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Abstract. In this paper, we show that an L1-2-type surface in the three-
dimensional hyperbolic space H3 ⊂ R4

1 either is an open piece of a stan-

dard Riemannian product H1(−
√
1 + r2)× S1(r), or it has non constant

mean curvature, non constant Gaussian curvature, and non constant prin-

cipal curvatures.
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1. Introduction

During the late 1970s, B.Y. Chen introduced finite type submanifolds (that
is, submanifolds whose isometric immersion into the Euclidean, or pseudo-
Euclidean space is constructed by using eigenfunctions of their Laplacian). The
first results on this subject were collected in his book [7], and, in subsequent
papers, he has provided a detailed account of recent development on problems
and conjectures about this topic, [5, 6]. It is well known that the Laplacian
operator ∆ can be seen as the first one of a sequence of operators L0 = ∆,
L1, . . . , Ln−1, n being the dimension of the submanifold, where Lk stands for
the linearized operator of the first variation of the (k + 1)-th mean curvature
arising from normal variations (see, for instance, [10]).

As might be expected, the notion of finite type submanifold can be defined
for any operator Lk, [8], and then it is natural to try to obtain new results and
compare them with the classical ones. For example, it is a well known result
that the only 2-type surfaces in the hyperbolic space H3 are open pieces of the
Riemannian products H1(−

√
1 + r2)× S1(r), [4, 5].

What can we say about an L1-2-type surface M2 in the hyperbolic space
H3? These surfaces are characterized by the following spectral decomposition

Article electronically published on 30 November, 2017.

Received: 31 July 2016, Accepted: 14 October 2016.
∗Corresponding author.

c⃝2017 Iranian Mathematical Society

1769



Hyperbolic surfaces of L1-2-type 1770

of its position vector ψ :M2 → H3 ⊂ R4
1:

ψ = ψ0 + ψ1 + ψ2, L1ψ1 = λ1ψ1, L1ψ2 = λ2ψ2, λ1 ̸= λ2, λi ∈ R,

where ψ0 is a constant vector in R4
1, and ψ1, ψ2 are R4

1-valued non-constant
differentiable functions on M2. It is easy to see that open pieces of the stan-
dard Riemannian products H1(−

√
1 + r2)×S1(r) are surfaces of L1-2-type (see

Example 3.2). Our main theorem is the following local result.
Theorem. Let ψ :M2 → H3 ⊂ R4

1 be a surface of L1-2-type. Then either M2

is an open piece of a standard Riemannian product H1(−
√
1 + r2)× S1(r), or

M2 has non constant mean curvature, non constant Gaussian curvature, and
non constant principal curvatures.

Our conjecture is that (open pieces of) standard Riemannian products

H1(−
√
1 + r2)×S1(r) are the only L1-2-type surfaces in the three-dimensional

hyperbolic space.

2. Preliminaries

Let R4
1 denote the 4-dimensional Lorentz-Minkowski space with flat metric

given by

⟨·, ·⟩ = −dx21 + dx22 + dx23 + dx24,

where (x1, x2, x3, x4) is the usual rectangular coordinate system on R4
1. We

denote by H3 the (connected) unit hyperbolic space, which has the standard
embedding in R4

1 as

H3 = {x ∈ R4
1 : ⟨x, x⟩ = −1, and x1 > 0}.

Let ψ :M2 → H3 ⊂ R4
1 be an isometric immersion of a connected and orientable

surface M2, with Gauss map N . We denote by ∇0, ∇ and ∇ the Levi-Civita
connections on R4

1, H3 and M2, respectively. Then the Gauss and Weingarten
formulas are given by

∇0
XY = ∇XY + ⟨SX, Y ⟩N + ⟨X,Y ⟩ψ,
SX = −∇XN = −∇0

XN,

for all tangent vector fields X,Y ∈ X(M2), where S : X(M2) → X(M2) stands
for the shape operator (or Weingarten endomorphism) of M2, with respect to
the chosen orientation N . The mean curvature H and the curvature H2 of M2

are defined by 2H = κ1 + κ2 and H2 = κ1κ2, respectively, κ1 and κ2 being
the eigenvalues of S (that is, the principal curvatures of the surface). It is well
known that the Gaussian curvature K is given by K = −1 +H2.

