Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 6, pp. 1781-1790

Title:

The second dual of strongly zero-product preserving maps
Author(s):

A.R. Khoddami

Published by the Iranian Mathematical Society http://bims.ims.ir

THE SECOND DUAL OF STRONGLY ZERO-PRODUCT PRESERVING MAPS

A.R. KHODDAMI

(Communicated by Ali Ghaffari)

Abstract

The notion of strongly Lie zero-product preserving maps on normed algebras as a generalization of Lie zero-product preserving maps are defined. We give a necessary and sufficient condition from which a linear map between normed algebras to be strongly Lie zero-product preserving. Also some hereditary properties of strongly Lie zero-product preserving maps are presented. Finally the second dual of a strongly zero-product, strongly Jordan zero-product and strongly Lie zero-product preserving map on a certain class of normed algebras are investigated. Keywords: Strongly zero-product preserving map, strongly Jordan zeroproduct preserving map, strongly Lie zero-product preserving map, Arens regular. MSC(2010): Primary: 46B99; Secondary: 46H99, 47B37, 65H04.

1. Introduction and preliminaries

Let A and B be two associative algebras over the same field \mathbb{C}. A linear map $\theta: A \longrightarrow B$ is said to be zero-product preserving if, $\theta(a) \theta(c)=0$, whenever $a c=0$. It is Jordan zero-product preserving if, $\theta(a) \circ \theta(c)=0$, whenever $a \circ c=0$, where \circ is the Jordan product $a \circ c=a c+c a$. Also θ is Lie zero-product preserving if, $[\theta(a), \theta(c)]=0$, whenever $[a, c]=0$, where $[a, c]=a c-c a, a, c \in$ A. A natural possibility for θ to preserve zero-products (Jordan zero-products or Lie zero-products) is to be of the form $\theta=b \varphi$, where b is a central element of B and $\varphi: A \longrightarrow B$ is a homomorphism (Jordan homomorphism or Lie homomorphism) that is,
$\varphi(a c)=\varphi(a) \varphi(c) \quad(\varphi(a \circ c)=\varphi(a) \circ \varphi(c)$ or $\varphi([a, c])=[\varphi(a), \varphi(c)]), a, c \in A$.
But this characterization is not the case in general (see [4, Remark 2.5] and Example 2.2 in this paper). An interesting question is for which algebras A

[^0]and B this natural possibility is the only possibility. These kind of questions have been studied since the 1970s.

As a generalization of the above mentioned notions, the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are investigated in [3-5] on normed algebras. In this direction we recall some terminologies.
Let A and B be two normed algebras. A linear map $\theta: A \longrightarrow B$ is said to be :

- Strongly zero-product preserving if, for any two sequences $\left\{a_{n}\right\}_{n}$ and $\left\{c_{n}\right\}_{n}$ in $A, \theta\left(a_{n}\right) \theta\left(c_{n}\right) \longrightarrow 0$, whenever $a_{n} c_{n} \longrightarrow 0$.
- Strongly Jordan zero-product preserving if, for any two sequences $\left\{a_{n}\right\}_{n}$ and $\left\{c_{n}\right\}_{n}$ in $A, \theta\left(a_{n}\right) \circ \theta\left(c_{n}\right) \longrightarrow 0$, whenever $a_{n} \circ c_{n} \longrightarrow 0$.
Also in the sequel we will say θ is :
- Strongly Lie zero-product preserving if, for any two sequences $\left\{a_{n}\right\}_{n}$ and $\left\{c_{n}\right\}_{n}$ in $A,\left[\theta\left(a_{n}\right), \theta\left(c_{n}\right)\right] \longrightarrow 0$, whenever $\left[a_{n}, c_{n}\right] \longrightarrow 0$.
For an associative normed algebra A, let $A^{* *}$ be the second dual of A. We introduce the Arens products \triangle and \odot on the second dual $A^{* *}$ as follows. For $a, c \in A, f \in A^{*}$ and $m, n \in A^{* *},\langle f \cdot a, c\rangle=\langle f, a c\rangle,\langle n \cdot f, a\rangle=\langle n, f \cdot a\rangle$ and $\langle m \Delta n, f\rangle=\langle m, n \cdot f\rangle$. Similarly $\langle c, a \cdot f\rangle=\langle c a, f\rangle,\langle a, f \cdot n\rangle=\langle a \cdot f, n\rangle$ and $\langle f, m \odot n\rangle=\langle f \cdot m, n\rangle$. One can simply verify that $\left(A^{* *}, \triangle\right)$ and $\left(A^{* *}, \odot\right)$ are associative normed algebras.
The normed algebra A is called Arens regular if, $m \triangle n=m \odot n$ for all $m, n \in A^{* *}$.

