ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 6, pp. 1781-1790

Title:

The second dual of strongly zero-product preserving maps

Author(s):

A.R. Khoddami

Published by the Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 43 (2017), No. 6, pp. 1781–1790 Online ISSN: 1735-8515

THE SECOND DUAL OF STRONGLY ZERO-PRODUCT PRESERVING MAPS

A.R. KHODDAMI

(Communicated by Ali Ghaffari)

ABSTRACT. The notion of strongly Lie zero-product preserving maps on normed algebras as a generalization of Lie zero-product preserving maps are defined. We give a necessary and sufficient condition from which a linear map between normed algebras to be strongly Lie zero-product preserving. Also some hereditary properties of strongly Lie zero-product preserving maps are presented. Finally the second dual of a strongly zero-product, strongly Jordan zero-product and strongly Lie zero-product preserving map on a certain class of normed algebras are investigated. **Keywords:** Strongly zero-product preserving map, strongly Jordan zeroproduct preserving map, strongly Lie zero-product preserving map, Arens regular.

MSC(2010): Primary: 46B99; Secondary: 46H99, 47B37, 65H04.

1. Introduction and preliminaries

Let A and B be two associative algebras over the same field \mathbb{C} . A linear map $\theta: A \longrightarrow B$ is said to be zero-product preserving if, $\theta(a)\theta(c) = 0$, whenever ac = 0. It is Jordan zero-product preserving if, $\theta(a) \circ \theta(c) = 0$, whenever $a \circ c = 0$, where \circ is the Jordan product $a \circ c = ac + ca$. Also θ is Lie zero-product preserving if, $[\theta(a), \theta(c)] = 0$, whenever [a, c] = 0, where [a, c] = ac - ca, $a, c \in A$. A natural possibility for θ to preserve zero-products (Jordan zero-products or Lie zero-products) is to be of the form $\theta = b\varphi$, where b is a central element of B and $\varphi: A \longrightarrow B$ is a homomorphism (Jordan homomorphism or Lie homomorphism) that is,

$$\varphi(ac) = \varphi(a)\varphi(c) \quad \big(\varphi(a \circ c) = \varphi(a) \circ \varphi(c) \text{ or } \varphi([a,c]) = [\varphi(a),\varphi(c)]\big), a, c \in A.$$

But this characterization is not the case in general (see [4, Remark 2.5] and Example 2.2 in this paper). An interesting question is for which algebras A

©2017 Iranian Mathematical Society

Article electronically published on 30 November, 2017.

Received: 28 February 2016, Accepted: 15 October 2016.

 $^{^{*}}$ Corresponding author.

and B this natural possibility is the only possibility. These kind of questions have been studied since the 1970s.

As a generalization of the above mentioned notions, the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are investigated in [3–5] on normed algebras. In this direction we recall some terminologies.

Let A and B be two normed algebras. A linear map $\theta: A \longrightarrow B$ is said to be :

- Strongly zero-product preserving if, for any two sequences $\{a_n\}_n$ and $\{c_n\}_n$ in A, $\theta(a_n)\theta(c_n) \longrightarrow 0$, whenever $a_nc_n \longrightarrow 0$.
- Strongly Jordan zero-product preserving if, for any two sequences $\{a_n\}_n$ and $\{c_n\}_n$ in A, $\theta(a_n) \circ \theta(c_n) \longrightarrow 0$, whenever $a_n \circ c_n \longrightarrow 0$.

Also in the sequel we will say θ is :

• Strongly Lie zero-product preserving if, for any two sequences $\{a_n\}_n$ and $\{c_n\}_n$ in A, $[\theta(a_n), \theta(c_n)] \longrightarrow 0$, whenever $[a_n, c_n] \longrightarrow 0$.

