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Abstract. The notion of strongly Lie zero-product preserving maps on

normed algebras as a generalization of Lie zero-product preserving maps
are defined. We give a necessary and sufficient condition from which
a linear map between normed algebras to be strongly Lie zero-product

preserving. Also some hereditary properties of strongly Lie zero-product
preserving maps are presented. Finally the second dual of a strongly
zero-product, strongly Jordan zero-product and strongly Lie zero-product
preserving map on a certain class of normed algebras are investigated.
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1. Introduction and preliminaries

Let A and B be two associative algebras over the same field C. A linear map
θ : A −→ B is said to be zero-product preserving if, θ(a)θ(c) = 0, whenever
ac = 0. It is Jordan zero-product preserving if, θ(a) ◦ θ(c) = 0, whenever
a◦c = 0, where ◦ is the Jordan product a◦c = ac+ca. Also θ is Lie zero-product
preserving if, [θ(a), θ(c)] = 0, whenever [a, c] = 0, where [a, c] = ac− ca, a, c ∈
A. A natural possibility for θ to preserve zero-products (Jordan zero-products
or Lie zero-products ) is to be of the form θ = bφ, where b is a central element
of B and φ : A −→ B is a homomorphism (Jordan homomorphism or Lie
homomorphism) that is,

φ(ac) = φ(a)φ(c)
(
φ(a ◦ c) = φ(a) ◦ φ(c) or φ([a, c]) = [φ(a), φ(c)]

)
, a, c ∈ A.

But this characterization is not the case in general (see [4, Remark 2.5] and
Example 2.2 in this paper). An interesting question is for which algebras A
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and B this natural possibility is the only possibility. These kind of questions
have been studied since the 1970s.

As a generalization of the above mentioned notions, the notions of strongly
zero-product preserving maps and strongly Jordan zero-product preserving
maps are investigated in [3–5] on normed algebras. In this direction we re-
call some terminologies.
Let A and B be two normed algebras. A linear map θ : A −→ B is said to be :

• Strongly zero-product preserving if, for any two sequences {an}n and
{cn}n in A, θ(an)θ(cn) −→ 0, whenever ancn −→ 0.

• Strongly Jordan zero-product preserving if, for any two sequences
{an}n and {cn}n in A, θ(an) ◦ θ(cn) −→ 0, whenever an ◦ cn −→ 0.

Also in the sequel we will say θ is :

• Strongly Lie zero-product preserving if, for any two sequences {an}n
and {cn}n in A, [θ(an), θ(cn)] −→ 0, whenever [an, cn] −→ 0.

For an associative normed algebra A, let A∗∗ be the second dual of A. We
introduce the Arens products △ and ⊙ on the second dual A∗∗ as follows. For
a, c ∈ A, f ∈ A∗ and m,n ∈ A∗∗, ⟨f · a, c⟩ = ⟨f, ac⟩, ⟨n · f, a⟩ = ⟨n, f · a⟩ and
⟨m△ n, f⟩ = ⟨m,n · f⟩. Similarly ⟨c, a · f⟩ = ⟨ca, f⟩, ⟨a, f · n⟩ = ⟨a · f, n⟩ and
⟨f,m⊙ n⟩ = ⟨f ·m,n⟩. One can simply verify that (A∗∗,△) and (A∗∗,⊙) are
associative normed algebras.
The normed algebra A is called Arens regular if, m △ n = m ⊙ n for all
m,n ∈ A∗∗.

2. Strongly Lie zero-product preserving maps

In this section we give a necessary and sufficient condition from which
a linear map between normed algebras to be strongly Lie zero-product
preserving. Also we investigate some hereditary properties of strongly Lie
zero-product preserving maps.

Definition 2.1. Let A and B be two normed algebras. We shall say that a
linear map θ : A −→ B is strongly Lie zero-product preserving, if for any two
sequences {an}n and {cn}n in A, [θ(an), θ(cn)] −→ 0, whenever [an, cn] −→ 0.