2. Strongly Lie zero-product preserving maps

In this section we give a necessary and sufficient condition from which a linear map between normed algebras to be strongly Lie zero-product preserving. Also we investigate some hereditary properties of strongly Lie zero-product preserving maps.

Definition 2.1. Let A and B be two normed algebras. We shall say that a linear map $\theta: A \longrightarrow B$ is strongly Lie zero-product preserving, if for any two sequences $\left\{a_{n}\right\}_{n}$ and $\left\{c_{n}\right\}_{n}$ in $A,\left[\theta\left(a_{n}\right), \theta\left(c_{n}\right)\right] \longrightarrow 0$, whenever $\left[a_{n}, c_{n}\right] \longrightarrow 0$.
Example 2.2. (1) Let A and B be normed algebras. Then every continuous Lie homomorphism from A into B is a strongly Lie zero-product preserving map.
(2) Let \mathbb{W} be a finite dimensional normed vector space with the basis $\beta=\left\{e_{1}, e_{2}, e_{3}\right\}$. Also let $f \in \mathbb{W}^{*}$ be a linear functional on \mathbb{W} such that $f\left(e_{1}\right)=1$ and $f\left(e_{2}\right)=f\left(e_{3}\right)=0$. For $a, c \in \mathbb{W}$ define $a \cdot c=f(a) c$. Obviously ($\mathbb{W}, \cdot)$ is an associative normed algebra. We
denote it by \mathbb{W}_{f}. Let $\theta: \mathbb{W}_{f} \longrightarrow \mathbb{W}_{f}$ be a linear map such that $\theta(a)=g(a) e_{2}$ where $g \in \mathbb{W}^{*}$ is a linear functional such that $g\left(e_{3}\right)=1$ and $g\left(e_{1}\right)=g\left(e_{2}\right)=0$. A direct verification shows that θ is strongly Lie zero-product preserving. But θ is neither a Lie homomorphism nor a Lie homomorphism multiplied by a central element of \mathbb{W}_{f}.
(3) Let A and B be two normed algebras and let B be commutative. Then every linear map from A into B is a strongly Lie zero-product preserving map.

Clearly every strongly Lie zero-product preserving map is a Lie zero-product preserving map. But the converse is not the case in general. We give the following example to show this fact.

Example 2.3. Similar to Example 2.2 let \mathbb{W} be an infinite dimensional normed vector space with the basis $\beta=\left\{e_{1}, e_{2}, e_{3}, \ldots\right\}$ such that $\left\|e_{n}\right\|=1$ for all $n \geq 1$. Also let $f \in \mathbb{W}^{*}$ be a bounded linear functional such that $f\left(e_{1}\right)=1$ and $f\left(e_{n}\right)=$ 0 for all $n \geq 2$. Assume that $\theta: \mathbb{W}_{f} \longrightarrow \mathbb{W}_{f}$ is a linear map such that $\theta\left(e_{1}\right)=e_{1}$ and $\theta\left(e_{n}\right)=2^{n} e_{2}$ for all $n \geq 2$. A direct verification shows that θ is Lie zeroproduct preserving. We shall show that θ is not a strongly Lie zero-product preserving map. Let $a_{n}=\frac{e_{1}}{n}$ and $c_{n}=e_{n+1}$. Clearly $\lim _{n \rightarrow \infty}\left[a_{n}, c_{n}\right]=0$. But $\lim _{n \rightarrow \infty}\left\|\left[\theta\left(a_{n}\right), \theta\left(c_{n}\right)\right]\right\|=\lim _{n \rightarrow \infty}\left\|\frac{2^{(n+1)}}{n} e_{2}\right\|=\lim _{n \rightarrow \infty} \frac{2^{(n+1)}}{n}=\infty$.

