ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 6, pp. 1769-1779

Title:

Hyperbolic surfaces of L_1 -2-type

Author(s):

P. Lucas and H.F. Ramírez-Ospina

Published by the Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 43 (2017), No. 6, pp. 1769–1779 Online ISSN: 1735-8515

HYPERBOLIC SURFACES OF L_1 -2-TYPE

P. LUCAS* AND H.F. RAMÍREZ-OSPINA

(Communicated by Mohammad Bagher Kashani)

ABSTRACT. In this paper, we show that an L_1 -2-type surface in the threedimensional hyperbolic space $\mathbb{H}^3 \subset \mathbb{R}^4_1$ either is an open piece of a standard Riemannian product $\mathbb{H}^1(-\sqrt{1+r^2}) \times \mathbb{S}^1(r)$, or it has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.

Keywords: Hyperbolic surface, Cheng-Yau operator, L_1 -finite-type surface, L_1 -biharmonic surface, Newton transformation. MSC(2010): Primary: 53B25; Secondary: 53A05, 53C40.

1. Introduction

During the late 1970s, B.Y. Chen introduced finite type submanifolds (that is, submanifolds whose isometric immersion into the Euclidean, or pseudo-Euclidean space is constructed by using eigenfunctions of their Laplacian). The first results on this subject were collected in his book [7], and, in subsequent papers, he has provided a detailed account of recent development on problems and conjectures about this topic, [5, 6]. It is well known that the Laplacian operator Δ can be seen as the first one of a sequence of operators $L_0 = \Delta$, L_1, \ldots, L_{n-1} , *n* being the dimension of the submanifold, where L_k stands for the linearized operator of the first variation of the (k + 1)-th mean curvature arising from normal variations (see, for instance, [10]).

As might be expected, the notion of finite type submanifold can be defined for any operator L_k , [8], and then it is natural to try to obtain new results and compare them with the classical ones. For example, it is a well known result that the only 2-type surfaces in the hyperbolic space \mathbb{H}^3 are open pieces of the Riemannian products $\mathbb{H}^1(-\sqrt{1+r^2}) \times \mathbb{S}^1(r)$, [4,5].

What can we say about an L_1 -2-type surface M^2 in the hyperbolic space \mathbb{H}^3 ? These surfaces are characterized by the following spectral decomposition

O2017 Iranian Mathematical Society

Article electronically published on 30 November, 2017.

Received: 31 July 2016, Accepted: 14 October 2016.

^{*}Corresponding author.

¹⁷⁶⁹

of its position vector $\psi: M^2 \to \mathbb{H}^3 \subset \mathbb{R}^4_1$:

 $\psi = \psi_0 + \psi_1 + \psi_2, \quad L_1\psi_1 = \lambda_1\psi_1, \quad L_1\psi_2 = \lambda_2\psi_2, \quad \lambda_1 \neq \lambda_2, \ \lambda_i \in \mathbb{R},$

where ψ_0 is a constant vector in \mathbb{R}^4_1 , and ψ_1, ψ_2 are \mathbb{R}^4_1 -valued non-constant differentiable functions on M^2 . It is easy to see that open pieces of the standard Riemannian products $\mathbb{H}^1(-\sqrt{1+r^2}) \times \mathbb{S}^1(r)$ are surfaces of L_1 -2-type (see Example 3.2). Our main theorem is the following local result.

Theorem. Let $\psi: M^2 \to \mathbb{H}^3 \subset \mathbb{R}^4_1$ be a surface of L_1 -2-type. Then either M^2 is an open piece of a standard Riemannian product $\mathbb{H}^1(-\sqrt{1+r^2}) \times \mathbb{S}^1(r)$, or M^2 has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.

Our conjecture is that (open pieces of) standard Riemannian products $\mathbb{H}^1(-\sqrt{1+r^2}) \times \mathbb{S}^1(r)$ are the only L_1 -2-type surfaces in the three-dimensional hyperbolic space.

2. Preliminaries

Let \mathbb{R}^4_1 denote the 4-dimensional Lorentz-Minkowski space with flat metric given by

$$\langle \cdot, \cdot \rangle = -\mathrm{d}x_1^2 + \mathrm{d}x_2^2 + \mathrm{d}x_3^2 + \mathrm{d}x_4^2,$$

where (x_1, x_2, x_3, x_4) is the usual rectangular coordinate system on \mathbb{R}^4_1 . We denote by \mathbb{H}^3 the (connected) unit hyperbolic space, which has the standard embedding in \mathbb{R}^4_1 as

$$\mathbb{H}^{3} = \{ x \in \mathbb{R}_{1}^{4} : \langle x, x \rangle = -1, \text{ and } x_{1} > 0 \}$$

