Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 6, pp. 1791-1800

Title:
Classification of solvable groups with a given property
Author(s):
M. Rezaei and Z. Foruzanfar

Published by the Iranian Mathematical Society

CLASSIFICATION OF SOLVABLE GROUPS WITH A GIVEN PROPERTY

M. REZAEI* AND Z. FORUZANFAR

(Communicated by Ali Reza Ashrafi)

Abstract

In this paper, we classify all finite solvable groups satisfying the following property P_{5} : their orders of representatives are set-wise relatively prime for any 5 distinct non-central conjugacy classes. Keywords: Frobenius group, conjugacy classes, graph, order. MSC(2010): Primary: 20E45; Secondary: 20D60.

1. Introduction

Let G be a finite group and let V be the set of all non-central conjugacy classes of G. From lengths of conjugacy classes, the following class graph $\Gamma(G)^{\prime}$ was introduced in [1]: its vertex set is the set V and two distinct vertices x^{G} and y^{G} are connected with an edge if $\left(\left|x^{G}\right|,\left|y^{G}\right|\right)>1$. The class graph $\Gamma(G)^{\prime}$ has been studied in some details: see for example [1-3] and [5]. In [5], the authors have studied the structure of a finite group G with the following property: for every prime p, G has at most $n-1$ conjugacy classes whose sizes are multiples of p. In particular, they have classified the finite groups when $n=5$, extending the result of Fang and Zhang [3]. Similarly, in terms of orders of elements, the authors in [7] have attached a graph $\Gamma(G)$ to G as follows: its vertex set is also the set V and two distinct vertices x^{G} and y^{G} are connected with an edge if $(o(x), o(y))>1$. Thus a new conjugacy class graph is defined. A finite group G satisfies the property P_{n} if for every prime integer p, G has at most $n-1$ non-central conjugacy classes whose orders of representatives are multiples of p. Thus $\Gamma(G)$ does not have a subgraph K_{n} if and only if G satisfies the property P_{n}. The authors in [7] classified all finite groups that satisfy property P_{4}. Also in [4], all finite

[^0]non-solvable groups that satisfy property P_{5} have been classified. The objective of this paper is to classify all finite solvable groups that satisfy property P_{5}.

Theorem 1.1. Let G be a finite solvable group that satisfies property P_{5}. Then G is isomorphic to one of the following groups:
(i) An abelian group;
(ii) A Frobenius group with complement of order 2 and kernel $\mathbb{Z}_{3}, \mathbb{Z}_{5}, \mathbb{Z}_{7}$, $\left(\mathbb{Z}_{3}\right)^{2}$ or \mathbb{Z}_{9};
(iii) A Frobenius group with complement of order 3 and $\operatorname{kernel}\left(\mathbb{Z}_{2}\right)^{2}, \mathbb{Z}_{7}$ or \mathbb{Z}_{13};
(iv) A Frobenius group with cyclic complement of order 4 and kernel \mathbb{Z}_{5}, $\left(\mathbb{Z}_{3}\right)^{2}, \mathbb{Z}_{13}$ or \mathbb{Z}_{17};
(v) The Frobenius group with complement of order 5 and kernel \mathbb{Z}_{11} and $\left(\mathbb{Z}_{2}\right)^{4}$;
(vi) A Frobenius group with cyclic complement of order 6 and kernel \mathbb{Z}_{7}, $\mathbb{Z}_{13}, \mathbb{Z}_{19}$ or $\left(\mathbb{Z}_{5}\right)^{2}$;
(vii) $D_{20}, Q_{20}, D_{12}, D_{8}, Q_{8}$ or $T=\left\langle x, y \mid x^{3}=1, y^{4}=1, x y=y x^{-1}\right\rangle$.

Conversely, all these groups satisfy property P_{5}.

2. Preliminaries

Before starting the proof of Theorem 1.1, we give some preliminary results.

Lemma 2.1 ([7, Lemma 1]). Let G be a finite group. Then G satisfies property P_{n} if and only if $\Gamma(G)$ has no subgraph K_{n}.

Lemma 2.2 ([7, Lemma 2]). Let G be a finite group that satisfies property P_{n}. Then property P_{n} is inherited by quotient groups of G.

Lemma 2.3 ([6, Lemma 1.3]). If G possesses an element x with $\left|C_{G}(x)\right|=4$, then a Sylow 2-subgroup P of G is the dihedral, semi-dihedral or generalized quaternion group. In particular $\left|\frac{P}{P^{\prime}}\right|=4$ and P has a cyclic subgroup of order $\frac{|P|}{2}$.