Theorem 2.4. Let \mathbb{W} be a non-zero normed vector space and let $f \in \mathbb{W}^{*}$ be a non-zero element such that $\|f\| \leq 1$. Then a linear map $\theta: \mathbb{W}_{f} \longrightarrow$ \mathbb{W}_{f} is strongly Lie zero-product preserving if and only if one of the following statements holds.
(1) $f \circ \theta=0$.
(2) $\theta(\operatorname{ker} f) \subseteq \operatorname{ker} f$ and there exist a continuous linear map $\varphi: \mathbb{W}_{f} \longrightarrow$ ker f and an element $e \in f^{-1}(\{1\})$ such that for all $a \in \mathbb{W}_{f}, \theta(a)=$ $f(a) \theta(e)+\theta \circ \varphi(a)$ and $\left.\theta \circ \varphi\right|_{\operatorname{ker} f}$ is continuous.
(3) There exist a continuous linear $\operatorname{map} \varphi: \mathbb{W}_{f} \longrightarrow \operatorname{ker} f$ and an element $e \in f^{-1}(\{1\})$ such that $\theta(a)=f(a) \theta(e)+f \circ \theta \circ \varphi(a) e, a \in \mathbb{W}_{f}$ and one of the following statements holds.
(a) $\left.f \circ \theta \circ \varphi\right|_{\text {ker } f}$ is continuous.
(b) $[\theta(e), e]=0$.

Proof. Let θ be a strongly Lie zero-product preserving map such that $f \circ \theta \neq 0$. Also let $e \in \mathbb{W}_{f}$ be an element such that $f(e)=1$. So, for each $a \in \mathbb{W}_{f}$, $a=f(a) e+\varphi(a)$, where $\varphi: \mathbb{W}_{f} \longrightarrow \operatorname{ker} f$ and $\varphi(a)=a-f(a) e$. Hence for each $a, c \in \mathbb{W}_{f}$,

$$
\theta(a)=f(a) \theta(e)+\theta \circ \varphi(a), \theta(c)=f(c) \theta(e)+\theta \circ \varphi(c) .
$$

If $\theta(\operatorname{ker} f) \subseteq \operatorname{ker} f$ then,

$$
\begin{aligned}
{[\theta(a), \theta(c)] } & =[f(a) \theta(e)+\theta \circ \varphi(a), f(c) \theta(e)+\theta \circ \varphi(c)] \\
& =f(a)[\theta(e), \theta \circ \varphi(c)]+f(c)[\theta \circ \varphi(a), \theta(e)] \\
& =[\theta(e), \theta \circ \varphi(a c)]+[\theta \circ \varphi(c a), \theta(e)] \\
& =[\theta(e), \theta \circ \varphi(a c)]-[\theta(e), \theta \circ \varphi(c a)] \\
& =[\theta(e), \theta \circ \varphi(a c-c a)]=[\theta(e), \theta \circ \varphi([a, c])] \\
& =f \circ \theta(e) \theta \circ \varphi([a, c]), \quad a, c \in \mathbb{W}_{f} .
\end{aligned}
$$

Obviously $f \circ \theta(e) \neq 0$. Indeed, the assumption $f \circ \theta(e)=0$ implies,

$$
\begin{aligned}
f \circ \theta(a) & =f(a) f \circ \theta(e)+f \circ \theta \circ \varphi(a) \\
& =0
\end{aligned}
$$

That is a contradiction. Let $\left\{a_{n}\right\}_{n} \subseteq \operatorname{ker} f$ be a sequence such that $a_{n} \longrightarrow 0$. So, $\left[e, a_{n}\right] \longrightarrow 0$. As θ is strongly Lie zero-product preserving, we can conclude that,

$$
\begin{aligned}
\left\|\theta \circ \varphi\left(a_{n}\right)\right\| & =\left\|\theta \circ \varphi\left(\left[e, a_{n}\right]\right)\right\| \\
& =\frac{\left\|\left[\theta(e), \theta\left(a_{n}\right)\right]\right\|}{|f \circ \theta(e)|} \longrightarrow 0
\end{aligned}
$$

This shows that $\theta \circ \varphi$ is continuous on $\operatorname{ker} f$.
If $\theta(\operatorname{ker} f) \nsubseteq \operatorname{ker} f$, then there exists $a_{0} \in \operatorname{ker} f$ such that $f\left(\theta\left(a_{0}\right)\right)=1$. Set $e=\theta\left(a_{0}\right)$. For each $a, c \in \operatorname{ker} f$ the equality $[a, c]=0$ implies, $[\theta(a), \theta(c)]=0$. So,

$$
\begin{equation*}
f(\theta(a)) \theta(c)=f(\theta(c)) \theta(a) \tag{2.1}
\end{equation*}
$$