For an associative normed algebra A, let A^{**} be the second dual of A. We introduce the Arens products \triangle and \odot on the second dual A^{**} as follows. For $a, c \in A, f \in A^*$ and $m, n \in A^{**}, \langle f \cdot a, c \rangle = \langle f, ac \rangle, \langle n \cdot f, a \rangle = \langle n, f \cdot a \rangle$ and $\langle m \triangle n, f \rangle = \langle m, n \cdot f \rangle$. Similarly $\langle c, a \cdot f \rangle = \langle ca, f \rangle, \langle a, f \cdot n \rangle = \langle a \cdot f, n \rangle$ and $\langle f, m \odot n \rangle = \langle f \cdot m, n \rangle$. One can simply verify that (A^{**}, \triangle) and (A^{**}, \odot) are associative normed algebras.

The normed algebra A is called Arens regular if, $m \bigtriangleup n = m \odot n$ for all $m, n \in A^{**}$.

2. Strongly Lie zero-product preserving maps

In this section we give a necessary and sufficient condition from which a linear map between normed algebras to be strongly Lie zero-product preserving. Also we investigate some hereditary properties of strongly Lie zero-product preserving maps.

Definition 2.1. Let A and B be two normed algebras. We shall say that a linear map $\theta : A \longrightarrow B$ is strongly Lie zero-product preserving, if for any two sequences $\{a_n\}_n$ and $\{c_n\}_n$ in A, $[\theta(a_n), \theta(c_n)] \longrightarrow 0$, whenever $[a_n, c_n] \longrightarrow 0$.

- **Example 2.2.** (1) Let A and B be normed algebras. Then every continuous Lie homomorphism from A into B is a strongly Lie zero-product preserving map.
 - (2) Let \mathbb{W} be a finite dimensional normed vector space with the basis $\beta = \{e_1, e_2, e_3\}$. Also let $f \in \mathbb{W}^*$ be a linear functional on \mathbb{W} such that $f(e_1) = 1$ and $f(e_2) = f(e_3) = 0$. For $a, c \in \mathbb{W}$ define $a \cdot c = f(a)c$. Obviously (\mathbb{W}, \cdot) is an associative normed algebra. We

Khoddami

denote it by \mathbb{W}_f . Let $\theta : \mathbb{W}_f \longrightarrow \mathbb{W}_f$ be a linear map such that $\theta(a) = g(a)e_2$ where $g \in \mathbb{W}^*$ is a linear functional such that $g(e_3) = 1$ and $g(e_1) = g(e_2) = 0$. A direct verification shows that θ is strongly Lie zero-product preserving. But θ is neither a Lie homomorphism nor a Lie homomorphism multiplied by a central element of \mathbb{W}_f .

(3) Let A and B be two normed algebras and let B be commutative. Then every linear map from A into B is a strongly Lie zero-product preserving map.

Clearly every strongly Lie zero-product preserving map is a Lie zero-product preserving map. But the converse is not the case in general. We give the following example to show this fact.

Example 2.3. Similar to Example 2.2 let \mathbb{W} be an infinite dimensional normed vector space with the basis $\beta = \{e_1, e_2, e_3, \ldots\}$ such that $||e_n|| = 1$ for all $n \ge 1$. Also let $f \in \mathbb{W}^*$ be a bounded linear functional such that $f(e_1) = 1$ and $f(e_n) = 0$ for all $n \ge 2$. Assume that $\theta : \mathbb{W}_f \longrightarrow \mathbb{W}_f$ is a linear map such that $\theta(e_1) = e_1$ and $\theta(e_n) = 2^n e_2$ for all $n \ge 2$. A direct verification shows that θ is Lie zeroproduct preserving. We shall show that θ is not a strongly Lie zero-product preserving map. Let $a_n = \frac{e_1}{n}$ and $c_n = e_{n+1}$. Clearly $\lim_{n\to\infty} [a_n, c_n] = 0$. But $\lim_{n\to\infty} \|[\theta(a_n), \theta(c_n)]\| = \lim_{n\to\infty} \|\frac{2^{(n+1)}}{n}e_2\| = \lim_{n\to\infty} \frac{2^{(n+1)}}{n} = \infty$.