Let $\psi: M^2 \to \mathbb{H}^3 \subset \mathbb{R}^4_1$ be an isometric immersion of a connected and orientable surface M^2 , with Gauss map N. We denote by ∇^0 , $\overline{\nabla}$ and ∇ the Levi-Civita connections on \mathbb{R}^4_1 , \mathbb{H}^3 and M^2 , respectively. Then the Gauss and Weingarten formulas are given by

$$\begin{split} \nabla^0_X Y &= \nabla_X Y + \langle SX,Y\rangle \, N + \langle X,Y\rangle \, \psi, \\ SX &= -\overline{\nabla}_X N = -\nabla^0_X N, \end{split}$$

for all tangent vector fields $X, Y \in \mathfrak{X}(M^2)$, where $S : \mathfrak{X}(M^2) \to \mathfrak{X}(M^2)$ stands for the shape operator (or Weingarten endomorphism) of M^2 , with respect to the chosen orientation N. The mean curvature H and the curvature H_2 of M^2 are defined by $2H = \kappa_1 + \kappa_2$ and $H_2 = \kappa_1 \kappa_2$, respectively, κ_1 and κ_2 being the eigenvalues of S (that is, the principal curvatures of the surface). It is well known that the Gaussian curvature K is given by $K = -1 + H_2$.

The Newton transformation of M^2 is the operator $P : \mathfrak{X}(M^2) \to \mathfrak{X}(M^2)$ defined by

$$(2.1) P = 2HI - S.$$

Note that by the Cayley-Hamilton theorem we have $S \circ P = H_2 I$. Observe also that, at any point $m \in M^2$, S(m) and P(m) can be simultaneously diagonalized: if $\{e_1, e_2\}$ are the eigenvectors of S(m) corresponding to the eigenvalues $\kappa_1(m)$ and $\kappa_2(m)$, respectively, then they are also the eigenvectors of P(m) with corresponding eigenvalues $\kappa_2(m)$ and $\kappa_1(m)$.

According to [9, p. 86], the divergence of a vector field X is the differentiable function defined by

$$\operatorname{div}(X) = C(\nabla X) = \langle \nabla_{E_1} X, E_1 \rangle + \langle \nabla_{E_2} X, E_2 \rangle,$$

 $\{E_1, E_2\}$ being any local orthonormal frame of tangent vectors fields. Analogously, for an operator $T : \mathfrak{X}(M^2) \to \mathfrak{X}(M^2)$ the divergence associated to the metric contraction C_{12} will be the vector field $\operatorname{div}(T) \in \mathfrak{X}(M^2)$ defined as

$$\operatorname{div}(T) = C_{12}(\nabla T) = (\nabla_{E_1} T)E_1 + (\nabla_{E_2} T)E_2.$$

The following properties of P are well known (see, for example, [1]).

Lemma 2.1. The Newton transformation P satisfies:

- (a) tr(P) = 2H.
- (b) $\operatorname{tr}(S \circ P) = 2H_2$.
- (c) $\operatorname{tr}(S^2 \circ P) = 2HH_2$.
- (d) $\operatorname{tr}(\nabla_X S \circ P) = \langle \nabla H_2, X \rangle$, where ∇H_2 stands for the gradient of H_2 .
- (e) $\operatorname{div}(P) = 0.$

Associated to the Newton transformation P, we can define a second-order linear differential operator $L_1: \mathcal{C}^{\infty}(M^2) \to \mathcal{C}^{\infty}(M^2)$ by

(2.2)
$$L_1(f) = \operatorname{tr}(P \circ \nabla^2 f) = \operatorname{div}(P(\nabla f)),$$

where $\nabla^2 f : \mathfrak{X}(M^2) \to \mathfrak{X}(M^2)$ denotes the self-adjoint linear operator metrically equivalent to the Hessian of f, given by $\langle \nabla^2 f(X), Y \rangle = \langle \nabla_X(\nabla f), Y \rangle$. An interesting property of L_1 is the following: for every couple of differentiable functions $f, g \in C^{\infty}(M^2)$ we have

(2.3)
$$L_1(fg) = gL_1(f) + fL_1(g) + 2 \langle P(\nabla f), \nabla g \rangle$$

Note that the operator L_1 can be naturally extended to vector valued functions.