Upon substituting $a=a_{0}$ in (2.1), we obtain

$$
\begin{equation*}
\theta(c)=f(\theta(c)) \theta\left(a_{0}\right)=f \circ \theta(c) e, \quad c \in \operatorname{ker} f \tag{2.2}
\end{equation*}
$$

So, for each $a \in \mathbb{W}_{f}, a=f(a) e+\varphi(a)$, where $\varphi: \mathbb{W}_{f} \longrightarrow \operatorname{ker} f$ and $\varphi(a)=$ $a-f(a) e$. Hence for each $a, c \in \mathbb{W}_{f}$,

$$
\theta(a)=f(a) \theta(e)+\theta \circ \varphi(a), \theta(c)=f(c) \theta(e)+\theta \circ \varphi(c)
$$

Since $\varphi(a), \varphi(c) \in \operatorname{ker} f$, applying (2.2) yields,

$$
\theta(a)=f(a) \theta(e)+f \circ \theta \circ \varphi(a) e, \theta(c)=f(c) \theta(e)+f \circ \theta \circ \varphi(c) e, \quad a, c \in \mathbb{W}_{f}
$$

So,

$$
\begin{align*}
{[\theta(a), \theta(c)] } & =[f(a) \theta(e)+f \circ \theta \circ \varphi(a) e, f(c) \theta(e)+f \circ \theta \circ \varphi(c) e] \\
& =f(a)[\theta(e), f \circ \theta \circ \varphi(c) e]-f(c)[\theta(e), f \circ \theta \circ \varphi(a) e] \\
& =[\theta(e), f \circ \theta \circ \varphi(a c) e]-[\theta(e), f \circ \theta \circ \varphi(c a) e] \\
& =[\theta(e), f \circ \theta \circ \varphi([a, c]) e] \\
& =f \circ \theta \circ \varphi([a, c])[\theta(e), e], \quad a, c \in \mathbb{W}_{f} . \tag{2.3}
\end{align*}
$$

Let $[\theta(e), e] \neq 0$ and let $\left\{a_{n}\right\}_{n} \subseteq \operatorname{ker} f$ be a sequence such that $a_{n} \longrightarrow 0$. So, $\left[e, a_{n}\right] \longrightarrow 0$. As θ is strongly Lie zero-product preserving, we can conclude that,

$$
\begin{aligned}
\left|f \circ \theta \circ \varphi\left(a_{n}\right)\right| & =\left|f \circ \theta \circ \varphi\left(\left[e, a_{n}\right]\right)\right| \\
& =\frac{\left\|\left[\theta(e), \theta\left(a_{n}\right)\right]\right\|}{\|[\theta(e), e]\|} \longrightarrow 0 .
\end{aligned}
$$

This shows that $f \circ \theta \circ \varphi$ is continuous on ker f.
For the converse if $f \circ \theta=0$ then clearly θ is a strongly Lie zero-product preserving map. In the cases (2) and (3), one can easily verify that,

$$
[\theta(a), \theta(c)]=f \circ \theta(e) \theta \circ \varphi([a, c]), \quad a, c \in \mathbb{W}_{f}
$$

and

$$
[\theta(a), \theta(c)]=f \circ \theta \circ \varphi([a, c])[\theta(e), e], \quad a, c \in \mathbb{W}_{f},
$$

respectively. Let $\left[a_{n}, c_{n}\right] \longrightarrow 0$. So the continuity of $f \circ \theta$ and $f \circ \theta \circ \varphi$ on $\operatorname{ker} f$ implies, $\left[\theta\left(a_{n}\right), \theta\left(c_{n}\right)\right] \longrightarrow 0$. This shows that θ is strongly Lie zero-product preserving.

Corollary 2.5. Let \mathbb{W} be a non-zero normed vector space and let $f \in \mathbb{W}^{*}$ be non-zero. Also let $\theta: \mathbb{W}_{f} \longrightarrow \mathbb{W}_{f}$ be a continuous linear map such that $\theta(\operatorname{ker} f) \subseteq \operatorname{ker} f$. Then θ is strongly Lie zero-product preserving.
Proof. By Theorem 2.4 it is obvious.
In the following we present a characterization of strongly Lie zero-product preserving maps on normed algebras.
Theorem 2.6. Let A and B be two normed algebras. Then a linear map $\theta: A \longrightarrow B$ is strongly Lie zero-product preserving if and only if there exists an $M>0$ such that for all $a, c \in A$,

$$
\|[\theta(a), \theta(c)]\| \leq M\|[a, c]\| .
$$

Proof. For the sake of contradiction similar to [3, Theorem 3.1] and [5, Theorem 4.1], suppose there is no such M. Then for each $n \in \mathbb{N}$ there exist $a_{n}, c_{n} \in A$ such that,

$$
\left\|\left[\theta\left(a_{n}\right), \theta\left(c_{n}\right)\right]\right\|>n\left\|\left[a_{n}, c_{n}\right]\right\| .
$$