Proposition 2.4 ([6, Proposition 2.1]). Let N be a normal subgroup of a nonabelian group G. Then $k_{G}(G-N)=1$ if and only if G is a Frobenius group with the kernel N of odd order $\frac{|G|}{2}$.

Theorem 2.5 ([6, Theorem 2.2]). Let N be a normal subgroup of a non-abelian group G. Then $k_{G}(G-N)=2$ if and only if G is one of the following solvable groups.
(1) $N=1$ and $G \cong S_{3}$.
(2) $\left|\frac{G}{N}\right|=3$ and G is a Frobenius group with the kernel N.
(3) $\left|\frac{G}{N}\right|=2$ and $\left|C_{G}(x)\right|=4$ for all $x \in G-N$. In particular, $P \in \operatorname{Syl}_{2}(G)$ has a cyclic subgroup of order $\frac{|P|}{2}$; furthermore, one of the following holds:
(3.a) G has a normal and abelian 2-complement.
(3.b) G has a normal 2-complement and P is a quaternion group.
(3.c) G has an abelian 2-complement and $P \cong D_{8}$, the dihedral group of order 8.

Theorem 2.6 ([6, Theorem 3.6]). Let N be a normal subgroup of a non-abelian solvable group G. Then $G-N=x^{G} \cup y^{G} \cup z^{G}$ is a union of three conjugacy classes if and only if one of the following is true:
(1) $N=1$ and $G \cong A_{4}$ or D_{10}.
(2) $\frac{G}{N} \cong S_{3}$ and $G \cong S_{4}$.
(3) G is a Frobenius group with the kernel N and a cyclic complement of order 4.
(4) $G \cong D_{8}$ or Q_{8}.
(5) $\left|\frac{G}{N}\right|=2,\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=\left|C_{G}(z)\right|=6$. And in this case, N is of odd order and N has a normal and abelian 3-complement.
(6) $\left|\frac{G}{N}\right|=2,\left|C_{G}(x)\right|=4,\left|C_{G}(y)\right|=6$ and $\left|C_{G}(z)\right|=12$. And in this case, either G has a normal 2-complement or $\frac{G}{O_{2^{\prime}}(G)} \cong S_{4}$.
(7) $\left|\frac{G}{N}\right|=2,\left|C_{G}(x)\right|=4,\left|C_{G}(y)\right|=\left|C_{G}(z)\right|=8$. And in this case, either $\frac{G}{O_{2^{\prime}}(G)} \cong G L(2,3)$ with abelian $O_{2^{\prime}}(G)$, or $\frac{G}{O_{2^{\prime}}(G)}$ is isomorphic to a non-abelian group of order 16.

3. The proof of Theorem 1.1

It is easy to see that the groups listed in Theorem 1.1 satisfy property P_{5}. For a finite group G and $A \subseteq G$, let $k_{G}(A)$ be the number of classes of G contained in A and $\pi_{e}(G)$ denotes the set of all orders of elements in G. If G is abelian, then G satisfies property P_{5}. Now suppose that G is a finite non-abelian solvable group that satisfies property P_{5} and $M=G^{\prime} Z(G)$. It is easy to see that $M<G$. Take $x M \in \frac{G}{M}$ such that $o(x M)=p$. Since $\frac{G}{M}$ is abelian, there are at least $p-1$ classes of elements of order p in $\frac{G}{M}$. Note that $o(x M) \mid o(x)$ and $x M$, when viewed as a subset of G, is a union of some classes of G. Thus we conclude that G has at least $p-1$ non-central classes whose orders of representatives are multiples of p. Therefore, $p-1 \leq 4$, i.e., $p=2,3$ or 5 . Furthermore, $\left|\frac{G}{M}\right|=2,3,4,5$ or 6 and $k_{G}(G-M) \leq 6$.

1. Suppose that $k_{G}(G-M)=1$.

It follows from Proposition 2.4 that G is a Frobenius group with kernel M and M is abelian of odd order $\frac{|G|}{2}$. This implies that $Z(G)=1$ and $M=$ G^{\prime}. Since G satisfies property P_{5}, we conclude that $M \in S y l_{p}(G)$ and thus
$k_{G}(M-\{1\}) \leq 4$. It follows that $\frac{|M|-1}{2} \leq 4$ and hence $|M| \leq 9$. Therefore G is a Frobenius group with complement of order 2 and kernel $\mathbb{Z}_{3}, \mathbb{Z}_{5}, \mathbb{Z}_{7},\left(\mathbb{Z}_{3}\right)^{2}$ or \mathbb{Z}_{9}.
2. Suppose that $k_{G}(G-M)=2$.