3. First formulas, examples and results

Let $a \in \mathbb{R}^4_1$ be an arbitrary fixed vector. A direct computation shows that the gradient of the height function $\langle \psi, a \rangle$ is given by

(3.1)
$$\nabla \langle \psi, a \rangle = a^{\top} = a - \langle N, a \rangle N + \langle \psi, a \rangle \psi,$$

where $a^{\top} \in \mathfrak{X}(M^2)$ denotes the tangential component of a. Taking covariant derivative in (3.1), and using the Gauss and Weingarten formulas, we obtain

(3.2)
$$\nabla_X \nabla \langle \psi, a \rangle = \nabla_X a^{\top} = \langle N, a \rangle SX + \langle \psi, a \rangle X,$$

for every vector field $X \in \mathfrak{X}(M^2)$. Finally, by using (2.2) and Lemma 2.1, we find

(3.3)
$$L_1 \langle \psi, a \rangle = \langle N, a \rangle \operatorname{tr}(S \circ P) + \langle \psi, a \rangle \operatorname{tr}(P) = 2H_2 \langle N, a \rangle + 2H \langle \psi, a \rangle,$$

and therefore

$$L_1\psi = 2H_2N + 2H\psi.$$

A straightforward computation yields $\nabla \langle N, a \rangle = -Sa^{\top}$, and then, from the Weingarten formula and (3.2), we get

$$\nabla_X \nabla \langle N, a \rangle = -(\nabla_a T S) X - \langle N, a \rangle S^2 X - \langle \psi, a \rangle S X,$$

for every tangent vector field X. This equation, jointly with (2.2) and Lemma 2.1, yields

(3.5)
$$L_1 \langle N, a \rangle = -\operatorname{tr}(\nabla_{a^{\top}} S \circ P) - \langle N, a \rangle \operatorname{tr}(S^2 \circ P) - \langle \psi, a \rangle \operatorname{tr}(S \circ P)$$
$$= - \langle \nabla H_2, a \rangle - 2HH_2 \langle N, a \rangle - 2H_2 \langle \psi, a \rangle.$$

In other words,

$$L_1 N = -\nabla H_2 - 2HH_2 N - 2H_2 \psi.$$

On the other hand, equations (2.3), (3.3) and (3.5) lead to

$$\begin{split} L_1^2 \langle \psi, a \rangle &= 2H_2 L_1 \langle N, a \rangle + 2L_1 (H_2) \langle N, a \rangle + 4 \langle P(\nabla H_2), \nabla \langle N, a \rangle \rangle \\ &+ 2H L_1 \langle \psi, a \rangle + 2L_1 (H) \langle \psi, a \rangle + 4 \langle P(\nabla H), \nabla \langle \psi, a \rangle \rangle, \\ &= -2H_2 \langle \nabla H_2, a \rangle - 4 \langle (S \circ P) (\nabla H_2), a \rangle + 4 \langle P(\nabla H), a \rangle \\ &+ \left[2L_1 H_2 - 4H H_2 (H_2 - 1) \right] \langle N, a \rangle \\ &+ \left[-4H_2^2 + 4H^2 + 2L_1 H \right] \langle \psi, a \rangle, \end{split}$$

and then we obtain

(3.6)
$$L_{1}^{2}\psi = 4P(\nabla H) - 3\nabla H_{2}^{2} + 2[L_{1}H_{2} - 2HH_{2}(H_{2} - 1)]N + 2[L_{1}H - 2H_{2}^{2} + 2H^{2}]\psi.$$

3.1. Examples.

Example 3.1 (Surfaces of L_1 -1-type). In this example we present some surfaces $M^2 \subset \mathbb{H}^3$ of L_1 -1-type in \mathbb{R}^4_1 , that is, surfaces whose position vector ψ can be written as $\psi = \psi_0 + \psi_1$, where ψ_0 is a constant vector in \mathbb{R}^4_1 and ψ_1 is an \mathbb{R}^4_1 -valued non-constant differentiable function satisfying $L_1\psi_1 = \lambda\psi_1, \lambda \in \mathbb{R}$. In the case $\lambda = 0, M^2$ is said to be an L_1 -null-1-type surface or an L_1 -harmonic surface.

As is well known, totally umbilical surfaces in \mathbb{H}^3 are obtained as the intersection of \mathbb{H}^3 with a hyperplane of \mathbb{R}^4_1 , and the causal character of the hyperplane determines the type of the surface. More precisely, let $a \in \mathbb{R}^4_1$ be a non-zero constant vector with $\langle a, a \rangle \in \{1, 0, -1\}$, and take the differentiable function $f_a : \mathbb{H}^3 \to \mathbb{R}$ defined by $f_a(x) = \langle x, a \rangle$. It is not difficult to see that for every $\tau \in \mathbb{R}$, with $\langle a, a \rangle + \tau^2 = \delta^2 > 0$, the set $M_\tau = f_a^{-1}(\tau)$ is a totally umbilical surface in \mathbb{H}^3 , with Gauss map $N(x) = (1/\delta)(a + \tau x)$, and shape operator $S = -(\tau/\delta)I$. From here, we get that M_τ has constant mean curvature $H = -\tau/\delta$ and constant Gaussian curvature $K = -\langle a, a \rangle / \delta^2$. Now we will see the different possibilities:

- (i) If $\langle a, a \rangle = -1$, then $K = 1/(\tau^2 1)$ is positive, and $M_\tau \subset \mathbb{S}^2(\sqrt{\tau^2 1})$.
- (ii) If $\langle a, a \rangle = 0$, then K = 0, and $M_{\tau} \subset \mathbb{R}^2$. M_{τ} is said to be a flat totally umbilical surface.
- (iii) If $\langle a, a \rangle = 1$, then $K = -1/(\tau^2 + 1)$ is negative, and $M_{\tau} \subset \mathbb{H}^2(-\sqrt{\tau^2 + 1})$.