So

$$
\left\|\left[\frac{a_{n}}{\left\|\left[\theta\left(a_{n}\right), \theta\left(c_{n}\right)\right]\right\|}, c_{n}\right]\right\|<\frac{1}{n} .
$$

Set $a_{n}^{\prime}=\frac{a_{n}}{\left\|\left[\theta\left(a_{n}\right), \theta\left(c_{n}\right)\right]\right\|}$ and $c_{n}^{\prime}=c_{n}$. Clearly $\left[a_{n}^{\prime}, c_{n}^{\prime}\right] \longrightarrow 0$. It follows that

$$
\left[\theta\left(a_{n}^{\prime}\right), \theta\left(c_{n}^{\prime}\right)\right] \longrightarrow 0
$$

that is a contradiction. Indeed

$$
\left\|\left[\theta\left(a_{n}^{\prime}\right), \theta\left(c_{n}^{\prime}\right)\right]\right\|=\frac{\left\|\left[\theta\left(a_{n}\right), \theta\left(c_{n}\right)\right]\right\|}{\left\|\left[\theta\left(a_{n}\right), \theta\left(c_{n}\right)\right]\right\|} \longrightarrow 1 .
$$

The converse is obvious.
Corollary 2.7. Let A and B be two normed algebras. Then every continuous Lie homomorphism from A into B is strongly Lie zero-product preserving.

We present some hereditary properties of strongly Lie zero-product preserving maps.

Proposition 2.8. Let A, B, C, D be normed algebras and let $\varphi: A \longrightarrow B$ and $\psi: C \longrightarrow D$ be two strongly Lie zero-product preserving maps. Then $\varphi \oplus \psi: A \oplus C \longrightarrow B \oplus D$ is strongly Lie zero-product preserving .
Proof. By Theorem 2.6, there exist $M, N>0$ such that,

$$
\left\|\left[\varphi(a), \varphi\left(a^{\prime}\right)\right]\right\| \leq M\left\|\left[a, a^{\prime}\right]\right\|, a, a^{\prime} \in A
$$

and

$$
\left\|\left[\psi(c), \psi\left(c^{\prime}\right)\right]\right\| \leq N\left\|\left[c, c^{\prime}\right]\right\|, c, c^{\prime} \in C
$$

So,

$$
\begin{aligned}
\left\|\left[\varphi \oplus \psi(a, c), \varphi \oplus \psi\left(a^{\prime}, c^{\prime}\right)\right]\right\| & =\left\|\left[(\varphi(a), \psi(c)),\left(\varphi\left(a^{\prime}\right), \psi\left(c^{\prime}\right)\right)\right]\right\| \\
& =\left\|\left(\varphi(a) \varphi\left(a^{\prime}\right)-\varphi\left(a^{\prime}\right) \varphi(a), \psi(c) \psi\left(c^{\prime}\right)-\psi\left(c^{\prime}\right) \psi(c)\right)\right\| \\
& =\left\|\left(\left[\varphi(a), \varphi\left(a^{\prime}\right)\right],\left[\psi(c), \psi\left(c^{\prime}\right)\right]\right)\right\| \\
& =\left\|\left[\varphi(a), \varphi\left(a^{\prime}\right)\right]\right\|+\left\|\left[\psi(c), \psi\left(c^{\prime}\right)\right]\right\| \\
& \leq M\left\|\left[a, a^{\prime}\right]\right\|+N\left\|\left[c, c^{\prime}\right]\right\| \\
& \leq(M+N)\left(\left\|\left[a, a^{\prime}\right]\right\|+\left\|\left[c, c^{\prime}\right]\right\|\right) \\
& =(M+N)\left\|\left(\left[a, a^{\prime}\right],\left[c, c^{\prime}\right]\right)\right\| \\
& =(M+N)\left\|\left[(a, c),\left(a^{\prime}, c^{\prime}\right)\right]\right\| .
\end{aligned}
$$

Applying Theorem 2.6 implies that $\varphi \oplus \psi$ is strongly Lie zero-product preserving.