The Newton transformation of M2 is the operator P : X(M2) → X(M2)
defined by

P = 2HI − S.(2.1)
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Note that by the Cayley-Hamilton theorem we have S ◦P = H2I. Observe also
that, at any point m ∈ M2, S(m) and P (m) can be simultaneously diagonal-
ized: if {e1, e2} are the eigenvectors of S(m) corresponding to the eigenvalues
κ1(m) and κ2(m), respectively, then they are also the eigenvectors of P (m)
with corresponding eigenvalues κ2(m) and κ1(m).

According to [9, p. 86], the divergence of a vector field X is the differentiable
function defined by

div(X) = C(∇X) = ⟨∇E1X,E1⟩+ ⟨∇E2X,E2⟩ ,

{E1, E2} being any local orthonormal frame of tangent vectors fields. Analo-
gously, for an operator T : X(M2) → X(M2) the divergence associated to the
metric contraction C12 will be the vector field div(T ) ∈ X(M2) defined as

div(T ) = C12(∇T ) = (∇E1T )E1 + (∇E2T )E2.

The following properties of P are well known (see, for example, [1]).

Lemma 2.1. The Newton transformation P satisfies:

(a) tr(P ) = 2H.
(b) tr(S ◦ P ) = 2H2.
(c) tr(S2 ◦ P ) = 2HH2.
(d) tr(∇XS ◦ P ) = ⟨∇H2, X⟩, where ∇H2 stands for the gradient of H2.
(e) div(P ) = 0.

Associated to the Newton transformation P , we can define a second-order
linear differential operator L1 : C∞(M2) → C∞(M2) by

L1(f) = tr
(
P ◦ ∇2f

)
= div(P (∇f)),(2.2)

where ∇2f : X(M2) → X(M2) denotes the self-adjoint linear operator metri-
cally equivalent to the Hessian of f , given by

⟨
∇2f(X), Y

⟩
= ⟨∇X(∇f), Y ⟩.

An interesting property of L1 is the following: for every couple of differentiable
functions f, g ∈ C∞(M2) we have

L1(fg) = gL1(f) + fL1(g) + 2 ⟨P (∇f),∇g⟩ .(2.3)

Note that the operator L1 can be naturally extended to vector valued functions.

3. First formulas, examples and results

Let a ∈ R4
1 be an arbitrary fixed vector. A direct computation shows that

the gradient of the height function ⟨ψ, a⟩ is given by

(3.1) ∇⟨ψ, a⟩ = a⊤ = a− ⟨N, a⟩N + ⟨ψ, a⟩ψ,

where a⊤ ∈ X(M2) denotes the tangential component of a. Taking covariant
derivative in (3.1), and using the Gauss and Weingarten formulas, we obtain

(3.2) ∇X∇⟨ψ, a⟩ = ∇Xa
⊤ = ⟨N, a⟩SX + ⟨ψ, a⟩X,
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for every vector field X ∈ X(M2). Finally, by using (2.2) and Lemma 2.1, we
find

L1 ⟨ψ, a⟩ = ⟨N, a⟩ tr(S ◦ P ) + ⟨ψ, a⟩ tr(P ) = 2H2 ⟨N, a⟩+ 2H ⟨ψ, a⟩ ,(3.3)

and therefore

L1ψ = 2H2N + 2Hψ.(3.4)

A straightforward computation yields ∇⟨N, a⟩ = −Sa⊤, and then, from the
Weingarten formula and (3.2), we get

∇X∇⟨N, a⟩ = −(∇a⊤S)X − ⟨N, a⟩S2X − ⟨ψ, a⟩SX,
for every tangent vector field X. This equation, jointly with (2.2) and
Lemma 2.1, yields

L1 ⟨N, a⟩ = −tr(∇a⊤S ◦ P )− ⟨N, a⟩ tr(S2 ◦ P )− ⟨ψ, a⟩ tr(S ◦ P )(3.5)

= −⟨∇H2, a⟩ − 2HH2 ⟨N, a⟩ − 2H2 ⟨ψ, a⟩ .
In other words,

L1N = −∇H2 − 2HH2N − 2H2ψ.