Applying Theorem 2.5, we get the following three cases.
(2.a) $M=1$ and $G \cong S_{3}$. In this case $\frac{G}{M} \cong S_{3}$. Therefore $\frac{G}{M}$ is a non-abelian group, a contradiction.
(2.b) $\left|\frac{G}{M}\right|=3$ and G is a Frobenius group with kernel M.

Similarly, we have $M \in S y l_{p}(G)$ and $k_{G}(M-\{1\}) \leq 4$. If M is abelian, then $\frac{|M|-1}{3} \leq 4$ and hence $|M| \leq 13$. Therefore G is a Frobenius group with complement of order 3 and kernel $\left(\mathbb{Z}_{2}\right)^{2}, \mathbb{Z}_{7}$ or \mathbb{Z}_{13}. If M is non-abelian, then $k_{G}(Z(M)-\{1\}) \leq 3$. Assume first that $k_{G}(Z(M)-\{1\})=3$. From this we can deduce that $|Z(M)|=10$, which is not possible. Also assume that $k_{G}(Z(M)-\{1\})=2$. We have $|Z(M)|=7$ and M is a 7 -group. Let $|M|=7^{r}$. If $M-Z(M)=\alpha^{G}$, then it implies successively $\left|\alpha^{G}\right|=3.7^{k}, 7^{r}=3.7^{k}+7$. This equality has no solution. If $M-Z(M)=\alpha^{G} \cup \beta^{G}$, then $\left|\alpha^{G}\right|=3.7^{k} \leq\left|\beta^{G}\right|=$ 3.7^{s} and so $7^{r}=3.7^{k}+3.7^{s}+7$, which forces $\left(p^{k}, p^{s}, p^{r}\right)=(7,7,49)$. Therefore G is a Frobenius group with complement of order 3 and kernel of order 49. Since this group has at least five non-central conjugacy classes which their orders of representatives are multiples of 7 , it does not satisfy property P_{5}. Now assume that $k_{G}(Z(M)-\{1\})=1$. We have $|Z(M)|=4$ and M is a 2 -group. Let $|M|=2^{r}$. If $M-Z(M)=\alpha^{G}$, then $\left|\alpha^{G}\right|=3.2^{k}$ and hence $2^{r}=3.2^{k}+4$, which forces $\left(p^{k}, p^{r}\right)=(4,16)$. We conclude that there is an element such that its centralizer in G is of order 4. By Lemma 2.3, M is the dihedral, semi-dihedral or generalized quaternion group. This forces $|Z(M)|=2$, a contradiction. If $M-Z(M)=\alpha^{G} \cup \beta^{G}$, then $\left|\alpha^{G}\right|=3.2^{k} \leq\left|\beta^{G}\right|=3.2^{s}$ and so $2^{r}=3.2^{k}+3.2^{s}+4$, which forces $\left(p^{k}, p^{s}, p^{r}\right)=(2,2,16)$ or $(4,16,64)$. If $\left(p^{k}, p^{s}, p^{r}\right)=(2,2,16)$, then G is a Frobenius group with complement of order 3 and kernel of order 16. Now since this group has exactly five non-central conjugacy classes which their orders of representatives are multiples of 2 , it does not satisfy property P_{5}. If $\left(p^{k}, p^{s}, p^{r}\right)=(4,16,64)$, then we conclude that there is an element such that its centralizer in G is of order 4. By Lemma 2.3, M is the dihedral, semi-dihedral or generalized quaternion group. This forces $|Z(M)|=2$, a contradiction. If $M-Z(M)=\alpha^{G} \cup \beta^{G} \cup \gamma^{G}$, then it implies successively $\left|\alpha^{G}\right|=3.2^{k} \leq\left|\beta^{G}\right|=3.2^{s} \leq\left|\gamma^{G}\right|=3.2^{l}, 2^{r}=3.2^{k}+3.2^{s}+3.2^{l}+4$, which forces $\left(p^{k}, p^{s}, p^{l}, p^{r}\right)=(4,8,8,64)$. Therefore G is a Frobenius group with complement of order 3 and kernel of order 64 . Now since this group has at least five non-central conjugacy classes which their orders of representatives are multiples of 2 , it does not satisfy property P_{5}.
(2.c) $\left|\frac{G}{M}\right|=2$ and $\left|C_{G}(x)\right|=4$ for any $x \in G-M$.