Theorem 2.4. Let \mathbb{W} be a non-zero normed vector space and let $f \in \mathbb{W}^*$ be a non-zero element such that $||f|| \leq 1$. Then a linear map $\theta : \mathbb{W}_f \longrightarrow \mathbb{W}_f$ is strongly Lie zero-product preserving if and only if one of the following statements holds.

- (1) $f \circ \theta = 0$.
- (2) $\theta(\ker f) \subseteq \ker f$ and there exist a continuous linear map $\varphi : \mathbb{W}_f \longrightarrow \ker f$ and an element $e \in f^{-1}(\{1\})$ such that for all $a \in \mathbb{W}_f$, $\theta(a) = f(a)\theta(e) + \theta \circ \varphi(a)$ and $\theta \circ \varphi|_{\ker f}$ is continuous.
- (3) There exist a continuous linear map $\varphi : \mathbb{W}_f \longrightarrow \ker f$ and an element $e \in f^{-1}(\{1\})$ such that $\theta(a) = f(a)\theta(e) + f \circ \theta \circ \varphi(a)e$, $a \in \mathbb{W}_f$ and one of the following statements holds.
 - (a) $f \circ \theta \circ \varphi|_{\ker f}$ is continuous.
 - (b) $[\theta(e), e] = 0.$

Proof. Let θ be a strongly Lie zero-product preserving map such that $f \circ \theta \neq 0$. Also let $e \in \mathbb{W}_f$ be an element such that f(e) = 1. So, for each $a \in \mathbb{W}_f$, $a = f(a)e + \varphi(a)$, where $\varphi : \mathbb{W}_f \longrightarrow \ker f$ and $\varphi(a) = a - f(a)e$. Hence for each $a, c \in \mathbb{W}_f$,

$$\theta(a) = f(a)\theta(e) + \theta \circ \varphi(a), \ \theta(c) = f(c)\theta(e) + \theta \circ \varphi(c).$$

If $\theta(\ker f) \subseteq \ker f$ then,

$$\begin{split} [\theta(a), \theta(c)] &= [f(a)\theta(e) + \theta \circ \varphi(a), f(c)\theta(e) + \theta \circ \varphi(c)] \\ &= f(a)[\theta(e), \theta \circ \varphi(c)] + f(c)[\theta \circ \varphi(a), \theta(e)] \\ &= [\theta(e), \theta \circ \varphi(ac)] + [\theta \circ \varphi(ca), \theta(e)] \\ &= [\theta(e), \theta \circ \varphi(ac)] - [\theta(e), \theta \circ \varphi(ca)] \\ &= [\theta(e), \theta \circ \varphi(ac - ca)] = [\theta(e), \theta \circ \varphi([a, c])] \\ &= f \circ \theta(e)\theta \circ \varphi([a, c]), \quad a, c \in \mathbb{W}_f. \end{split}$$

Obviously $f \circ \theta(e) \neq 0$. Indeed, the assumption $f \circ \theta(e) = 0$ implies,

$$f \circ \theta(a) = f(a)f \circ \theta(e) + f \circ \theta \circ \varphi(a)$$

= 0.

That is a contradiction. Let $\{a_n\}_n \subseteq \ker f$ be a sequence such that $a_n \longrightarrow 0$. So, $[e, a_n] \longrightarrow 0$. As θ is strongly Lie zero-product preserving, we can conclude that,

$$\begin{split} \|\theta \circ \varphi(a_n)\| &= \|\theta \circ \varphi([e, a_n])\| \\ &= \frac{\|[\theta(e), \theta(a_n)]\|}{|f \circ \theta(e)|} \longrightarrow 0. \end{split}$$

This shows that $\theta \circ \varphi$ is continuous on ker f.