On the other hand, equations (2.3), (3.3) and (3.5) lead to

L2
1 ⟨ψ, a⟩ = 2H2L1 ⟨N, a⟩+ 2L1(H2) ⟨N, a⟩+ 4

⟨
P (∇H2),∇⟨N, a⟩

⟩
+ 2HL1 ⟨ψ, a⟩+ 2L1(H) ⟨ψ, a⟩+ 4

⟨
P (∇H),∇⟨ψ, a⟩

⟩
,

= −2H2 ⟨∇H2, a⟩ − 4 ⟨(S ◦ P )(∇H2), a⟩+ 4 ⟨P (∇H), a⟩
+
[
2L1H2 − 4HH2(H2 − 1)

]
⟨N, a⟩

+
[
− 4H2

2 + 4H2 + 2L1H
]
⟨ψ, a⟩ ,

and then we obtain

L2
1ψ = 4P (∇H)− 3∇H2

2(3.6)

+ 2
[
L1H2 − 2HH2

(
H2 − 1

)]
N

+ 2
[
L1H − 2H2

2 + 2H2
]
ψ.

3.1. Examples.

Example 3.1 (Surfaces of L1-1-type). In this example we present some sur-
faces M2 ⊂ H3 of L1-1-type in R4

1, that is, surfaces whose position vector ψ
can be written as ψ = ψ0+ψ1, where ψ0 is a constant vector in R4

1 and ψ1 is an
R4

1-valued non-constant differentiable function satisfying L1ψ1 = λψ1, λ ∈ R.
In the case λ = 0,M2 is said to be an L1-null-1-type surface or an L1-harmonic
surface.

As is well known, totally umbilical surfaces in H3 are obtained as the in-
tersection of H3 with a hyperplane of R4

1, and the causal character of the
hyperplane determines the type of the surface. More precisely, let a ∈ R4

1 be
a non-zero constant vector with ⟨a, a⟩ ∈ {1, 0,−1}, and take the differentiable
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function fa : H3 → R defined by fa(x) = ⟨x, a⟩. It is not difficult to see that
for every τ ∈ R, with ⟨a, a⟩ + τ2 = δ2 > 0, the set Mτ = f−1

a (τ) is a totally
umbilical surface in H3, with Gauss map N(x) = (1/δ)(a+ τx), and shape op-
erator S = −(τ/δ)I. From here, we get that Mτ has constant mean curvature
H = −τ/δ and constant Gaussian curvature K = −⟨a, a⟩ /δ2. Now we will see
the different possibilities:

(i) If ⟨a, a⟩ = −1, then K = 1/(τ2−1) is positive, and Mτ ⊂ S2(
√
τ2 − 1).

(ii) If ⟨a, a⟩ = 0, then K = 0, and Mτ ⊂ R2. Mτ is said to be a flat totally
umbilical surface.

(iii) If ⟨a, a⟩ = 1, then K = −1/(τ2 + 1) is negative, and Mτ ⊂
H2(−

√
τ2 + 1).

Bearing (3.4) in mind, we obtain

L1ψ = λψ + b, λ =
2τ

δ

(τ2
δ2

− 1
)
, b =

2τ2

δ3
a.

We distinguish three cases:

(i) If τ = 0 (and so S = 0), then L1ψ = 0 and Mτ ⊂ H2 is of L1-null-1-
type.

(ii) If τ2 = δ2 > 0, then L1ψ = b ̸= 0, ⟨b, b⟩ = 0, and Mτ ⊂ R2 is of infinite
L1-type.

(iii) If λ ̸= 0, then we write ψ = ψ0 + ψ1, with ψ0 = −(1/λ)b and ψ1 =
ψ + (1/λ)b, showing Mτ is of L1-1-type.