Bearing (3.4) in mind, we obtain

$$L_1\psi = \lambda\psi + b, \quad \lambda = \frac{2\tau}{\delta} \left(\frac{\tau^2}{\delta^2} - 1\right), \quad b = \frac{2\tau^2}{\delta^3}a.$$

We distinguish three cases:

- (i) If $\tau = 0$ (and so S = 0), then $L_1 \psi = 0$ and $M_\tau \subset \mathbb{H}^2$ is of L_1 -null-1-type.
- (ii) If $\tau^2 = \delta^2 > 0$, then $L_1 \psi = b \neq 0$, $\langle b, b \rangle = 0$, and $M_\tau \subset \mathbb{R}^2$ is of infinite L_1 -type.
- (iii) If $\lambda \neq 0$, then we write $\psi = \psi_0 + \psi_1$, with $\psi_0 = -(1/\lambda)b$ and $\psi_1 = \psi + (1/\lambda)b$, showing M_{τ} is of L_1 -1-type.

Example 3.2 (Surfaces of L_1 -2-type). We will see that the standard Riemannian product $M^2(r) = \mathbb{H}^1(-\sqrt{1+r^2}) \times \mathbb{S}^1(r)$ is a surface in \mathbb{H}^3 of L_1 -2-type in \mathbb{R}^4_1 . Let us suppose $M^2(r) = \{x \in \mathbb{H}^3 : x_3^2 + x_4^2 = r^2\}$, then the Gauss map is given by

$$N(x) = \left(\frac{r}{\sqrt{1+r^2}} x_1, \frac{r}{\sqrt{1+r^2}} x_2, \frac{\sqrt{1+r^2}}{r} x_3, \frac{\sqrt{1+r^2}}{r} x_4\right),$$

and the principal curvatures are computed as

$$\kappa_1 = \frac{-r}{\sqrt{1+r^2}} \quad \text{and} \quad \kappa_2 = \frac{-\sqrt{1+r^2}}{r}.$$

Hence, we get

$$H = -\frac{2r^2 + 1}{2r\sqrt{1 + r^2}}$$
 and $H_2 = 1$.

If we put $\psi_1 = (x_1, x_2, 0, 0)$ and $\psi_2 = (0, 0, x_3, x_4)$, then $\psi = \psi_1 + \psi_2$, and from (3.4) we obtain $L_1\psi_1 = \lambda_1\psi_1$ and $L_1\psi_2 = \lambda_2\psi_2$, where

$$\lambda_1 = \frac{-1}{r\sqrt{1+r^2}}$$
 and $\lambda_2 = \frac{1}{r\sqrt{1+r^2}}$.

Therefore, $M^2(r)$ is an L_1 -2-type surface in \mathbb{R}^4_1 .

3.2. First results.

Proposition 3.3. Let $\psi : M^2 \to \mathbb{H}^3 \subset \mathbb{R}^4_1$ be an isometric immersion. Then ψ is of L_1 -1-type if and only if M^2 is a non-flat totally umbilical surface in \mathbb{H}^3 .

Proof. We have already checked in example 3.1 that non-flat totally umbilical surfaces are of L_1 -1-type. Conversely, let us assume that $\psi : M^2 \to \mathbb{H}^3 \subset \mathbb{R}^4_1$ is of L_1 -1-type. Then it is easy to get $L_1\psi = \lambda\psi + b$, $b = -\lambda\psi_0$, and by using (3.4) we obtain

$$2H_2N + (2H - \lambda)\psi = b$$

Taking covariant derivative here, we get

$$-2H_2SX + (2H - \lambda)X + 2X(H_2)N + 2X(H)\psi = 0,$$

for every tangent vector field X. As a consequence, M^2 has constant curvatures H and H_2 , that is, M^2 is an isoparametric surface in \mathbb{H}^3 . Bearing in mind examples 3.1 and 3.2, and the classification of isoparametric surfaces in \mathbb{H}^3 [3], we easily obtain the result.

The following result is also deduced from examples 3.1 and 3.2, taking into account [3].