If $\theta(\ker f) \nsubseteq \ker f$, then there exists $a_0 \in \ker f$ such that $f(\theta(a_0)) = 1$. Set $e = \theta(a_0)$. For each $a, c \in \ker f$ the equality [a, c] = 0 implies, $[\theta(a), \theta(c)] = 0$. So,

(2.1)
$$f(\theta(a))\theta(c) = f(\theta(c))\theta(a).$$

Upon substituting $a = a_0$ in (2.1), we obtain

(2.2)
$$\theta(c) = f(\theta(c))\theta(a_0) = f \circ \theta(c)e, \quad c \in \ker f.$$

So, for each $a \in \mathbb{W}_f$, $a = f(a)e + \varphi(a)$, where $\varphi : \mathbb{W}_f \longrightarrow \ker f$ and $\varphi(a) = a - f(a)e$. Hence for each $a, c \in \mathbb{W}_f$,

$$\theta(a) = f(a)\theta(e) + \theta \circ \varphi(a), \ \theta(c) = f(c)\theta(e) + \theta \circ \varphi(c).$$

Since $\varphi(a), \varphi(c) \in \ker f$, applying (2.2) yields,

$$\theta(a) = f(a)\theta(e) + f \circ \theta \circ \varphi(a)e, \ \theta(c) = f(c)\theta(e) + f \circ \theta \circ \varphi(c)e, \quad a, c \in \mathbb{W}_f.$$

Khoddami

So,

$$[\theta(a), \theta(c)] = [f(a)\theta(e) + f \circ \theta \circ \varphi(a)e, f(c)\theta(e) + f \circ \theta \circ \varphi(c)e]$$

$$= f(a)[\theta(e), f \circ \theta \circ \varphi(c)e] - f(c)[\theta(e), f \circ \theta \circ \varphi(a)e]$$

$$= [\theta(e), f \circ \theta \circ \varphi(ac)e] - [\theta(e), f \circ \theta \circ \varphi(ca)e]$$

$$= [\theta(e), f \circ \theta \circ \varphi([a, c])e]$$

$$(2.3) = f \circ \theta \circ \varphi([a, c])[\theta(e), e], \quad a, c \in \mathbb{W}_{f}.$$

Let $[\theta(e), e] \neq 0$ and let $\{a_n\}_n \subseteq \ker f$ be a sequence such that $a_n \longrightarrow 0$. So, $[e, a_n] \longrightarrow 0$. As θ is strongly Lie zero-product preserving, we can conclude that,

$$\begin{split} f \circ \theta \circ \varphi(a_n) | &= |f \circ \theta \circ \varphi([e, a_n])| \\ &= \frac{\|[\theta(e), \theta(a_n)]\|}{\|[\theta(e), e]\|} \longrightarrow 0. \end{split}$$

This shows that $f \circ \theta \circ \varphi$ is continuous on ker f.

For the converse if $f \circ \theta = 0$ then clearly θ is a strongly Lie zero-product preserving map. In the cases (2) and (3), one can easily verify that,

$$[\theta(a), \theta(c)] = f \circ \theta(e)\theta \circ \varphi([a, c]), \quad a, c \in \mathbb{W}_f$$

and

$$\theta(a), \theta(c)] = f \circ \theta \circ \varphi([a, c])[\theta(e), e], \quad a, c \in \mathbb{W}_f,$$

respectively. Let $[a_n, c_n] \longrightarrow 0$. So the continuity of $f \circ \theta$ and $f \circ \theta \circ \varphi$ on ker f implies, $[\theta(a_n), \theta(c_n)] \longrightarrow 0$. This shows that θ is strongly Lie zero-product preserving.

Corollary 2.5. Let \mathbb{W} be a non-zero normed vector space and let $f \in \mathbb{W}^*$ be non-zero. Also let $\theta : \mathbb{W}_f \longrightarrow \mathbb{W}_f$ be a continuous linear map such that $\theta(\ker f) \subseteq \ker f$. Then θ is strongly Lie zero-product preserving.