Example 3.2 (Surfaces of L1-2-type). We will see that the standard Riemann-

ian product M2(r) = H1(−
√
1 + r2)× S1(r) is a surface in H3 of L1-2-type in

R4
1. Let us suppose M

2(r) = {x ∈ H3 : x23 + x24 = r2}, then the Gauss map is
given by

N(x) =

(
r√

1 + r2
x1,

r√
1 + r2

x2,

√
1 + r2

r
x3,

√
1 + r2

r
x4

)
,

and the principal curvatures are computed as

κ1 =
−r√
1 + r2

and κ2 =
−
√
1 + r2

r
.

Hence, we get

H = − 2r2 + 1

2r
√
1 + r2

and H2 = 1.

If we put ψ1 = (x1, x2, 0, 0) and ψ2 = (0, 0, x3, x4), then ψ = ψ1+ψ2, and from
(3.4) we obtain L1ψ1 = λ1ψ1 and L1ψ2 = λ2ψ2, where

λ1 =
−1

r
√
1 + r2

and λ2 =
1

r
√
1 + r2

.

Therefore, M2(r) is an L1-2-type surface in R4
1.



Hyperbolic surfaces of L1-2-type 1774

3.2. First results.

Proposition 3.3. Let ψ : M2 → H3 ⊂ R4
1 be an isometric immersion. Then

ψ is of L1-1-type if and only if M2 is a non-flat totally umbilical surface in H3.

Proof. We have already checked in example 3.1 that non-flat totally umbilical
surfaces are of L1-1-type. Conversely, let us assume that ψ : M2 → H3 ⊂ R4

1

is of L1-1-type. Then it is easy to get L1ψ = λψ + b, b = −λψ0, and by using
(3.4) we obtain

2H2N + (2H − λ)ψ = b.

Taking covariant derivative here, we get

−2H2SX + (2H − λ)X + 2X(H2)N + 2X(H)ψ = 0,

for every tangent vector field X. As a consequence,M2 has constant curvatures
H and H2, that is, M2 is an isoparametric surface in H3. Bearing in mind
examples 3.1 and 3.2, and the classification of isoparametric surfaces in H3 [3],
we easily obtain the result. □

The following result is also deduced from examples 3.1 and 3.2, taking into
account [3].

Proposition 3.4. Let ψ : M2 → H3 ⊂ R4
1 be an isoparametric surface. Then

M2 is of L1-2-type in R4
1 if and only if M2 is an open piece of a standard

Riemannian product H1(−
√
1 + r2)× S1(r).

The following definition appears in a natural way, [2].

Definition 3.5. An isometric immersion ψ : M2 → R4
1 is said to be L1-

biharmonic if L2
1ψ = 0. In the case L2

1ψ = 0 and L1ψ ̸= 0, we will say that ψ
is a proper L1-biharmonic immersion.

Observe that, from (3.4), any totally geodesic surface of H3 is trivially an
L1-biharmonic surface in R4

1.
Let ψ :M2 → H3 ⊂ R4

1 be an L1-biharmonic surface. Then (3.6) yields

4P (∇H)− 3∇H2
2 = 0,(3.7)

L1H2 − 2HH2(H2 − 1) = 0,(3.8)

L1H + 2(H2 −H2
2 ) = 0.(3.9)

If H is constant, then (3.9) yieldsM2 is an isoparametric surface in H3. If K is
constant (and so is H2), by taking divergence in (3.7), we get L1H = 0. Then
from (3.9) we also deduce M2 is an isoparametric surface in H3. Therefore,
bearing [3] in mind, we have obtained the following result.

Proposition 3.6. Let ψ :M2 → H3 ⊂ R4
1 be an L1-biharmonic surface. Then

one of the following claims holds:

(a) M2 is an open piece of a totally geodesic hyperbolic plane.
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(b) M2 is an open piece of a flat totally umbilical surface.
(c) M2 has non constant curvatures H and K.

This result can be improved as follows. IfH is an L1-harmonic function (that
is, L1H = 0), then (3.9) implies again M2 is an isoparametric surface. The
same conclusion is also obtained when H2 (or K) is an L1-harmonic function.
Indeed, in this case, (3.8) yields

HH2(H2 − 1) = 0.