Proposition 2.9. Let A, B, C be normed algebras and let $\varphi: A \longrightarrow B$ and $\psi: B \longrightarrow C$ be two strongly Lie zero-product preserving maps. Then $\psi \circ \varphi$: $A \longrightarrow C$ is strongly Lie zero-product preserving.

Proof. As φ and ψ are strongly Lie zero-product preserving maps so, there exist $M, N>0$ such that

$$
\left\|\left[\varphi(a), \varphi\left(a^{\prime}\right)\right]\right\| \leq M\left\|\left[a, a^{\prime}\right]\right\|, a, a^{\prime} \in A,
$$

and

$$
\left\|\left[\psi(b), \psi\left(b^{\prime}\right)\right]\right\| \leq N\left\|\left[b, b^{\prime}\right]\right\|, b, b^{\prime} \in B
$$

So,

$$
\begin{aligned}
\left\|\left[\psi \circ \varphi(a), \psi \circ \varphi\left(a^{\prime}\right)\right]\right\| & =\left\|\left[\psi(\varphi(a)), \psi\left(\varphi\left(a^{\prime}\right)\right)\right]\right\| \\
& \leq N\left\|\left[\varphi(a), \varphi\left(a^{\prime}\right)\right]\right\| \\
& \leq M N\left\|\left[a, a^{\prime}\right]\right\|, a, a^{\prime} \in A .
\end{aligned}
$$

This shows that $\psi \circ \varphi$ is strongly Lie zero-product preserving.

3. Main results

In this section we investigate the second dual of a strongly zero-product (strongly Jordan zero-product and strongly Lie zero-product) preserving map, defined on a certain class of normed algebras.
Let A and B be normed algebras. For a bounded linear map $\theta: A \longrightarrow B$, it is obvious that if $\theta^{* *}: A^{* *} \longrightarrow B^{* *}$ is strongly (strongly Jordan and strongly Lie) zero-product preserving, then so is $\theta: A \longrightarrow B$.
An interesting question is for which algebras A and B the converse is true. In the sequel, by $a * c$ we mean one of the following products,

$$
a c, \quad a \circ c \quad \text { or } \quad[a, c] .
$$

And also by a strongly *-zero-product preserving map we mean a linear map between normed algebras, that is strongly zero-product preserving, strongly Jordan zero-product preserving or strongly Lie zero-product preserving. A *-homomorphism is a homomorphism, Jordan homomorphism or Lie homomorphism.
Theorem 3.1. Let A and B be two Arens regular normed algebras and let $\theta: A \longrightarrow B$ be a bounded linear map. Also let there exists $M \geq 0$ such that for each $a, c \in A$ and each $g \in \overline{B_{1}^{(0)}}$ (the closed unit ball of B^{*}) the inequality,

$$
\begin{equation*}
|\langle\theta(a) * \theta(c), g\rangle| \leq M\left|\left\langle a * c, \theta^{*}(g)\right\rangle\right| \tag{3.1}
\end{equation*}
$$

holds. Then $\theta^{* *}: A^{* *} \longrightarrow B^{* *}$ is strongly $*-$ zero-product preserving.
Proof. We only prove the case when $*$ is Lie product. Let $m, n \in A^{* *}$ and let $\left(a_{\alpha}\right)_{\alpha}$ and $\left(c_{\beta}\right)_{\beta}$ be two nets in A such that

$$
m=w^{*}-\lim _{\alpha} a_{\alpha}, \quad n=w^{*}-\lim _{\beta} c_{\beta} .
$$

By the Arens regularity of A and B, it is clear that

$$
\begin{equation*}
[m, n]=w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta}\left[a_{\alpha}, c_{\beta}\right] \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\theta^{* *}(m), \theta^{* *}(n)\right]=w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta}\left[\theta\left(a_{\alpha}\right), \theta\left(c_{\beta}\right)\right] . \tag{3.3}
\end{equation*}
$$

So by (3.1), (3.2) and (3.3), for all $g \in \overline{B_{1}^{(0)}}$ we have,

$$
\left|\left\langle\left[\theta^{* *}(m), \theta^{* *}(n)\right], g\right\rangle\right| \leq M\left|\left\langle[m, n], \theta^{*}(g)\right\rangle\right| .
$$

This shows that

$$
\left\|\left[\theta^{* *}(m), \theta^{* *}(n)\right]\right\| \leq M\|\theta\|\|[m, n]\| .
$$

Applying Theorem 2.6 shows that, $\theta^{* *}$ is strongly Lie zero-product preserving. In the case when $*$ is Jordan product or original product, a similar argument can be applied. Note that in the case when $*$ is the original product, the conclusion without the hypotheses of Arens regularity of A and B is valid.