Proof. By Theorem 2.4 it is obvious.

In the following we present a characterization of strongly Lie zero-product preserving maps on normed algebras.

Theorem 2.6. Let A and B be two normed algebras. Then a linear map $\theta : A \longrightarrow B$ is strongly Lie zero-product preserving if and only if there exists an M > 0 such that for all $a, c \in A$,

$$\|[\theta(a), \theta(c)]\| \le M \|[a, c]\|.$$

Proof. For the sake of contradiction similar to [3, Theorem 3.1] and [5, Theorem 4.1], suppose there is no such M. Then for each $n \in \mathbb{N}$ there exist $a_n, c_n \in A$ such that,

$$\| [\theta(a_n), \theta(c_n)] \| > n \| [a_n, c_n] \|.$$

 So

$$\left[\frac{a_n}{\|[\theta(a_n), \theta(c_n)]\|}, c_n\right] \| < \frac{1}{n}$$

Set $a'_n = \frac{a_n}{\|[\theta(a_n), \theta(c_n)]\|}$ and $c'_n = c_n$. Clearly $[a'_n, c'_n] \longrightarrow 0$. It follows that

$$[\theta(a'_n), \theta(c'_n)] \longrightarrow 0,$$

that is a contradiction. Indeed

$$\|[\theta(a'_n), \theta(c'_n)]\| = \frac{\|[\theta(a_n), \theta(c_n)]\|}{\|[\theta(a_n), \theta(c_n)]\|} \longrightarrow 1.$$

The converse is obvious.

Corollary 2.7. Let A and B be two normed algebras. Then every continuous Lie homomorphism from A into B is strongly Lie zero-product preserving.

We present some hereditary properties of strongly Lie zero-product preserving maps.

Proposition 2.8. Let A, B, C, D be normed algebras and let $\varphi : A \longrightarrow B$ and $\psi : C \longrightarrow D$ be two strongly Lie zero-product preserving maps. Then $\varphi \oplus \psi : A \oplus C \longrightarrow B \oplus D$ is strongly Lie zero-product preserving.

Proof. By Theorem 2.6, there exist M, N > 0 such that,

$$\|[\varphi(a), \varphi(a')]\| \le M \|[a, a']\|, a, a' \in A,$$

and

$$\|[\psi(c),\psi(c')]\| \le N \|[c,c']\|, c,c' \in C.$$

So,

$$\begin{split} \|[\varphi \oplus \psi(a,c), \varphi \oplus \psi(a',c')]\| &= \|[(\varphi(a),\psi(c)),(\varphi(a'),\psi(c'))]\| \\ &= \|(\varphi(a)\varphi(a') - \varphi(a')\varphi(a),\psi(c)\psi(c') - \psi(c')\psi(c))\| \\ &= \|[[\varphi(a),\varphi(a')],[\psi(c),\psi(c')]]\| \\ &= \|[\varphi(a),\varphi(a')]\| + \|[\psi(c),\psi(c')]\| \\ &\leq M\|[a,a']\| + N\|[c,c']\| \\ &\leq (M+N)(\|[a,a']\| + \|[c,c']\|) \\ &= (M+N)\|([a,a'],[c,c'])\| \\ &= (M+N)\|[(a,c),(a',c')]\|. \end{split}$$

Applying Theorem 2.6 implies that $\varphi \oplus \psi$ is strongly Lie zero-product preserving.

Proposition 2.9. Let A, B, C be normed algebras and let $\varphi : A \longrightarrow B$ and $\psi : B \longrightarrow C$ be two strongly Lie zero-product preserving maps. Then $\psi \circ \varphi : A \longrightarrow C$ is strongly Lie zero-product preserving.