Proposition 3.4. Let $\psi: M^2 \to \mathbb{H}^3 \subset \mathbb{R}^4_1$ be an isoparametric surface. Then M^2 is of L_1 -2-type in \mathbb{R}^4_1 if and only if M^2 is an open piece of a standard Riemannian product $\mathbb{H}^1(-\sqrt{1+r^2}) \times \mathbb{S}^1(r)$.

The following definition appears in a natural way, [2].

Definition 3.5. An isometric immersion $\psi : M^2 \to \mathbb{R}^4_1$ is said to be L_1 biharmonic if $L_1^2 \psi = 0$. In the case $L_1^2 \psi = 0$ and $L_1 \psi \neq 0$, we will say that ψ is a proper L_1 -biharmonic immersion.

Observe that, from (3.4), any totally geodesic surface of \mathbb{H}^3 is trivially an L_1 -biharmonic surface in \mathbb{R}^4_1 .

Let $\psi: M^2 \to \mathbb{H}^3 \subset \mathbb{R}^4_1$ be an L_1 -biharmonic surface. Then (3.6) yields

- (3.8) $L_1H_2 2HH_2(H_2 1) = 0,$
- (3.9) $L_1H + 2(H^2 H_2^2) = 0.$

If H is constant, then (3.9) yields M^2 is an isoparametric surface in \mathbb{H}^3 . If K is constant (and so is H_2), by taking divergence in (3.7), we get $L_1H = 0$. Then from (3.9) we also deduce M^2 is an isoparametric surface in \mathbb{H}^3 . Therefore, bearing [3] in mind, we have obtained the following result.

Proposition 3.6. Let $\psi : M^2 \to \mathbb{H}^3 \subset \mathbb{R}^4_1$ be an L_1 -biharmonic surface. Then one of the following claims holds:

(a) M^2 is an open piece of a totally geodesic hyperbolic plane.

- (b) M^2 is an open piece of a flat totally umbilical surface.
- (c) M^2 has non constant curvatures H and K.

This result can be improved as follows. If H is an L_1 -harmonic function (that is, $L_1H = 0$), then (3.9) implies again M^2 is an isoparametric surface. The same conclusion is also obtained when H_2 (or K) is an L_1 -harmonic function. Indeed, in this case, (3.8) yields

$$HH_2(H_2 - 1) = 0.$$

Let us assume that H is non constant (otherwise, there is nothing to prove) and take the non-empty set $\mathcal{U} = \{p \in M^2 \mid \nabla H^2(p) \neq 0\}$. On this set we have $H_2(H_2-1) = 0$, and then H_2 (and also K) is constant on \mathcal{U} . Hence, Proposition 3.6 implies \mathcal{U} is a totally umbilical surface in \mathbb{H}^3 , but then the mean curvature H is also constant, a contradiction. So the following result has been proved.

Proposition 3.7. Let $\psi : M^2 \to \mathbb{H}^3 \subset \mathbb{R}^4_1$ be a non totally umbilical L_1 -biharmonic surface. Then the curvatures H and K are not L_1 -harmonic functions.

4. Main results

The main goal of this section is to improve Proposition 3.4 in several ways. First, we need to do some more computations.

Let us suppose that $\psi: M^2 \to \mathbb{H}^3 \subset \mathbb{R}^4_1$ is an L_1 -2-type surface, then we can write $\psi = \psi_0 + \psi_1 + \psi_2$. Since $L_1\psi = \lambda_1\psi_1 + \lambda_2\psi_2$ and $L_1^2\psi = \lambda_1^2\psi_1 + \lambda_2^2\psi_2$, an easy computation shows that $L_1^2\psi = (\lambda_1 + \lambda_2)L_1\psi - \lambda_1\lambda_2(\psi - a)$, and by using (3.4) we obtain

$$L_1^2 \psi = \lambda_1 \lambda_2 a^{\top} + \left[2(\lambda_1 + \lambda_2) H_2 + \lambda_1 \lambda_2 \langle N, a \rangle \right] N + \left[2(\lambda_1 + \lambda_2) H - \lambda_1 \lambda_2 - \lambda_1 \lambda_2 \langle \psi, a \rangle \right] \psi.$$

This equation, jointly with (3.6), yield the following equations, that characterize L_1 -2-type surfaces in \mathbb{H}^3 :

(4.1)
$$\lambda_1 \lambda_2 a^{\top} = 4P(\nabla H) - 3\nabla H_2^2,$$

(4.2)
$$\lambda_1 \lambda_2 \langle N, a \rangle = 2L_1 H_2 - 2H_2 (2HH_2 - 2H + \lambda_1 + \lambda_2),$$

(4.3)
$$\lambda_1 \lambda_2 \langle \psi, a \rangle = -2L_1H + 4H_2^2 - 4H^2 + 2(\lambda_1 + \lambda_2)H - \lambda_1\lambda_2$$

Theorem 4.1. Let $\psi : M^2 \to \mathbb{H}^3 \subset \mathbb{R}^4_1$ be a surface of L_1 -2-type. Then M^2 has constant mean curvature if and only if M^2 is an open piece of a standard Riemannian product $\mathbb{H}^1(-\sqrt{1+r^2}) \times \mathbb{S}^1(r)$.