Corollary 3.2. Let A and B be Arens regular normed algebras and let θ : $A \longrightarrow B$ be a bounded $*-$ homomorphism. Then $\theta^{* *}$ is strongly $*$-zero-product preserving.

Proof. As θ is $*$-homomorphism so for all $a, c \in A, \theta(a * c)=\theta(a) * \theta(c)$. It follows that

$$
\begin{aligned}
|\langle\theta(a) * \theta(c), g\rangle| & =|\langle\theta(a * c), g\rangle| \\
& =\left|\left\langle a * c, \theta^{*}(g)\right\rangle\right|, \quad g \in \overline{B_{1}^{(0)}}, a, c \in A .
\end{aligned}
$$

Applying Theorem 3.1 implies that $\theta^{* *}$ is strongly $*$-zero-product preserving. Note that in the case when $*$ is the original product, the condition of Arens regularity of A and B is surplus.

Theorem 3.3. Let \mathbb{W} be a non-zero normed vector space and let $f \in \mathbb{W}^{*}$ be a non-zero element such that $\|f\| \leq 1$. Also let $\theta: \mathbb{W}_{f} \longrightarrow \mathbb{W}_{f}$ be a bounded strongly $*$-zero-product preserving map. Then $\theta^{* *}:\left(\mathbb{W}_{f}\right)^{* *} \longrightarrow\left(\mathbb{W}_{f}\right)^{* *}$ is strongly $*$-zero-product preserving.

Proof. As by [6, proposition 2.1] \mathbb{W}_{f} is Arens regular, it is enough to show that the inequality (3.1) holds. Let $*$ be original product or Jordan product and θ be strongly $*$-zero-product preserving. Then by [4, Theorem 3.6 and Theorem 3.7] $f \circ \theta=0$ or $\theta(\operatorname{ker} f) \subseteq \operatorname{ker} f$.

In the case when $*$ is Lie product and θ is strongly Lie zero-product preserving then by Theorem $2.4 f \circ \theta=0$ or $\theta(\operatorname{ker} f) \subseteq \operatorname{ker} f$ or $\theta(a)=f(a) \theta(e)+f \circ$ $\theta \circ \varphi(a) e$, for some continuous linear $\operatorname{map} \varphi: \mathbb{W}_{f} \longrightarrow \operatorname{ker} f$ and for some $e \in f^{-1}(\{1\})$. We obtain the conclusion in all of the following cases.

- $f \circ \theta=0$. In this case $\theta(a) * \theta(c)=0$ for all $a, c \in \mathbb{W}_{f}$. So the inequality (3.1) holds for all $M \geq 0$. Hence in the case when $f \circ \theta=0, \theta^{* *}$ is strongly $*$-zero-product preserving.
- $\theta(\operatorname{ker} f) \subseteq \operatorname{ker} f$. Let $e \in f^{-1}(\{1\})$. Define $\varphi: \mathbb{W}_{f} \longrightarrow \operatorname{ker} f$ such that $\varphi(a)=a-f(a) e, a \in \mathbb{W}_{f}$. So we can conclude that

$$
a=f(a) e+\varphi(a),
$$

and

$$
\theta(a)=f(a) \theta(e)+\theta \circ \varphi(a), a \in \mathbb{W}_{f} .
$$

Hence

$$
\begin{aligned}
\langle\theta(a) * \theta(c), g\rangle & =\langle(f(a) \theta(e)+\theta \circ \varphi(a)) *(f(c) \theta(e)+\theta \circ \varphi(c)), g\rangle \\
& =f \circ \theta(e)\left\langle a * c, \theta^{*}(g)\right\rangle, g \in \overline{B_{1}^{(0)}} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
|\langle\theta(a) * \theta(c), g\rangle| & =\left|f \circ \theta(e)\left\langle a * c, \theta^{*}(g)\right\rangle\right| \\
& \leq\|f\|\|e\|\|\theta\| \|\left\langle a * c, \theta^{*}(g)\right\rangle \mid \\
& \leq\|e\|\|\theta\|\left\langle a * c, \theta^{*}(g)\right\rangle \mid, a, c \in \mathbb{W}_{f}, g \in \overline{B_{1}^{(0)}} .
\end{aligned}
$$