Example 2.2. (1) Let A and B be normed algebras. Then every contin-
uous Lie homomorphism from A into B is a strongly Lie zero-product
preserving map.

(2) Let W be a finite dimensional normed vector space with the basis
β = {e1, e2, e3}. Also let f ∈ W∗ be a linear functional on W
such that f(e1) = 1 and f(e2) = f(e3) = 0. For a, c ∈ W define
a · c = f(a)c. Obviously (W, ·) is an associative normed algebra. We
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denote it by Wf . Let θ : Wf −→ Wf be a linear map such that
θ(a) = g(a)e2 where g ∈ W∗ is a linear functional such that g(e3) = 1
and g(e1) = g(e2) = 0. A direct verification shows that θ is strongly
Lie zero-product preserving. But θ is neither a Lie homomorphism nor
a Lie homomorphism multiplied by a central element of Wf .

(3) Let A and B be two normed algebras and let B be commutative. Then
every linear map from A into B is a strongly Lie zero-product preserv-
ing map.

Clearly every strongly Lie zero-product preserving map is a Lie zero-product
preserving map. But the converse is not the case in general. We give the
following example to show this fact.

Example 2.3. Similar to Example 2.2 letW be an infinite dimensional normed
vector space with the basis β = {e1, e2, e3, . . .} such that ∥en∥ = 1 for all n ≥ 1.
Also let f ∈ W∗ be a bounded linear functional such that f(e1) = 1 and f(en) =
0 for all n ≥ 2. Assume that θ : Wf −→ Wf is a linear map such that θ(e1) = e1
and θ(en) = 2ne2 for all n ≥ 2. A direct verification shows that θ is Lie zero-
product preserving. We shall show that θ is not a strongly Lie zero-product
preserving map. Let an = e1

n and cn = en+1. Clearly limn→∞[an, cn] = 0. But

limn→∞ ∥[θ(an), θ(cn)]∥ = limn→∞ ∥ 2(n+1)

n e2∥ = limn→∞
2(n+1)

n = ∞.

Theorem 2.4. Let W be a non-zero normed vector space and let f ∈ W∗

be a non-zero element such that ∥f∥ ≤ 1. Then a linear map θ : Wf −→
Wf is strongly Lie zero-product preserving if and only if one of the following
statements holds.

(1) f ◦ θ = 0.
(2) θ(ker f) ⊆ ker f and there exist a continuous linear map φ : Wf −→

ker f and an element e ∈ f−1({1}) such that for all a ∈ Wf , θ(a) =
f(a)θ(e) + θ ◦ φ(a) and θ ◦ φ|ker f is continuous.

(3) There exist a continuous linear map φ : Wf −→ ker f and an element
e ∈ f−1({1}) such that θ(a) = f(a)θ(e) + f ◦ θ ◦φ(a)e, a ∈ Wf and one
of the following statements holds.

(a) f ◦ θ ◦ φ|ker f is continuous.
(b) [θ(e), e] = 0.

Proof. Let θ be a strongly Lie zero-product preserving map such that f ◦θ ̸= 0.
Also let e ∈ Wf be an element such that f(e) = 1. So, for each a ∈ Wf ,
a = f(a)e + φ(a), where φ : Wf −→ ker f and φ(a) = a − f(a)e. Hence for
each a, c ∈ Wf ,

θ(a) = f(a)θ(e) + θ ◦ φ(a), θ(c) = f(c)θ(e) + θ ◦ φ(c).
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If θ(ker f) ⊆ ker f then,

[θ(a), θ(c)] = [f(a)θ(e) + θ ◦ φ(a), f(c)θ(e) + θ ◦ φ(c)]
= f(a)[θ(e), θ ◦ φ(c)] + f(c)[θ ◦ φ(a), θ(e)]
= [θ(e), θ ◦ φ(ac)] + [θ ◦ φ(ca), θ(e)]
= [θ(e), θ ◦ φ(ac)]− [θ(e), θ ◦ φ(ca)]
= [θ(e), θ ◦ φ(ac− ca)] = [θ(e), θ ◦ φ([a, c])]
= f ◦ θ(e)θ ◦ φ([a, c]), a, c ∈ Wf .