Let us assume that H is non constant (otherwise, there is nothing to prove)
and take the non-empty set U = {p ∈ M2 |∇H2(p) ̸= 0}. On this set we have
H2(H2−1) = 0, and thenH2 (and alsoK) is constant on U. Hence, Proposition
3.6 implies U is a totally umbilical surface in H3, but then the mean curvature
H is also constant, a contradiction. So the following result has been proved.

Proposition 3.7. Let ψ : M2 → H3 ⊂ R4
1 be a non totally umbilical L1-

biharmonic surface. Then the curvatures H and K are not L1-harmonic func-
tions.

4. Main results

The main goal of this section is to improve Proposition 3.4 in several ways.
First, we need to do some more computations.

Let us suppose that ψ :M2 → H3 ⊂ R4
1 is an L1-2-type surface, then we can

write ψ = ψ0 + ψ1 + ψ2. Since L1ψ = λ1ψ1 + λ2ψ2 and L2
1ψ = λ21ψ1 + λ22ψ2,

an easy computation shows that L2
1ψ = (λ1 + λ2)L1ψ − λ1λ2(ψ − a), and by

using (3.4) we obtain

L2
1ψ = λ1λ2a

⊤ +
[
2(λ1 + λ2)H2 + λ1λ2 ⟨N, a⟩

]
N

+
[
2(λ1 + λ2)H − λ1λ2 − λ1λ2 ⟨ψ, a⟩

]
ψ.

This equation, jointly with (3.6), yield the following equations, that character-
ize L1-2-type surfaces in H3:

λ1λ2a
⊤ = 4P (∇H)− 3∇H2

2 ,(4.1)

λ1λ2 ⟨N, a⟩ = 2L1H2 − 2H2

(
2HH2 − 2H + λ1 + λ2

)
,(4.2)

λ1λ2 ⟨ψ, a⟩ = −2L1H + 4H2
2 − 4H2 + 2(λ1 + λ2)H − λ1λ2.(4.3)

Theorem 4.1. Let ψ : M2 → H3 ⊂ R4
1 be a surface of L1-2-type. Then M2

has constant mean curvature if and only if M2 is an open piece of a standard
Riemannian product H1(−

√
1 + r2)× S1(r).

Proof. Let M2 be a surface of L1-2-type with constant mean curvature. We
will prove that the curvature H2 is also constant. Otherwise, let us consider
the non-empty open set U2 =

{
p ∈ M2 | ∇H2

2 (p) ̸= 0
}
. By taking covariant

derivative in (4.3) we have λ1λ2a
⊤ = 4∇H2

2 . Using this in (4.1) we obtain
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that H2 is constant on U2, a contradiction. Therefore, M2 is an isoparametric
surface in H3, and then the result follows from Proposition 3.4. □

Theorem 4.2. Let ψ : M2 → H3 ⊂ R4
1 be a surface of L1-2-type. Then

M2 has constant Gaussian curvature if and only if M2 is an open piece of a
standard Riemannian product H1(−

√
1 + r2)× S1(r).

Proof. Let M2 be an L1-2-type surface with constant Gaussian curvature K,
and consider the open set U =

{
p ∈ M2 | ∇H2(p) ̸= 0

}
. Our goal is to show

that U is empty. If we suppose it is non-empty, by taking covariant derivative
in (4.2), and using that H2 is constant, we obtain

λ1λ2Sa
⊤ = 4H2(H2 − 1)∇H.

From (4.1) and bearing in mind that S◦P = H2I, we have λ1λ2Sa
⊤ = 4H2∇H,

and therefore

H2(H2 − 2)∇H = 0.

Consequently, on U we have either H2 = 2 or H2 = 0. We will study each case
separately.
Case 1: H2 = 2. By applying L1 to both sides of (4.2), and using (4.3), we get

λ1λ2L1 ⟨N, a⟩ = 4
[
λ1λ2 ⟨ψ, a⟩+ 4H2 − 2(λ1 + λ2)H + λ1λ2 − 16

]
.