Applying Lemma 2.3 and Theorem 2.5, we can see that $Z(G)>1$. Since $\left|C_{G}(x)\right|=4$ for any $x \in G-M$, we have $|Z(G)|=2$. Take $x \in G-M$,
we conclude that $o(x Z(G))=2$ and $\left|C_{\frac{G}{Z(G)}}(x Z(G))\right|=2$. Thus $x Z(G)$ acts fixed point freely on $\frac{M}{Z(G)}$, so $\frac{G}{Z(G)}$ is a Frobenius group with kernel $\frac{M}{Z(G)}$. Since $\frac{M}{Z(G)}$ is a p-group, we have $\frac{\left|\frac{M}{Z(G)}\right|-1}{2} \leq 4$ and hence $\left|\frac{M}{Z(G)}\right|=3,5,7$ or 9. Therefore $|G|=12,20,28$ or 36 and G is one of the following groups: D_{12}, $T=\left\langle x, y \mid x^{3}=1, y^{4}=1, x y=y x^{-1}\right\rangle, D_{20}$ or Q_{20}.
3. Suppose that $k_{G}(G-M)=3$. Let $G-M=x^{G} \cup y^{G} \cup z^{G}$.

Applying Theorem 2.6, we get the following seven cases.
(3.a) $M=1$ and $G \cong A_{4}$ or D_{10}. In this case $\frac{G}{M}$ is a non-abelian group, that is not possible.
(3.b) $\frac{G}{M} \cong S_{3}$ and $G \cong S_{4}$. In this case $\frac{G}{M}$ is a non-abelian group, a contradiction.
(3.c) $G \cong D_{8}$ or Q_{8}.
(3.d) G is a Frobenius group with kernel M and a cyclic complement of order 4 . In this case, arguing as in (1), we have $M \in S y l_{p}(G)$ and $k_{G}(M-\{1\}) \leq 4$. It follows that $\frac{|M|-1}{4} \leq 4$ and hence $|M| \leq 17$. We conclude that G is a Frobenius group with cyclic complement of order 4 and kernel $\mathbb{Z}_{5},\left(\mathbb{Z}_{3}\right)^{2}, \mathbb{Z}_{13}$ or \mathbb{Z}_{17}.
(3.e) $\left|\frac{G}{M}\right|=2,\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=\left|C_{G}(z)\right|=6, o(x)=2, o(y)=6$ and $z=y^{-1}$. In this case, M is of odd order and M has a normal and abelian 3 -complement, say N. Then N is a normal and abelian $\{2,3\}$-complement of G. Let $\left|\frac{M}{N}\right|=3^{n}$, where $n \geq 1$. We claim that $\left|\frac{M}{N}\right|=3$. Otherwise, the number of conjugacy classes of $\frac{M}{N}$ is at least 9 . Since $\left|C_{G}(x)\right|=6$, we have $\left|C_{M}(x)\right|=3$ and thus $\frac{M}{N}$ has at least 6 conjugacy classes which lift to conjugacy classes not contained in $Z(G)$. Since $\left|\frac{G}{M}\right|=2$, the subgroup M contains at least 3 non-central conjugacy classes of G, such that their elements have order divisible by 3 . Since also y^{G} and z^{G} are such conjugacy classes, which contradicts property P_{5}. Thus $\left|\frac{M}{N}\right|=3$. If $Z(G) \neq 1$, then $G=<y>N$. So $G^{\prime} \subseteq N$ and $y^{2} \in Z(G)$. For any $a \in N \backslash 1$ we get two further non-central conjugacy classes of 3-elements, namely $\left(y^{2} a\right)^{G}=\left\{y^{2} a, y^{2} a^{x}\right\}$ and $\left(y^{4} a\right)^{G}=\left\{y^{4} a, y^{4} a^{x}\right\}$. Since $N \neq 1$, we have $N \backslash 1=\left\{a, a^{x}\right\}$ and $|N|=3$, which is not possible. Thus $Z(G)=1$. Now we show that $N=1$. Suppose in contrary that $N>1$ and $M=H N$, where $H \cong \frac{M}{N}$. Since $\left(\left|\frac{M}{N}\right|,|N|\right)=1$, we see that all elements in $M-N$ have the same order 3. It implies that for any element $h \in H-\{1\}$, $C_{M}(h)=H$. Therefore, M is a Frobenius group with kernel N and cyclic complement H of prime order 3. It implies that $\frac{G}{N} \cong S_{3}$ and thus G is 2 Froubenius. This forces $6 \notin \pi_{e}(G)$, a contradiction. Hence $N=1$ and $|G|=6$, that is not possible.
(3.f) $\left|\frac{G}{M}\right|=2,\left|C_{G}(x)\right|=4,\left|C_{G}(y)\right|=6$ and $\left|C_{G}(z)\right|=12$. In this case, M is of even order and either G has a normal 2-complement or $\frac{G}{O_{2^{\prime}}(G)} \cong S_{4}$. Let $P \in \operatorname{Syl}_{2}(G)$ and $P \cap M=P_{1}$. By Lemma 2.3, P is dihedral, semi-dihedral or generalized quaternion. Since $\left|\frac{G}{M}\right|=2$, every element of $G-M$ has an order