Obviously f ◦ θ(e) ̸= 0. Indeed, the assumption f ◦ θ(e) = 0 implies,

f ◦ θ(a) = f(a)f ◦ θ(e) + f ◦ θ ◦ φ(a)
= 0.

That is a contradiction. Let {an}n ⊆ ker f be a sequence such that an −→ 0.
So, [e, an] −→ 0. As θ is strongly Lie zero-product preserving, we can conclude
that,

∥θ ◦ φ(an)∥ = ∥θ ◦ φ([e, an])∥

=
∥[θ(e), θ(an)]∥

|f ◦ θ(e)|
−→ 0.

This shows that θ ◦ φ is continuous on ker f .
If θ(ker f) ⊈ ker f , then there exists a0 ∈ ker f such that f(θ(a0)) = 1. Set

e = θ(a0). For each a, c ∈ ker f the equality [a, c] = 0 implies, [θ(a), θ(c)] = 0.
So,

(2.1) f(θ(a))θ(c) = f(θ(c))θ(a).

Upon substituting a = a0 in (2.1), we obtain

(2.2) θ(c) = f(θ(c))θ(a0) = f ◦ θ(c)e, c ∈ ker f.

So, for each a ∈ Wf , a = f(a)e + φ(a), where φ : Wf −→ ker f and φ(a) =
a− f(a)e. Hence for each a, c ∈ Wf ,

θ(a) = f(a)θ(e) + θ ◦ φ(a), θ(c) = f(c)θ(e) + θ ◦ φ(c).

Since φ(a), φ(c) ∈ ker f , applying (2.2) yields,

θ(a) = f(a)θ(e) + f ◦ θ ◦ φ(a)e, θ(c) = f(c)θ(e) + f ◦ θ ◦ φ(c)e, a, c ∈ Wf .
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So,

[θ(a), θ(c)] = [f(a)θ(e) + f ◦ θ ◦ φ(a)e, f(c)θ(e) + f ◦ θ ◦ φ(c)e]
= f(a)[θ(e), f ◦ θ ◦ φ(c)e]− f(c)[θ(e), f ◦ θ ◦ φ(a)e]
= [θ(e), f ◦ θ ◦ φ(ac)e]− [θ(e), f ◦ θ ◦ φ(ca)e]
= [θ(e), f ◦ θ ◦ φ([a, c])e]
= f ◦ θ ◦ φ([a, c])[θ(e), e], a, c ∈ Wf .(2.3)

Let [θ(e), e] ̸= 0 and let {an}n ⊆ ker f be a sequence such that an −→ 0. So,
[e, an] −→ 0. As θ is strongly Lie zero-product preserving, we can conclude
that,

|f ◦ θ ◦ φ(an)| = |f ◦ θ ◦ φ([e, an])|

=
∥[θ(e), θ(an)]∥
∥[θ(e), e]∥

−→ 0.

This shows that f ◦ θ ◦ φ is continuous on ker f .
For the converse if f ◦ θ = 0 then clearly θ is a strongly Lie zero-product

preserving map. In the cases (2) and (3), one can easily verify that,

[θ(a), θ(c)] = f ◦ θ(e)θ ◦ φ([a, c]), a, c ∈ Wf

and

[θ(a), θ(c)] = f ◦ θ ◦ φ([a, c])[θ(e), e], a, c ∈ Wf ,

respectively. Let [an, cn] −→ 0. So the continuity of f ◦ θ and f ◦ θ ◦φ on ker f
implies, [θ(an), θ(cn)] −→ 0. This shows that θ is strongly Lie zero-product
preserving. □

Corollary 2.5. Let W be a non-zero normed vector space and let f ∈ W∗

be non-zero. Also let θ : Wf −→ Wf be a continuous linear map such that
θ(ker f) ⊆ ker f . Then θ is strongly Lie zero-product preserving.

Proof. By Theorem 2.4 it is obvious. □

In the following we present a characterization of strongly Lie zero-product
preserving maps on normed algebras.