On the other hand, (3.5) leads to

λ1λ2 ⟨N, a⟩H + λ1λ2 ⟨ψ, a⟩ = −λ1λ2 ⟨a, ψ⟩ − 4H2 + 2(λ1 + λ2)H − λ1λ2 + 16,

and using (4.2) we find

(4.4) λ1λ2 ⟨ψ, a⟩ = 2H2 + 3(λ1 + λ2)H − λ1λ2
2

+ 8.

Taking gradients in (4.4), and using (4.1) and (2.1), we obtain

(4.5)
[
4H + 3(λ1 + λ2)

]
∇H = 4P (∇H) = 8H∇H − 4S(∇H),

that is,

S(∇H) =
4H − 3(λ1 + λ2)

4
∇H.

Now, by applying the operator S to both sides of the first equality of (4.5), and
bearing in mind that S ◦ P = 2I, we obtain

S(∇H) =
8

4H + 3(λ1 + λ2)
∇H.

The last two equations for S(∇H) imply that H is constant on U, which is a
contradiction.
Case 2: H2 = 0. Let us suppose κ1 = 0 and κ2 = 2H ̸= 0 (otherwise, M2

would be a totally geodesic surface and then of L1-1-type). Let {E1, E2} be
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a local orthonormal frame of principal directions of S such that SEi = κiEi.
From Codazzi’s equation, we easily obtain

∇E1E1 = 0, ∇E1E2 = 0,

∇E2E1 = − α
HE2, ∇E2E2 = α

HE1 [E1, E2] =
α
HE2,

where α = E1(H). Now, from the definition of curvature tensor [9, p. 74], we
get

R(E1, E2)E1 =
HE1(α)− 2α2

H2
E2,

and from the Gauss equation we have R(E1, E2)E1 = −E2. By equating the
last two equations we deduce

(4.6) HE1(α) = 2α2 −H2.

On the other hand, from the definition of L1, see (2.2), we obtain

(4.7) L1H = κ2 ⟨E1,∇E1∇H⟩+ κ1 ⟨E2,∇E2∇H⟩ = 2HE1(α).

By using (4.6) and (4.7), (4.3) can be rewritten as

λ1λ2 ⟨ψ, a⟩ = 2(λ1 + λ2)H − λ1λ2 − 8α2.

Taking covariant derivative along E1 here, we have

(4.8) E1(λ1λ2 ⟨ψ, a⟩) = 2(λ1 + λ2)α− 16αE1(α).

On the other hand, from (4.1) we get λ1λ2a
⊤ = 8HαE1, and therefore

E1(λ1λ2 ⟨ψ, a⟩) =
⟨
λ1λ2a

⊤, E1

⟩
= 8Hα.

This equation, jointly with (4.8), imply that (λ1 + λ2)α − 8αE1(α) = 4Hα.
Since α ̸= 0, see (4.6), we deduce

8E1(α) = −4H + λ1 + λ2.

From here and using (4.7) we get 4L1H = −4H2 + (λ1 + λ2)H. By using this
in (4.3), we find

λ1λ2 ⟨ψ, a⟩ = −2H2 +
3

2
(λ1 + λ2)H − λ1λ2.

Taking gradient, and using (4.1) and (2.1), we obtain

(4.9)
[
− 4H +

3

2
(λ1 + λ2)

]
∇H = 4P (∇H) = 8H∇H − 4S(∇H),

that is,

S(∇H) =
(
3H − 3

8
(λ1 + λ2)

)
∇H.

On the other hand, by applying the operator S to both sides of the first equality
of (4.9), and bearing in mind that S ◦ P = 0, we obtain[

− 4H +
3

2
(λ1 + λ2)

]
S(∇H) = 0.
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The last two equations imply that H is constant on U, which is a contradiction.
We have proved that if M2 is an L1-2-type surface with constant Gaussian

curvature, then its mean curvature is also constant. Then Proposition 3.4 yields
the result. □

A surface in H3 is said to have a constant principal curvature if one of its
principal curvatures is constant.

