conclusion is also obtained when Hs (or K) is an Lj-harmonic function.
Indeed, in this case, (3.8) yields

HHy(Hy—1)=0.
Let us assume that H is non constant (otherwise, there is nothing to prove)
and take the non-empty set U = {p € M? | VH?(p) # 0}. On this set we have
Hy(Hy—1) =0, and then Hy (and also K) is constant on /. Hence, Proposition

3.6 implies U is a totally umbilical surface in H?, but then the mean curvature
H is also constant, a contradiction. So the following result has been proved.

Proposition 3.7. Let v : M? — H3 C R} be a non totally umbilical L -
biharmonic surface. Then the curvatures H and K are not Li-harmonic func-
tions.

4. Main results

The main goal of this section is to improve Proposition 3.4 in several ways.
First, we need to do some more computations.

Let us suppose that ¢ : M? — H3 C R} is an L;-2-type surface, then we can
write ¢ = 19 + W1 + Y. Since L1y = A\ + A2t)o and L%¢ = )\%’(/)1 + )\%’(/)2,
an easy computation shows that L3 = (A; + A2)L19 — A\ A2(¥) — a), and by
using (3.4) we obtain

L3 = Mdea’ + [2(M + Ao)Hs + Aidg (N,a) | N
+ [2(0 + X2)H — A — A2 (¥, a) |9

This equation, jointly with (3.6), yield the following equations, that character-
ize L1-2-type surfaces in H?®:

(4.1) MAea' =4P(VH) - 3VHZ,

(4.2) M2 (N,a) =2L1Hy — 2Hy (2HHs — 2H + Ay + A2),

(4.3) Mo (1,a) = 2L H + 4H2 — 4H? + 2(\; + M) H — M\ o

Theorem 4.1. Let ¢ : M? — H? C R} be a surface of Ly-2-type. Then M?
has constant mean curvature if and only if M? is an open piece of a standard
Riemannian product H'(—+/1 + r2) x St(r).

Proof. Let M? be a surface of Li-2-type with constant mean curvature. We
will prove that the curvature Hs is also constant. Otherwise, let us consider
the non-empty open set Us = {p € M? | VHZ(p) # 0}. By taking covariant
derivative in (4.3) we have A\;\oa’ = 4VH2. Using this in (4.1) we obtain
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that Hs is constant on U5, a contradiction. Therefore, M? is an isoparametric
surface in H?, and then the result follows from Proposition 3.4. 0

Theorem 4.2. Let ¢ : M? — H3 C R} be a surface of Li-2-type. Then
M? has constant Gaussian curvature if and only if M? is an open piece of a
standard Riemannian product H'(—+/1 + r2) x St(r).

Proof. Let M? be an L;-2-type surface with constant Gaussian curvature K,
and consider the open set U = {p € M? | VH?(p) # 0}. Our goal is to show
that U is empty. If we suppose it is non-empty, by taking covariant derivative
in (4.2), and using that Hs is constant, we obtain

MAoSa' = 4H,(Hy — 1)VH.

From (4.1) and bearing in mind that SoP = H,I, we have \;\oSa' = 4H,V H,
and therefore

Hy(Hy — 2)VH = 0.

Consequently, on U we have either Hy = 2 or Hy = 0. We will study each case
separately.
Case 1: Hy = 2. By applying Ly to both sides of (4.2), and using (4.3), we get

MA2Ly (N, a) = 4[A X2 (¥,a) + 4H? —2(A; + A2)H + A Az — 16].
On the other hand, (3.5) leads to
M2 (N, a) H + Mg (1h,a) = =M Ag {a,90) — 4H? +2(\; + Xo)H — A\ Az + 16,
and using (4.2) we find

(4.4) Atdz (¥, a) = 2H? + 3(A\1 + Ao) H — MQA? +8.
Taking gradients in (4.4), and using (4.1) and (2.1), we obtain
(4.5) [4H +3(\ + \o)|VH = 4P(VH) = 8HVH — 4S(VH),
that is,

S(VH) = 4H —3(M + AQ)VH.

4
Now, by applying the operator S to both sides of the first equality of (4.5), and
bearing in mind that S o P = 2I, we obtain
)= 8

©4H +3(M\1 4+ A2)

The last two equations for S(VH) imply that H is constant on U, which is a
contradiction.

Case 2: Hy = 0. Let us suppose x; = 0 and ko = 2H # 0 (otherwise, M?
would be a totally geodesic surface and then of L;-1-type). Let {E;, E2} be

VH.