Theorem 2.6. Let A and B be two normed algebras. Then a linear map
θ : A −→ B is strongly Lie zero-product preserving if and only if there exists
an M > 0 such that for all a, c ∈ A,

∥[θ(a), θ(c)]∥ ≤M∥[a, c]∥.

Proof. For the sake of contradiction similar to [3, Theorem 3.1] and [5, Theorem
4.1], suppose there is no such M . Then for each n ∈ N there exist an, cn ∈ A
such that,

∥[θ(an), θ(cn)]∥ > n∥[an, cn]∥.
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So

∥[ an
∥[θ(an), θ(cn)]∥

, cn]∥ <
1

n
.

Set a′n = an

∥[θ(an),θ(cn)]∥ and c′n = cn. Clearly [a′n, c
′
n] −→ 0. It follows that

[θ(a′n), θ(c
′
n)] −→ 0,

that is a contradiction. Indeed

∥[θ(a′n), θ(c′n)]∥ =
∥[θ(an), θ(cn)]∥
∥[θ(an), θ(cn)]∥

−→ 1.

The converse is obvious. □

Corollary 2.7. Let A and B be two normed algebras. Then every continuous
Lie homomorphism from A into B is strongly Lie zero-product preserving.

We present some hereditary properties of strongly Lie zero-product preserv-
ing maps.

Proposition 2.8. Let A,B,C,D be normed algebras and let φ : A −→ B
and ψ : C −→ D be two strongly Lie zero-product preserving maps. Then
φ⊕ ψ : A⊕ C −→ B ⊕D is strongly Lie zero-product preserving .

Proof. By Theorem 2.6, there exist M,N > 0 such that,

∥[φ(a), φ(a′)]∥ ≤M∥[a, a′]∥, a, a′ ∈ A,

and

∥[ψ(c), ψ(c′)]∥ ≤ N∥[c, c′]∥, c, c′ ∈ C.

So,

∥[φ⊕ ψ(a, c), φ⊕ ψ(a′, c′)]∥ = ∥[(φ(a), ψ(c)), (φ(a′), ψ(c′))]∥
= ∥(φ(a)φ(a′)− φ(a′)φ(a), ψ(c)ψ(c′)− ψ(c′)ψ(c))∥
= ∥([φ(a), φ(a′)], [ψ(c), ψ(c′)])∥
= ∥[φ(a), φ(a′)]∥+ ∥[ψ(c), ψ(c′)]∥
≤M∥[a, a′]∥+N∥[c, c′]∥
≤ (M +N)(∥[a, a′]∥+ ∥[c, c′]∥)
= (M +N)∥([a, a′], [c, c′])∥
= (M +N)∥[(a, c), (a′, c′)]∥.

Applying Theorem 2.6 implies that φ⊕ψ is strongly Lie zero-product preserv-
ing. □

Proposition 2.9. Let A,B,C be normed algebras and let φ : A −→ B and
ψ : B −→ C be two strongly Lie zero-product preserving maps. Then ψ ◦ φ :
A −→ C is strongly Lie zero-product preserving.
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Proof. As φ and ψ are strongly Lie zero-product preserving maps so, there
exist M,N > 0 such that

∥[φ(a), φ(a′)]∥ ≤M∥[a, a′]∥, a, a′ ∈ A,

and
∥[ψ(b), ψ(b′)]∥ ≤ N∥[b, b′]∥, b, b′ ∈ B.

So,

∥[ψ ◦ φ(a), ψ ◦ φ(a′)]∥ = ∥[ψ(φ(a)), ψ(φ(a′))]∥
≤ N∥[φ(a), φ(a′)]∥
≤MN∥[a, a′]∥, a, a′ ∈ A.