Theorem 4.3. Let ψ : M2 → H3 ⊂ R4
1 be a surface of L1-2-type. Then

M2 has a constant principal curvature if and only if M2 is an open piece of a
standard Riemannian product H1(−

√
1 + r2)× S1(r).

Proof. Let M2 be a surface of L1-2-type with constant curvature κ1; and as-
sume that κ1 is a nonzero constant (otherwise, H2 = 0 and Theorem 4.2 ap-
plies). Consider the open set U =

{
p ∈M2 | ∇κ22(p) ̸= 0

}
. Our goal is to show

that U is empty. Otherwise, equations (4.1)–(4.3) can be rewritten in terms of
κ2 as follows,

λ1λ2a
⊤ = [−6κ21κ2 + 2(κ1 + κ2)]∇κ2 − 2S(∇κ2),(4.10)

λ1λ2 ⟨N, a⟩ = 2κ1L1κ2 − 2κ1κ2
[
(κ1 + κ2)(κ1κ2 − 1) + λ1 + λ2

]
,(4.11)

λ1λ2 ⟨ψ, a⟩ = −L1κ2 + 4κ21κ
2
2 − (κ1 + κ2)

2(4.12)

+ (λ1 + λ2)(κ1 + κ2)− λ1λ2.

From (4.11) and (4.12) we find

λ1λ2 ⟨N, a⟩ = −2κ1λ1λ2 ⟨ψ, a⟩

+ 2κ1

[
− κ21 + (λ1 + λ2)κ1 − λ1λ2 − 3κ1κ2 + 3κ21κ

2
2 − κ1κ

3
2

]
,

and by taking gradient, we obtain

(4.13) − λ1λ2Sa
⊤ = −2κ1λ1λ2a

⊤ + 2κ21

[
− 3 + 6κ1κ2 − 3κ22

]
∇κ2.

On the other hand, by using S ◦ P = H2I and (4.1), we get

(4.14) λ1λ2Sa
⊤ = −6κ21κ2S(∇κ2) + 2κ1κ2∇κ2.

Now, from (4.10), (4.13) and (4.14), we deduce

(3κ1κ2 − 2)S(∇κ2) = (−3κ1κ
2
2 + (9κ21 − 1)κ2 − κ1)∇κ2.

Since 3κ1κ2 − 2 ̸= 0 (otherwise, κ2 would be constant), we deduce

S(∇κ2) = f(κ1, κ2)∇κ2, f(κ1, κ2) =
−3κ1κ

2
2 + (9κ21 − 1)κ2 − κ1
3κ1κ2 − 2

.

This equation implies that either f(κ1, κ2) = κ1 or f(κ1, κ2) = κ2. In any case,
it follows that κ2 is constant on U, a contradiction. □

As a consequence of theorems 4.1, 4.2 and 4.3, we have the following char-
acterization of L1-2-type surfaces in H3.
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Theorem 4.4. Let ψ :M2 → H3 ⊂ R4
1 be a surface of L1-2-type. Then either

M2 is an open piece of a standard Riemannian product H1(−
√
1 + r2)×S1(r),

or M2 has non constant mean curvature, non constant Gaussian curvature,
and non constant principal curvatures.
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Ann. Mat. Pura Appl. 17 (1938) 177–191.

[4] B.Y. Chen, Submanifolds of finite type in hyperbolic spaces, Chinese J. Math. 20 (1992)

5–21.
[5] B.Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22 (1996) 117–

337.
[6] B.Y. Chen, Some open problems and conjectures on submanifolds of finite type: recent

development, Tamkang J. Math. 45 (2014) 87–108.
[7] B.Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific

Publ. Singapore, 1984; 2nd edition, 2015.
[8] S.M.B. Kashani, On some L1-finite type (hyper)surfaces in Rn+1, Bull. Korean Math.

Soc. 46 (2009) 35–43.
[9] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press,

New York, 1983.
[10] R. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces

in space forms, J. Differential Geom. 8 (1973) 465–477.

(Pascual Lucas) Departamento de Matemáticas, Facultad de Matemáticas, Uni-
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