divisible by 2 . Now since $k_{G}(G-M)=3$, therefore $G-M$ has at least three non-central conjugacy classes, such that the order of representative of each of which is a multiple of 2 . Also since $|Z(G)|\left|\left|C_{G}(x)\right|\right.$, we have $| Z(G) \mid \leq 2$. Let $|Z(G)|=1$. If $k_{G}\left(P_{1}-\{1\}\right)=1$, then $P_{1}=1 \cup u^{G}$, for some $u \in P_{1}$ and P_{1} is an elementary abelian normal 2-subgroup of G. Since P_{1} has index 2 in P, we conclude that $\left|P_{1}\right|=4$ and $|P|=8$. Also, since P has more than one element of order 2 , it must be dihedral. This implies that conjugacy class of u is $P_{1}-\{1\}$, so the conjugacy class of u would have size 3 . If G has a normal 2-complement N, then $M=P_{1} \times N$. In particular, N centralizes the element u. This implies that the conjugacy class of u in G has size that is a power of 2 , this is a contradiction. Therefore, P_{1} has at least two non-central conjugacy classes of G, which contradicts property P_{5}. Now suppose that $G / O_{2^{\prime}}(G) \cong S_{4}$. In this case G has a normal subgroup A such that $A / O_{2^{\prime}}(G) \cong P_{1}$. Therefore, $A=P_{1} \times O_{2^{\prime}}(G)$. In particular, $O_{2^{\prime}}(G)$ and P_{1} centralize the element u. Also P is not a subgroup of $C_{G}(u)$. This implies that the conjugacy class of u in G has size 2 or 6 , which is not possible. Therefore, P_{1} has at least two noncentral conjugacy classes of G, contradicts by the property P_{5}. Now suppose that $|Z(G)|=2$ and $a \in Z(G)$ be of order 2. If $\left|G^{\prime} \cap Z(G)\right|=1$, then there are two elements $b, c \in G^{\prime}-Z(G)$, such that $o(b)=2$ and $o(c)=3$. So b^{G} and $(a c)^{G}$ are non-central conjugacy classes of G contained in M, this contradicts property P_{5}. Now suppose that $\left|G^{\prime} \cap Z(G)\right|=2$. Thus $Z(G) \leq G^{\prime}$. If $Z(G)=G^{\prime}$, then $|G|=4$, a contradiction. Suppose that $Z(G)<G^{\prime}$. Therefore, there is $c \in G^{\prime}-Z(G)$, such that $o(c)=3$. So $(a c)^{G}$ is a non-central conjugacy class of G contained in M. Since $P_{1} \in \operatorname{Syl}_{2}(M), Z(G)$ is contained in P_{1}. Also since P_{1} is a normal subgroup of G, it is a union of some classes of G and so it has a non-central conjugacy class, which contradicts property P_{5}. (3.g) $\left|\frac{G}{M}\right|=2,\left|C_{G}(x)\right|=4,\left|C_{G}(y)\right|=\left|C_{G}(z)\right|=8$. Let $P \in S y l_{2}(G)$ and $P \cap M=P_{1}$. In this case, P is a non-abelian group of order 16 and P_{1} is a non-abelian group of order 8 . Since $\left|\frac{G}{M}\right|=2$, every element of $G-M$ has an order divisible by 2 . Now since $k_{G}(G-M)=3, G-M$ has at least 3 non-central conjugacy classes such that the order of representative of each of which is a multiple of 2 . Also since $|Z(G)|\left|\left|C_{G}(x)\right|,|Z(G)| \leq 2\right.$. Suppose that $|Z(G)|=1$. Thus $M=G^{\prime}$. If $k_{G}\left(P_{1}-\{1\}\right)=1$, then P_{1} is abelian, which is not possible. Therefore, P_{1} has at least two non-central conjugacy classes, this contradicts property P_{5}. So assume that $|Z(G)|=2$ and $a \in Z(G)$ be of order 2. If $\left|G^{\prime} \cap Z(G)\right|=1$, then there are two elements $b, c \in G^{\prime}-Z(G)$, such that $o(b)=2$ and $o(c)=p$, where p is an odd prime. So b^{G} and $(a c)^{G}$ are non-central conjugacy classes of G contained in M, this contradicts property P_{5}. Now suppose that $\left|G^{\prime} \cap Z(G)\right|=2$. Thus $Z(G) \leq G^{\prime}$. If $Z(G)=G^{\prime}$, then $|G|=4$, a contradiction. If $Z(G)<G^{\prime}$, then there is $c \in G^{\prime}-Z(G)$, such that $o(c)=p$, where p is an odd prime. So $(a c)^{G}$ is a non-central conjugacy class of G contained in M. Since $P_{1} \in S y l_{2}(M), Z(G)$ is contained in P_{1}. Also
since P_{1} is a normal subgroup of G, it is a union of some classes of G and has a non-central conjugacy class that contradicts property P_{5}.
4. Suppose that $k_{G}(G-M)=4$ and $G-M=x^{G} \cup y^{G} \cup z^{G} \cup w^{G}$.