This shows that ψ ◦ φ is strongly Lie zero-product preserving. □

3. Main results

In this section we investigate the second dual of a strongly zero-product
(strongly Jordan zero-product and strongly Lie zero-product) preserving map,
defined on a certain class of normed algebras.
Let A and B be normed algebras. For a bounded linear map θ : A −→ B, it
is obvious that if θ∗∗ : A∗∗ −→ B∗∗ is strongly (strongly Jordan and strongly
Lie) zero-product preserving, then so is θ : A −→ B.
An interesting question is for which algebras A and B the converse is true. In
the sequel, by a ∗ c we mean one of the following products,

ac, a ◦ c or [a, c].

And also by a strongly ∗−zero-product preserving map we mean a linear map
between normed algebras, that is strongly zero-product preserving, strongly
Jordan zero-product preserving or strongly Lie zero-product preserving. A
∗−homomorphism is a homomorphism, Jordan homomorphism or Lie homo-
morphism.

Theorem 3.1. Let A and B be two Arens regular normed algebras and let
θ : A −→ B be a bounded linear map. Also let there exists M ≥ 0 such that for

each a, c ∈ A and each g ∈ B
(0)
1 (the closed unit ball of B∗) the inequality,

(3.1) |⟨θ(a) ∗ θ(c), g⟩| ≤M |⟨a ∗ c, θ∗(g)⟩|
holds. Then θ∗∗ : A∗∗ −→ B∗∗ is strongly ∗−zero-product preserving.

Proof. We only prove the case when ∗ is Lie product. Let m,n ∈ A∗∗ and let
(aα)α and (cβ)β be two nets in A such that

m = w∗ − lim
α
aα, n = w∗ − lim

β
cβ .

By the Arens regularity of A and B, it is clear that

(3.2) [m,n] = w∗ − lim
α
w∗ − lim

β
[aα, cβ ]
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and

(3.3) [θ∗∗(m), θ∗∗(n)] = w∗ − lim
α
w∗ − lim

β
[θ(aα), θ(cβ)].

So by (3.1), (3.2) and (3.3), for all g ∈ B
(0)
1 we have,

|⟨[θ∗∗(m), θ∗∗(n)], g⟩| ≤M |⟨[m,n], θ∗(g)⟩|.

This shows that

∥[θ∗∗(m), θ∗∗(n)]∥ ≤M∥θ∥∥[m,n]∥.
Applying Theorem 2.6 shows that, θ∗∗ is strongly Lie zero-product preserving.
In the case when ∗ is Jordan product or original product, a similar argument
can be applied. Note that in the case when ∗ is the original product, the
conclusion without the hypotheses of Arens regularity of A and B is valid. □

Corollary 3.2. Let A and B be Arens regular normed algebras and let θ :
A −→ B be a bounded ∗− homomorphism. Then θ∗∗ is strongly ∗−zero-product
preserving.

Proof. As θ is ∗−homomorphism so for all a, c ∈ A, θ(a ∗ c) = θ(a) ∗ θ(c). It
follows that

|⟨θ(a) ∗ θ(c), g⟩| = |⟨θ(a ∗ c), g⟩|

= |⟨a ∗ c, θ∗(g)⟩|, g ∈ B
(0)
1 , a, c ∈ A.

Applying Theorem 3.1 implies that θ∗∗ is strongly ∗−zero-product preserving.
Note that in the case when ∗ is the original product, the condition of Arens
regularity of A and B is surplus. □

Theorem 3.3. Let W be a non-zero normed vector space and let f ∈ W∗ be
a non-zero element such that ∥f∥ ≤ 1. Also let θ : Wf −→ Wf be a bounded
strongly ∗−zero-product preserving map. Then θ∗∗ : (Wf )

∗∗ −→ (Wf )
∗∗ is

strongly ∗−zero-product preserving.

Proof. As by [6, proposition 2.1] Wf is Arens regular, it is enough to show that
the inequality (3.1) holds. Let ∗ be original product or Jordan product and θ
be strongly ∗−zero-product preserving. Then by [4, Theorem 3.6 and Theorem
3.7] f ◦ θ = 0 or θ(ker f) ⊆ ker f .
In the case when ∗ is Lie product and θ is strongly Lie zero-product preserving
then by Theorem 2.4 f ◦ θ = 0 or θ(ker f) ⊆ ker f or θ(a) = f(a)θ(e) + f ◦
θ ◦ φ(a)e, for some continuous linear map φ : Wf −→ ker f and for some
e ∈ f−1({1}). We obtain the conclusion in all of the following cases.