Proof. Let M^2 be a surface of L_1 -2-type with constant mean curvature. We will prove that the curvature H_2 is also constant. Otherwise, let us consider the non-empty open set $\mathcal{U}_2 = \{p \in M^2 \mid \nabla H_2^2(p) \neq 0\}$. By taking covariant derivative in (4.3) we have $\lambda_1 \lambda_2 a^{\top} = 4 \nabla H_2^2$. Using this in (4.1) we obtain

that H_2 is constant on \mathcal{U}_2 , a contradiction. Therefore, M^2 is an isoparametric surface in \mathbb{H}^3 , and then the result follows from Proposition 3.4.

Theorem 4.2. Let $\psi : M^2 \to \mathbb{H}^3 \subset \mathbb{R}^4_1$ be a surface of L_1 -2-type. Then M^2 has constant Gaussian curvature if and only if M^2 is an open piece of a standard Riemannian product $\mathbb{H}^1(-\sqrt{1+r^2}) \times \mathbb{S}^1(r)$.

Proof. Let M^2 be an L_1 -2-type surface with constant Gaussian curvature K, and consider the open set $\mathcal{U} = \{p \in M^2 \mid \nabla H^2(p) \neq 0\}$. Our goal is to show that \mathcal{U} is empty. If we suppose it is non-empty, by taking covariant derivative in (4.2), and using that H_2 is constant, we obtain

$$\lambda_1 \lambda_2 Sa^{\top} = 4H_2(H_2 - 1)\nabla H.$$

From (4.1) and bearing in mind that $S \circ P = H_2 I$, we have $\lambda_1 \lambda_2 S a^{\top} = 4H_2 \nabla H$, and therefore

$$H_2(H_2 - 2)\nabla H = 0.$$

Consequently, on \mathcal{U} we have either $H_2 = 2$ or $H_2 = 0$. We will study each case separately.

Case 1: $H_2 = 2$. By applying L_1 to both sides of (4.2), and using (4.3), we get

$$\lambda_1 \lambda_2 L_1 \langle N, a \rangle = 4 \left[\lambda_1 \lambda_2 \langle \psi, a \rangle + 4H^2 - 2(\lambda_1 + \lambda_2)H + \lambda_1 \lambda_2 - 16 \right].$$

On the other hand, (3.5) leads to

 $\lambda_1 \lambda_2 \langle N, a \rangle H + \lambda_1 \lambda_2 \langle \psi, a \rangle = -\lambda_1 \lambda_2 \langle a, \psi \rangle - 4H^2 + 2(\lambda_1 + \lambda_2)H - \lambda_1 \lambda_2 + 16,$ and using (4.2) we find

(4.4)
$$\lambda_1 \lambda_2 \langle \psi, a \rangle = 2H^2 + 3(\lambda_1 + \lambda_2)H - \frac{\lambda_1 \lambda_2}{2} + 8.$$

Taking gradients in (4.4), and using (4.1) and (2.1), we obtain

(4.5)
$$\left[4H + 3(\lambda_1 + \lambda_2)\right] \nabla H = 4P(\nabla H) = 8H\nabla H - 4S(\nabla H),$$

that is,

$$S(\nabla H) = \frac{4H - 3(\lambda_1 + \lambda_2)}{4} \nabla H.$$

Now, by applying the operator S to both sides of the first equality of (4.5), and bearing in mind that $S \circ P = 2I$, we obtain

$$S(\nabla H) = \frac{8}{4H + 3(\lambda_1 + \lambda_2)} \nabla H.$$

The last two equations for $S(\nabla H)$ imply that H is constant on \mathcal{U} , which is a contradiction.

Case 2: $H_2 = 0$. Let us suppose $\kappa_1 = 0$ and $\kappa_2 = 2H \neq 0$ (otherwise, M^2 would be a totally geodesic surface and then of L_1 -1-type). Let $\{E_1, E_2\}$ be

a local orthonormal frame of principal directions of S such that $SE_i = \kappa_i E_i$. From Codazzi's equation, we easily obtain

$$\nabla_{E_1} E_1 = 0, \qquad \nabla_{E_1} E_2 = 0,$$

$$\nabla_{E_2} E_1 = -\frac{\alpha}{H} E_2, \qquad \nabla_{E_2} E_2 = \frac{\alpha}{H} E_1 \qquad [E_1, E_2] = \frac{\alpha}{H} E_2,$$

where $\alpha = E_1(H)$. Now, from the definition of curvature tensor [9, p. 74], we get

$$R(E_1, E_2)E_1 = \frac{HE_1(\alpha) - 2\alpha^2}{H^2}E_2,$$

and from the Gauss equation we have $R(E_1, E_2)E_1 = -E_2$. By equating the last two equations we deduce