1786

Proof. As φ and ψ are strongly Lie zero-product preserving maps so, there exist M, N > 0 such that

$$\|[\varphi(a), \varphi(a')]\| \le M \|[a, a']\|, a, a' \in A,$$

and

$$\|[\psi(b), \psi(b')]\| \le N \|[b, b']\|, b, b' \in B.$$

So,

$$\begin{split} \|[\psi \circ \varphi(a), \psi \circ \varphi(a')]\| &= \|[\psi(\varphi(a)), \psi(\varphi(a'))]\| \\ &\leq N \|[\varphi(a), \varphi(a')]\| \\ &\leq MN \|[a, a']\|, a, a' \in A. \end{split}$$

This shows that $\psi \circ \varphi$ is strongly Lie zero-product preserving.

3. Main results

In this section we investigate the second dual of a strongly zero-product (strongly Jordan zero-product and strongly Lie zero-product) preserving map, defined on a certain class of normed algebras.

Let A and B be normed algebras. For a bounded linear map $\theta : A \longrightarrow B$, it is obvious that if $\theta^{**} : A^{**} \longrightarrow B^{**}$ is strongly (strongly Jordan and strongly Lie) zero-product preserving, then so is $\theta : A \longrightarrow B$.

An interesting question is for which algebras A and B the converse is true. In the sequel, by a * c we mean one of the following products,

$$ac, a \circ c$$
 or $[a, c]$.

And also by a strongly *-zero-product preserving map we mean a linear map between normed algebras, that is strongly zero-product preserving, strongly Jordan zero-product preserving or strongly Lie zero-product preserving. A *-homomorphism is a homomorphism, Jordan homomorphism or Lie homomorphism.

Theorem 3.1. Let A and B be two Arens regular normed algebras and let $\theta: A \longrightarrow B$ be a bounded linear map. Also let there exists $M \ge 0$ such that for each $a, c \in A$ and each $g \in \overline{B_1^{(0)}}$ (the closed unit ball of B^*) the inequality,

(3.1)
$$|\langle \theta(a) * \theta(c), g \rangle| \le M |\langle a * c, \theta^*(g) \rangle|$$

holds. Then $\theta^{**}: A^{**} \longrightarrow B^{**}$ is strongly *-zero-product preserving.

Proof. We only prove the case when * is Lie product. Let $m, n \in A^{**}$ and let $(a_{\alpha})_{\alpha}$ and $(c_{\beta})_{\beta}$ be two nets in A such that

$$m = w^* - \lim_{\alpha} a_{\alpha}, \quad n = w^* - \lim_{\beta} c_{\beta}.$$

By the Arens regularity of A and B, it is clear that

(3.2)
$$[m,n] = w^* - \lim_{\alpha} w^* - \lim_{\beta} [a_{\alpha}, c_{\beta}]$$

and

(3.3)
$$[\theta^{**}(m), \theta^{**}(n)] = w^* - \lim_{\alpha} w^* - \lim_{\beta} [\theta(a_{\alpha}), \theta(c_{\beta})].$$

So by (3.1), (3.2) and (3.3), for all $g \in \overline{B_1^{(0)}}$ we have,

$$|\langle [\theta^{**}(m), \theta^{**}(n)], g \rangle| \le M |\langle [m, n], \theta^{*}(g) \rangle|$$

This shows that

$$\|[\theta^{**}(m), \theta^{**}(n)]\| \le M \|\theta\| \|[m, n]\|.$$

Applying Theorem 2.6 shows that, θ^{**} is strongly Lie zero-product preserving. In the case when * is Jordan product or original product, a similar argument can be applied. Note that in the case when * is the original product, the conclusion without the hypotheses of Arens regularity of A and B is valid. \Box

Corollary 3.2. Let A and B be Arens regular normed algebras and let θ : $A \longrightarrow B$ be a bounded *- homomorphism. Then θ^{**} is strongly *- zero-product preserving.