• f ◦θ = 0. In this case θ(a)∗θ(c) = 0 for all a, c ∈ Wf . So the inequality
(3.1) holds for all M ≥ 0. Hence in the case when f ◦ θ = 0, θ∗∗ is
strongly ∗−zero-product preserving.
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• θ(ker f) ⊆ ker f. Let e ∈ f−1({1}). Define φ : Wf −→ ker f such that
φ(a) = a− f(a)e, a ∈ Wf . So we can conclude that

a = f(a)e+ φ(a),

and
θ(a) = f(a)θ(e) + θ ◦ φ(a), a ∈ Wf .

Hence

⟨θ(a) ∗ θ(c), g⟩ = ⟨(f(a)θ(e) + θ ◦ φ(a)) ∗ (f(c)θ(e) + θ ◦ φ(c)), g⟩

= f ◦ θ(e)⟨a ∗ c, θ∗(g)⟩, g ∈ B
(0)
1 .(3.4)

It follows that

|⟨θ(a) ∗ θ(c), g⟩| = |f ◦ θ(e)⟨a ∗ c, θ∗(g)⟩|
≤ ∥f∥∥e∥∥θ∥|⟨a ∗ c, θ∗(g)⟩|

≤ ∥e∥∥θ∥|⟨a ∗ c, θ∗(g)⟩|, a, c ∈ Wf , g ∈ B
(0)
1 .

So the inequality (3.1) holds for M = ∥e∥∥θ∥, that implies θ∗∗ is
strongly ∗−zero-product preserving.
Note that the accuracy of the equality (3.4) for example in the case
when ∗ is Jordan product is as follows.

θ(a) ∗ θ(c) = θ(a) ◦ θ(c)
= (f(a)θ(e) + θ ◦ φ(a)) ◦ (f(c)θ(e) + θ ◦ φ(c))
= f(f(a)θ(e) + θ ◦ φ(a))θ(c) + f(f(c)θ(e) + θ ◦ φ(c))θ(a)
= f(a)f ◦ θ(e)θ(c) + f(c)f ◦ θ(e)θ(a)
= f ◦ θ(e)θ(f(a)c) + f ◦ θ(e)θ(f(c)a)
= f ◦ θ(e)(θ(ac) + θ(ca))

= f ◦ θ(e)θ(a ◦ c)
= f ◦ θ(e)θ(a ∗ c), a, c ∈ Wf .

• ∗ is Lie product and θ(a) = f(a)θ(e)+f ◦θ◦φ(a)e, for some continuous
linear map φ : Wf −→ ker f and for some e ∈ f−1({1}).
Let a, c ∈ Wf . So by (2.3),

[θ(a), θ(c)] = f ◦ θ ◦ φ([a, c])[θ(e), e]
= θ ◦ φ([a, c]) · [θ(e), e], a, c ∈ Wf .

It follows that

|⟨[θ(a), θ(c)], g⟩| = |⟨θ ◦ φ([a, c]) · [θ(e), e], g⟩|
= |⟨θ ◦ φ([a, c]), [θ(e), e] · g⟩|

= |⟨[a, c], (θ ◦ φ)∗([θ(e), e] · g)⟩|, g ∈ B
(0)
1 .
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Similar to the proof of Theorem 3.1 one can simply verify that,

|⟨[θ∗∗(m), θ∗∗(n)], g⟩| = |⟨[m,n], (θ ◦ φ)∗([θ(e), e] · g)⟩|,m, n ∈ (Wf )
∗∗.

So we can conclude that

∥[θ∗∗(m), θ∗∗(n)]∥ ≤ ∥(θ ◦ φ)∗∥∥[θ(e), e]∥∥[m,n]∥.
This shows that θ∗∗ is strongly Lie zero-product preserving.

□
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