In this case $\left|\frac{G}{M}\right| \leq 5$. Let $\left|\frac{G}{M}\right|=5$. So all of the elements in each of the four non-trivial cosets of M in G are conjugate. Hence they all have centralizers of order 5 . Let $g \in G$ such that $g M$ generates $\frac{G}{M}$. Then g is of order 5 and G is a Frobenius group with kernel M and complement $\langle g\rangle$. This implies that $Z(G)=1$ and $M=G^{\prime}$. Since G satisfies property P_{5}, we have $M \in \operatorname{Syl}_{p}(G)$ and $k_{G}(M-\{1\}) \leq 4$. If M is abelian, then $\frac{|M|-1}{5} \leq 4$ and hence $|M| \leq 21$. Therefore, G is a Frobenius group with complement of order 5 and kernel \mathbb{Z}_{11} or $\left(\mathbb{Z}_{2}\right)^{4}$. If M is non-abelian, then $k_{G}(Z(M)-\{1\}) \leq 3$. Assume first that $k_{G}(Z(M)-\{1\})=3$. We deduce that $|Z(M)|=16$ and M is a 2 group. Let $|M|=2^{r}$. Since $M-Z(M)=\alpha^{G}$ and $\left|\alpha^{G}\right|=5.2^{k}$, we have $2^{r}=5.2^{k}+16$, which has no solution. Now suppose that $k_{G}(Z(M)-\{1\})=2$. We have $|Z(M)|=11$ and M is a 11-group. Let $|M|=11^{r}$. If $M-Z(M)=$ α^{G}, then $\left|\alpha^{G}\right|=5.11^{k}$ and so $11^{r}=5.11^{k}+11$, which has no solution. If $M-Z(M)=\alpha^{G} \cup \beta^{G}$, then $\left|\alpha^{G}\right|=5.11^{k} \leq\left|\beta^{G}\right|=5.11^{s}$ and hence $11^{r}=$ $5.11^{k}+5.11^{s}+11$, which forces $\left(p^{k}, p^{s}, p^{r}\right)=(11,11,121)$. Therefore, G is a Frobenius group with complement of order 5 and kernel of order 121. Now since this group has at least five non-central conjugacy classes whose their orders of representatives are multiples of 11 , it does not satisfy property P_{5}. Finally, assume that $k_{G}(Z(M)-\{1\})=1$. Then $|Z(M)|=6$, a contradiction. If $\left|\frac{G}{M}\right|=4$, then every element of $G-M$ has an order divisible by 2 . Since $k_{G}(G-M)=4, G-M$ has at least four non-central conjugacy classes such that the order of representative of each of which is a multiple of 2 . Also among these four non-central conjugacy classes, there are two non-central conjugacy classes such that the centralizer of representative of each of which is of order 4. Since $G-M$ possesses an element g with $\left|C_{G}(g)\right|=4$, Lemma 2.3 implies that M is of even order. Also since $|Z(G)|\left|\left|C_{G}(g)\right|\right.$, we have $| Z(G) \mid \leq 2$. If $|Z(G)|=1$, then M contains at least one non-central conjugacy class of G, such that its representative has order 2 , which contradicts property P_{5}. So assume that $|Z(G)|=2$ and $a \in Z(G)$ be of order 2 . If $\left|G^{\prime} \cap Z(G)\right|=1$, then there is $1 \neq b \in G^{\prime}$, such that $(a b)^{G}$ is a non-central conjugacy class of G contained in M, which contradicts property P_{5}. Now suppose that $\left|G^{\prime} \cap Z(G)\right|=2$. Thus $Z(G) \leq G^{\prime}$. If $Z(G)=G^{\prime}$, then $|G|=8$ and G is isomorphic to D_{8} or Q_{8}, that is impossible. Now let $Z(G)<G^{\prime}$. Then there is $b \in G^{\prime}-Z(G)$, such that $(a b)^{G}$ is a non-central conjugacy class of G contained in M, a contradiction. Now let $\left|\frac{G}{M}\right|=3$. Note that for any $g \in G-M, o(g)$ is a multiple of 3 and hence $\left|C_{G}(g)\right|$ is a multiple of 3 . Set $\left|C_{G}(x)\right|=3 a,\left|C_{G}(y)\right|=3 b,\left|C_{G}(z)\right|=3 c$ and $\left|C_{G}(w)\right|=3 d$. We conclude that $\frac{1}{3 a}+\frac{1}{3 b}+\frac{1}{3 c}+\frac{1}{3 d}+\frac{1}{3}=1$. This equality holds if $a=1$ and $b=c=d=3, a=1, b=2$ and $c=d=4$ or $a=b=c=d=2$. In
the first and second case, G possesses an element x of order 3 with $\left|C_{G}(x)\right|=3$ and thus x acts fixed point freely on M. So G is a Frobenius group with kernel M and complement of order 3 . Clearly M is a p-group and $k_{G}(M-\{1\}) \leq 4$. If M is abelian, then $\frac{|M|-1}{3} \leq 4$ and hence $|M|=4,7$ or 13 , which is not possible. Suppose that M is not abelian. Thus $k_{G}(Z(M)-\{1\}) \leq 3$. If $k_{G}(Z(M)-\{1\})=3$, then $|Z(M)|=10$, that is not possible. Now assume that $k_{G}(Z(M)-\{1\})=2$. We have $|Z(M)|=7$ and M is a 7 -group. Let $|M|=7^{r}$. If $M-Z(M)=\alpha^{G}$, then $\left|\alpha^{G}\right|=3.7^{k}$ and so $7^{r}=3.7^{k}+7$, which has no solution. If $M-Z(M)=\alpha^{G} \cup \beta^{G}$, then $\left|\alpha^{G}\right|=3.7^{k} \leq\left|\beta^{G}\right|=3.7^{s}$ and hence $7^{r}=3.7^{k}+3.7^{s}+7$, which forces $\left(p^{k}, p^{s}, p^{r}\right)=(7,7,49)$, a contradiction. Finally assume that $k_{G}(Z(M)-\{1\})=1$. We have $|Z(M)|=4$ and M is a 2 -group. Let $|M|=2^{r}$. If $M-Z(M)=\alpha^{G}$, then $\left|\alpha^{G}\right|=3.2^{k}$ and so $2^{r}=3.2^{k}+4$, which forces $\left(p^{k}, p^{r}\right)=(4,16)$. We conclude that there is an element such that its centralizer in G is of order 4. By Lemma 2.3, M is a dihedral, semi-dihedral or generalized quaternion group. This forces $|Z(M)|=2$, a contradiction. In cases $M-Z(M)=\alpha^{G} \cup \beta^{G}$ or $M-Z(M)=\alpha^{G} \cup \beta^{G} \cup \gamma^{G}$, by above discussion, we will have a contradiction. In the third case, we have $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=\left|C_{G}(z)\right|=$ $\left|C_{G}(w)\right|=6$. So $|Z(G)| \leq 3$. First suppose that $|Z(G)|=1$. If $3||M|$, then there is an element $b \in M$ of order 3 and b^{G} is a non-central conjugacy class of G contained in M, a contradiction. Now suppose that $3 \nmid|M|$. Then M is a normal 3-complement of G. Since $\left(\left|\frac{G}{M}\right|,|M|\right)=1$, each element in $G-M$ has order 3. Write $G=H M$, where $H \cong \frac{G}{M}$. It implies that