Proof. As θ is *-homomorphism so for all $a, c \in A$, $\theta(a * c) = \theta(a) * \theta(c)$. It follows that

$$\begin{split} |\langle \theta(a) * \theta(c), g \rangle| &= |\langle \theta(a * c), g \rangle| \\ &= |\langle a * c, \theta^*(g) \rangle|, \quad g \in \overline{B_1^{(0)}}, a, c \in A. \end{split}$$

Applying Theorem 3.1 implies that θ^{**} is strongly *-zero-product preserving. Note that in the case when * is the original product, the condition of Arens regularity of A and B is surplus.

Theorem 3.3. Let \mathbb{W} be a non-zero normed vector space and let $f \in \mathbb{W}^*$ be a non-zero element such that $||f|| \leq 1$. Also let $\theta : \mathbb{W}_f \longrightarrow \mathbb{W}_f$ be a bounded strongly *-zero-product preserving map. Then $\theta^{**} : (\mathbb{W}_f)^{**} \longrightarrow (\mathbb{W}_f)^{**}$ is strongly *-zero-product preserving.

Proof. As by [6, proposition 2.1] \mathbb{W}_f is Arens regular, it is enough to show that the inequality (3.1) holds. Let * be original product or Jordan product and θ be strongly *-zero-product preserving. Then by [4, Theorem 3.6 and Theorem 3.7] $f \circ \theta = 0$ or $\theta(\ker f) \subseteq \ker f$.

In the case when * is Lie product and θ is strongly Lie zero-product preserving then by Theorem 2.4 $f \circ \theta = 0$ or $\theta(\ker f) \subseteq \ker f$ or $\theta(a) = f(a)\theta(e) + f \circ \theta \circ \varphi(a)e$, for some continuous linear map $\varphi : \mathbb{W}_f \longrightarrow \ker f$ and for some $e \in f^{-1}(\{1\})$. We obtain the conclusion in all of the following cases.

• $f \circ \theta = 0$. In this case $\theta(a) * \theta(c) = 0$ for all $a, c \in W_f$. So the inequality (3.1) holds for all $M \ge 0$. Hence in the case when $f \circ \theta = 0$, θ^{**} is strongly *-zero-product preserving.

Khoddami

• $\theta(\ker f) \subseteq \ker f$. Let $e \in f^{-1}(\{1\})$. Define $\varphi : \mathbb{W}_f \longrightarrow \ker f$ such that $\varphi(a) = a - f(a)e, a \in \mathbb{W}_f$. So we can conclude that a = f(a)e

$$= f(a)e + \varphi(a)$$

and

$$\theta(a) = f(a)\theta(e) + \theta \circ \varphi(a), a \in \mathbb{W}_f.$$

Hence

$$\langle \theta(a) \ast \theta(c), g \rangle = \langle (f(a)\theta(e) + \theta \circ \varphi(a)) \ast (f(c)\theta(e) + \theta \circ \varphi(c)), g \rangle$$

(3.4)

$$= f \circ \theta(e) \langle a * c, \theta^*(g) \rangle, \ g \in B_1^{(0)}.$$

It follows that

$$\begin{aligned} |\langle \theta(a) * \theta(c), g \rangle| &= |f \circ \theta(e) \langle a * c, \theta^*(g) \rangle| \\ &\leq \|f\| \|e\| \|\theta\| |\langle a * c, \theta^*(g) \rangle| \\ &\leq \|e\| \|\theta\| |\langle a * c, \theta^*(g) \rangle|, a, c \in \mathbb{W}_f, \ g \in \overline{B_1^{(0)}}. \end{aligned}$$

So the inequality (3.1) holds for $M = ||e|| ||\theta||$, that implies θ^{**} is strongly *-zero-product preserving.