On the other hand, from the definition of L_1 , see (2.2), we obtain

(4.7)
$$L_1 H = \kappa_2 \langle E_1, \nabla_{E_1} \nabla H \rangle + \kappa_1 \langle E_2, \nabla_{E_2} \nabla H \rangle = 2HE_1(\alpha).$$

By using (4.6) and (4.7), (4.3) can be rewritten as

$$\lambda_1 \lambda_2 \langle \psi, a \rangle = 2(\lambda_1 + \lambda_2)H - \lambda_1 \lambda_2 - 8\alpha^2.$$

Taking covariant derivative along E_1 here, we have

(4.8)
$$E_1(\lambda_1\lambda_2\langle\psi,a\rangle) = 2(\lambda_1+\lambda_2)\alpha - 16\alpha E_1(\alpha).$$

On the other hand, from (4.1) we get $\lambda_1 \lambda_2 a^{\top} = 8H\alpha E_1$, and therefore

$$E_1(\lambda_1\lambda_2\langle\psi,a\rangle) = \langle\lambda_1\lambda_2a^{\top},E_1\rangle = 8H\alpha_1$$

This equation, jointly with (4.8), imply that $(\lambda_1 + \lambda_2)\alpha - 8\alpha E_1(\alpha) = 4H\alpha$. Since $\alpha \neq 0$, see (4.6), we deduce

$$8E_1(\alpha) = -4H + \lambda_1 + \lambda_2.$$

From here and using (4.7) we get $4L_1H = -4H^2 + (\lambda_1 + \lambda_2)H$. By using this in (4.3), we find

$$\lambda_1 \lambda_2 \langle \psi, a \rangle = -2H^2 + \frac{3}{2}(\lambda_1 + \lambda_2)H - \lambda_1 \lambda_2.$$

Taking gradient, and using (4.1) and (2.1), we obtain

(4.9)
$$\left[-4H + \frac{3}{2}(\lambda_1 + \lambda_2)\right]\nabla H = 4P(\nabla H) = 8H\nabla H - 4S(\nabla H),$$

that is,

$$S(\nabla H) = \left(3H - \frac{3}{8}(\lambda_1 + \lambda_2)\right)\nabla H.$$

On the other hand, by applying the operator S to both sides of the first equality of (4.9), and bearing in mind that $S \circ P = 0$, we obtain

$$\left[-4H + \frac{3}{2}(\lambda_1 + \lambda_2)\right]S(\nabla H) = 0.$$

The last two equations imply that H is constant on \mathcal{U} , which is a contradiction.

We have proved that if M^2 is an L_1 -2-type surface with constant Gaussian curvature, then its mean curvature is also constant. Then Proposition 3.4 yields the result.

A surface in \mathbb{H}^3 is said to have a *constant principal curvature* if one of its principal curvatures is constant.

Theorem 4.3. Let $\psi : M^2 \to \mathbb{H}^3 \subset \mathbb{R}^4_1$ be a surface of L_1 -2-type. Then M^2 has a constant principal curvature if and only if M^2 is an open piece of a standard Riemannian product $\mathbb{H}^1(-\sqrt{1+r^2}) \times \mathbb{S}^1(r)$.

Proof. Let M^2 be a surface of L_1 -2-type with constant curvature κ_1 ; and assume that κ_1 is a nonzero constant (otherwise, $H_2 = 0$ and Theorem 4.2 applies). Consider the open set $\mathcal{U} = \{p \in M^2 \mid \nabla \kappa_2^2(p) \neq 0\}$. Our goal is to show that \mathcal{U} is empty. Otherwise, equations (4.1)–(4.3) can be rewritten in terms of κ_2 as follows,

(4.10)
$$\lambda_1 \lambda_2 a^{\top} = [-6\kappa_1^2 \kappa_2 + 2(\kappa_1 + \kappa_2)] \nabla \kappa_2 - 2S(\nabla \kappa_2),$$

(4.11)
$$\lambda_1 \lambda_2 \langle N, a \rangle = 2\kappa_1 L_1 \kappa_2 - 2\kappa_1 \kappa_2 \left| (\kappa_1 + \kappa_2)(\kappa_1 \kappa_2 - 1) + \lambda_1 + \lambda_2 \right|,$$