So the inequality (3.1) holds for $M=\|e\|\|\theta\|$, that implies $\theta^{* *}$ is strongly $*-$ zero-product preserving.
Note that the accuracy of the equality (3.4) for example in the case when $*$ is Jordan product is as follows.

$$
\begin{aligned}
\theta(a) * \theta(c) & =\theta(a) \circ \theta(c) \\
& =(f(a) \theta(e)+\theta \circ \varphi(a)) \circ(f(c) \theta(e)+\theta \circ \varphi(c)) \\
& =f(f(a) \theta(e)+\theta \circ \varphi(a)) \theta(c)+f(f(c) \theta(e)+\theta \circ \varphi(c)) \theta(a) \\
& =f(a) f \circ \theta(e) \theta(c)+f(c) f \circ \theta(e) \theta(a) \\
& =f \circ \theta(e) \theta(f(a) c)+f \circ \theta(e) \theta(f(c) a) \\
& =f \circ \theta(e)(\theta(a c)+\theta(c a)) \\
& =f \circ \theta(e) \theta(a \circ c) \\
& =f \circ \theta(e) \theta(a * c), \quad a, c \in \mathbb{W}_{f} .
\end{aligned}
$$

- $*$ is Lie product and $\theta(a)=f(a) \theta(e)+f \circ \theta \circ \varphi(a) e$, for some continuous linear map $\varphi: \mathbb{W}_{f} \longrightarrow \operatorname{ker} f$ and for some $e \in f^{-1}(\{1\})$.
Let $a, c \in \mathbb{W}_{f}$. So by (2.3),

$$
\begin{aligned}
{[\theta(a), \theta(c)] } & =f \circ \theta \circ \varphi([a, c])[\theta(e), e] \\
& =\theta \circ \varphi([a, c]) \cdot[\theta(e), e], \quad a, c \in \mathbb{W}_{f} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
|\langle[\theta(a), \theta(c)], g\rangle| & =|\langle\theta \circ \varphi([a, c]) \cdot[\theta(e), e], g\rangle| \\
& =|\langle\theta \circ \varphi([a, c]),[\theta(e), e] \cdot g\rangle| \\
& =\left|\left\langle[a, c],(\theta \circ \varphi)^{*}([\theta(e), e] \cdot g)\right\rangle\right|, g \in \overline{B_{1}^{(0)}} .
\end{aligned}
$$

Similar to the proof of Theorem 3.1 one can simply verify that, $\left|\left\langle\left[\theta^{* *}(m), \theta^{* *}(n)\right], g\right\rangle\right|=\left|\left\langle[m, n],(\theta \circ \varphi)^{*}([\theta(e), e] \cdot g)\right\rangle\right|, m, n \in\left(\mathbb{W}_{f}\right)^{* *}$.

So we can conclude that

$$
\left\|\left[\theta^{* *}(m), \theta^{* *}(n)\right]\right\| \leq\left\|(\theta \circ \varphi)^{*}\right\|\|[\theta(e), e]\|\|[m, n]\| .
$$

This shows that $\theta^{* *}$ is strongly Lie zero-product preserving.

References

[1] M.A. Chebotar, W.-F. Ke, P.-H. Lee and N.-C. Wong, Mappings preserving zero products, Studia Math. 155 (2003), no. 1, 77-94.
[2] H. Ghahramani, Zero product determined triangular algebras, Linear Multilinear Algebra 61 (2013) 741-757.
[3] A.R. Khoddami, On maps preserving strongly zero-products, Chamchuri J. Math. 7 (2015) 16-23.
[4] A.R. Khoddami, Strongly zero-product preserving maps on normed algebras induced by a bounded linear functional, Khayyam J. Math. 1 (2015), no. 1, 107-114.
[5] A.R. Khoddami, On strongly Jordan zero-product preserving maps, Sahand Commun. Math. Anal. 3 (2016), no. 1, 53-61.
[6] A.R. Khoddami and H.R. Ebrahimi Vishki, The higher duals of a Banach algebra induced by a bounded linear functional, Bull. Math. Anal. Appl. 3 (2011) 118-122.
(Ali Reza Khoddami) Faculty of Mathematical Sciences, Shahrood University of Technology, P.O. Box 3619995161-316, Shahrood, Iran.

E-mail address: khoddami.alireza@shahroodut.ac.ir

[^0]: Article electronically published on 30 November, 2017.
 Received: 28 February 2016, Accepted: 15 October 2016.

 * Corresponding author.