Note that the accuracy of the equality (3.4) for example in the case when * is Jordan product is as follows.

$$\begin{split} \theta(a) * \theta(c) &= \theta(a) \circ \theta(c) \\ &= (f(a)\theta(e) + \theta \circ \varphi(a)) \circ (f(c)\theta(e) + \theta \circ \varphi(c)) \\ &= f(f(a)\theta(e) + \theta \circ \varphi(a))\theta(c) + f(f(c)\theta(e) + \theta \circ \varphi(c))\theta(a) \\ &= f(a)f \circ \theta(e)\theta(c) + f(c)f \circ \theta(e)\theta(a) \\ &= f \circ \theta(e)\theta(f(a)c) + f \circ \theta(e)\theta(f(c)a) \\ &= f \circ \theta(e)(\theta(ac) + \theta(ca)) \\ &= f \circ \theta(e)\theta(a \circ c) \\ &= f \circ \theta(e)\theta(a * c), \quad a, c \in \mathbb{W}_f. \end{split}$$

• * is Lie product and $\theta(a) = f(a)\theta(e) + f \circ \theta \circ \varphi(a)e$, for some continuous linear map $\varphi : \mathbb{W}_f \longrightarrow \ker f$ and for some $e \in f^{-1}(\{1\})$. Let $a, c \in \mathbb{W}_f$. So by (2.3),

$$\begin{aligned} [\theta(a), \theta(c)] &= f \circ \theta \circ \varphi([a, c])[\theta(e), e] \\ &= \theta \circ \varphi([a, c]) \cdot [\theta(e), e], \quad a, c \in \mathbb{W}_f. \end{aligned}$$

It follows that

$$\begin{split} |\langle [\theta(a), \theta(c)], g \rangle| &= |\langle \theta \circ \varphi([a, c]) \cdot [\theta(e), e], g \rangle| \\ &= |\langle \theta \circ \varphi([a, c]), [\theta(e), e] \cdot g \rangle| \\ &= |\langle [a, c], (\theta \circ \varphi)^*([\theta(e), e] \cdot g) \rangle|, \ g \in \overline{B_1^{(0)}}. \end{split}$$

Similar to the proof of Theorem 3.1 one can simply verify that,

 $|\langle [\theta^{**}(m), \theta^{**}(n)], g \rangle| = |\langle [m, n], (\theta \circ \varphi)^* ([\theta(e), e] \cdot g) \rangle|, m, n \in (\mathbb{W}_f)^{**}.$

So we can conclude that

 $\|[\theta^{**}(m), \theta^{**}(n)]\| \le \|(\theta \circ \varphi)^*\|\|\|[\theta(e), e]\|\|[m, n]\|.$

This shows that θ^{**} is strongly Lie zero-product preserving.

References

- M.A. Chebotar, W.-F. Ke, P.-H. Lee and N.-C. Wong, Mappings preserving zero products, *Studia Math.* 155 (2003), no. 1, 77–94.
- [2] H. Ghahramani, Zero product determined triangular algebras, *Linear Multilinear Algebra* 61 (2013) 741–757.
- [3] A.R. Khoddami, On maps preserving strongly zero-products, Chamchuri J. Math. 7 (2015) 16–23.
- [4] A.R. Khoddami, Strongly zero-product preserving maps on normed algebras induced by a bounded linear functional, *Khayyam J. Math.* 1 (2015), no. 1, 107–114.
- [5] A.R. Khoddami, On strongly Jordan zero-product preserving maps, Sahand Commun. Math. Anal. 3 (2016), no. 1, 53–61.
- [6] A.R. Khoddami and H.R. Ebrahimi Vishki, The higher duals of a Banach algebra induced by a bounded linear functional, Bull. Math. Anal. Appl. 3 (2011) 118–122.

(Ali Reza Khoddami) FACULTY OF MATHEMATICAL SCIENCES, SHAHROOD UNIVERSITY OF TECHNOLOGY, P.O. BOX 3619995161-316, SHAHROOD, IRAN.

E-mail address: khoddami.alireza@shahroodut.ac.ir