(4.12)
$$\lambda_1 \lambda_2 \langle \psi, a \rangle = -L_1 \kappa_2 + 4\kappa_1^2 \kappa_2^2 - (\kappa_1 + \kappa_2)^2 + (\lambda_1 + \lambda_2)(\kappa_1 + \kappa_2) - \lambda_1 \lambda_2.$$

From (4.11) and (4.12) we find

$$\begin{split} \lambda_1 \lambda_2 \left\langle N, a \right\rangle &= -2\kappa_1 \lambda_1 \lambda_2 \left\langle \psi, a \right\rangle \\ &+ 2\kappa_1 \Big[-\kappa_1^2 + (\lambda_1 + \lambda_2)\kappa_1 - \lambda_1 \lambda_2 - 3\kappa_1 \kappa_2 + 3\kappa_1^2 \kappa_2^2 - \kappa_1 \kappa_2^3 \Big], \end{split}$$

and by taking gradient, we obtain

(4.13)
$$-\lambda_1\lambda_2Sa^{\top} = -2\kappa_1\lambda_1\lambda_2a^{\top} + 2\kappa_1^2\Big[-3 + 6\kappa_1\kappa_2 - 3\kappa_2^2\Big]\nabla\kappa_2.$$

On the other hand, by using $S \circ P = H_2 I$ and (4.1), we get

(4.14)
$$\lambda_1 \lambda_2 S a^{\dagger} = -6\kappa_1^2 \kappa_2 S(\nabla \kappa_2) + 2\kappa_1 \kappa_2 \nabla \kappa_2.$$

Now, from (4.10), (4.13) and (4.14), we deduce

$$3\kappa_1\kappa_2 - 2)S(\nabla\kappa_2) = (-3\kappa_1\kappa_2^2 + (9\kappa_1^2 - 1)\kappa_2 - \kappa_1)\nabla\kappa_2.$$

Since $3\kappa_1\kappa_2 - 2 \neq 0$ (otherwise, κ_2 would be constant), we deduce

$$S(\nabla \kappa_2) = f(\kappa_1, \kappa_2) \nabla \kappa_2, \qquad f(\kappa_1, \kappa_2) = \frac{-3\kappa_1 \kappa_2^2 + (9\kappa_1^2 - 1)\kappa_2 - \kappa_1}{3\kappa_1 \kappa_2 - 2}$$

This equation implies that either $f(\kappa_1, \kappa_2) = \kappa_1$ or $f(\kappa_1, \kappa_2) = \kappa_2$. In any case, it follows that κ_2 is constant on \mathcal{U} , a contradiction.

As a consequence of theorems 4.1, 4.2 and 4.3, we have the following characterization of L_1 -2-type surfaces in \mathbb{H}^3 . **Theorem 4.4.** Let $\psi: M^2 \to \mathbb{H}^3 \subset \mathbb{R}^4_1$ be a surface of L_1 -2-type. Then either M^2 is an open piece of a standard Riemannian product $\mathbb{H}^1(-\sqrt{1+r^2}) \times \mathbb{S}^1(r)$, or M^2 has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.

Acknowledgements

This work has been partially supported by MINECO (Ministerio de Economía y Competitividad) and FEDER, project MTM2015-65430-P, and by Fundación Séneca (Región de Murcia, Spain) project 19901/GERM/15.

References

- [1] L.J. Alías and S.M.B. Kashani, Hypersurfaces in space forms satisfying the condition $L_k \psi = A \psi + b$, Taiwanese J. Math. 14 (2010) 1957–1978.
- M. Aminian and S.M.B. Kashani, L_k-biharmonic hypersurfaces in the Euclidean space, Taiwanese J. Math. 19 (2015) 861–874.
- [3] É. Cartan, Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl. 17 (1938) 177–191.
- [4] B.Y. Chen, Submanifolds of finite type in hyperbolic spaces, Chinese J. Math. 20 (1992) 5–21.
- [5] B.Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22 (1996) 117– 337.
- [6] B.Y. Chen, Some open problems and conjectures on submanifolds of finite type: recent development, *Tamkang J. Math.* 45 (2014) 87–108.
- [7] B.Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific Publ. Singapore, 1984; 2nd edition, 2015.
- [8] S.M.B. Kashani, On some L₁-finite type (hyper)surfaces in Rⁿ⁺¹, Bull. Korean Math. Soc. 46 (2009) 35–43.
- [9] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
- [10] R. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Differential Geom. 8 (1973) 465–477.

(Pascual Lucas) Departamento de Matemáticas, Facultad de Matemáticas, Universidad de Murcia, 30100 Murcia, Spain.

 $E\text{-}mail\ address: \texttt{plucasQum.es}$

(Héctor Fabián Ramírez-Ospina) DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIEN-CIAS, UNIVERSIDAD NACIONAL DE COLOMBIA, BOGOTÁ DC, COLOMBIA.

E-mail address: hframirezo@unal.edu.co