S(VH
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a local orthonormal frame of principal directions of S such that SFE; = k; E;.
From Codazzi’s equation, we easily obtain

VElEl - 07 vElE‘2 = 0’
Vi, B = —§Es, Vi, By = 5Er [Ev, Eo] = 1 B,

where o = E1(H). Now, from the definition of curvature tensor [9, p. 74], we

get

HE; () — 2a?
2

and from the Gauss equation we have R(FE1, E2)E; = —FEs. By equating the

last two equations we deduce

R(El,EQ)El = E27

(4.6) HE (o) =2a* — H2.
On the other hand, from the definition of L1, see (2.2), we obtain
(47) LlH = R <E1, VEl VH> + K1 <E2, VEQVH> = 2HE1(OL)

By using (4.6) and (4.7), (4.3) can be rewritten as
MA2 (¥, a) = 2(\1 + X2)H — M\ Ag — 8a.

Taking covariant derivative along E; here, we have

(4.8) E1(MA2 (P,a)) = 2(A1 + A2)a — 160Eq ().

On the other hand, from (4.1) we get MAoa’ = 8HaF;, and therefore
Ei(MA2 (,a)) = (MAoa', Ey) = 8Ha.

This equation, jointly with (4.8), imply that (A + A2)a — 8aF;(a) = 4Ha.
Since a # 0, see (4.6), we deduce

8E1(0¢) = —4H + )\ + Ao.
From here and using (4.7) we get 4L1 H = —4H? + (\; + X\2)H. By using this
in (4.3), we find

Mg (¥, a) = —2H? + %()\1 + X2)H — A\ o
Taking gradient, and using (4.1) and (2.1), we obtain
(4.9) [—4H + g()\l +X\)|VH =4AP(VH) = 8HVH — 4S(VH),
that is,
S(VH) = (3H — %(Al + X2))VH.

On the other hand, by applying the operator S to both sides of the first equality
of (4.9), and bearing in mind that S o P = 0, we obtain

[—4H + %(Al +A9)] S(VH) = 0.
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The last two equations imply that H is constant on U, which is a contradiction.

We have proved that if M? is an L;-2-type surface with constant Gaussian
curvature, then its mean curvature is also constant. Then Proposition 3.4 yields
the result. 0

A surface in H? is said to have a constant principal curvature if one of its
principal curvatures is constant.

Theorem 4.3. Let ¢ : M? — H3 C R} be a surface of Li-2-type. Then
M? has a constant principal curvature if and only if M? is an open piece of a

standard Riemannian product H'(—v/1+r2) x St(r).

Proof. Let M? be a surface of L;-2-type with constant curvature x;; and as-
sume that 1 is a nonzero constant (otherwise, Hy = 0 and Theorem 4.2 ap-
plies). Consider the open set U = {p € M? | Vk3(p) # 0}. Our goal is to show
that U is empty. Otherwise, equations (4.1)—(4.3) can be rewritten in terms of
Ko as follows,

(4.10) MAga’ = [~6K2ka + 2(k1 + K2)] Vg — 25(Vky),
(4.11) M2 (N,a) = 2k1L1k2 — 26162 [ (K1 + K2)(k1k2 — 1) + A1 + A2],
(4.12) M2 (¥,a) = —Likg + 4k3K3 — (k1 + Kg)?
+ (A1 + A2) (K1 + K2) — A1,
From (4.11) and (4.12) we find
Mg (N, a) = —2k1 A1 A2 (¥, a)
+ 2K [ — K14+ (M + A2k — Mg — Bk1kg + 3KTKS — mmg},

and by taking gradient, we obtain
(4.13) — MAaSa’ = =2k M daa’ + 262 | — 3+ 6kymg — 353} Vs
On the other hand, by using S o P = HyI and (4.1), we get
(4.14) MASal = —6k212S(Vhg) 4 2k1k2 Vs,
Now, from (4.10), (4.13) and (4.14), we deduce

(3k1k2 — 2)S(Vka) = (—=3k1K3 + (967 — 1)ka — K1) Vka.
Since 3k1k2 — 2 # 0 (otherwise, ko would be constant), we deduce

—3K165 + (953 — 1)k — K1

3;‘61:“;2 -2

S(Vkg) = f(k1, ka)Vka, f(k1,k2) =

This equation implies that either f(k1,k2) = k1 or f(k1,k2) = k2. In any case,
it follows that ko is constant on U, a contradiction. 0

As a consequence of theorems 4.1, 4.2 and 4.3, we have the following char-
acterization of Li-2-type surfaces in H?.
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Theorem 4.4. Let 1) : M? — H? C R} be a surface of Li-2-type. Then either
M? is an open piece of a standard Riemannian product H*(—v/1 + r2) x S*(r),
or M? has non constant mean curvature, non constant Gaussian curvature,
and non constant principal curvatures.
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