for any element $h \in H-\{1\}, C_{G}(h)=H$. Therefore, G is a Frobenius group with kernel M and abelian complement H such that H is a cyclic group of prime order 3. Since G satisfies property $P_{5}, M \in \operatorname{Syl}_{p}(G)$ and $k_{G}(M-\{1\}) \leq 4$. If M is abelian, then $\frac{|M|-1}{3} \leq 4$ and hence $|M|=4,7$ or 13 . But non of the attaining groups satisfy in this case. Suppose that M is not abelian. Thus $k_{G}(Z(M)-\{1\}) \leq 3$. If $k_{G}(Z(M)-\{1\})=3$, then $|Z(M)|=10$, which is not possible. Now assume that $k_{G}(Z(M)-\{1\})=2$. We have $|Z(M)|=7$ and M is a 7 -group. Let $|M|=7^{r}$. If $M-Z(M)=\alpha^{G}$, then $\left|\alpha^{G}\right|=3.7^{k}$ and so $7^{r}=3.7^{k}+7$, which has no solution. If $M-Z(M)=\alpha^{G} \cup \beta^{G}$, then $\left|\alpha^{G}\right|=3.7^{k} \leq\left|\beta^{G}\right|=3.7^{s}$ and hence $7^{r}=3.7^{k}+3.7^{s}+7$, which forces $\left(p^{k}, p^{s}, p^{r}\right)=(7,7,49)$, a contradiction. Finally assume that $k_{G}(Z(M)-\{1\})=1$. We have $|Z(M)|=4$ and M is a 2 group. If $M-Z(M)=\alpha^{G}$, then $\left|\alpha^{G}\right|=3.2^{k}$. Let $|M|=2^{r}$. Then $2^{r}=3.2^{k}+4$, which forces $\left(p^{k}, p^{r}\right)=(4,16)$. We conclude that there is an element such that its centralizer in G is of order 4. By Lemma 2.3 and above discussion, we will have a contradiction. Now suppose that $|Z(G)|=2$ and $a \in Z(G)$ be of order 2. Since for every $g \in G-M,\left|C_{G}(g)\right|=6$, we have $o(g)=3$ or 6 . If there is an element $h \in G-M$, such that $o(h)=6$, then $a h \notin C_{G}(h)$ and so $C_{G}(h) \subset C_{G}(a h)$. Thus $\left|C_{G}(a h)\right| \geq 12, a h \notin G-M$ and $(a h)^{G}$ is a non-central conjugacy class of G contained in M, a contradiction. Therefore for every $g \in G-M, o(g)=3$. Now since $o(a g)=6$, therefore $(a g)^{G}$ is a non-central
conjugacy class of G contained in M, a contradiction. Finally, suppose that $|Z(G)|=3$ and $a \in Z(G)$ has order 3. Let $\left|G^{\prime} \cap Z(G)\right|=1$ and $1 \neq b \in G^{\prime}$ be of order 2. Then $(a b)^{G}$ is a non-central conjugacy class of G contained in M, this contradicts property P_{5}. Now suppose that $\left|G^{\prime} \cap Z(G)\right|=3$. Thus $Z(G) \leq G^{\prime}$. If $Z(G)=G^{\prime}$, then $|G|=9$, a contradiction. So assume that $Z(G)<G^{\prime}$. Then there is $b \in G^{\prime}-Z(G)$ of order 2 , such that $(a b)^{G}$ is a non-central conjugacy class of G contained in M, a contradiction. Finally, let $\left|\frac{G}{M}\right|=2$. Note that for any $g \in G-M, o(g)$ is even and hence $\left|C_{G}(g)\right|$ is a multiple of 2 . Set $\left|C_{G}(x)\right|=2 a,\left|C_{G}(y)\right|=2 b,\left|C_{G}(z)\right|=2 c$ and $\left|C_{G}(w)\right|=2 d$. Since $k_{G}(G-M)=4$, therefore $\frac{1}{2 a}+\frac{1}{2 b}+\frac{1}{2 c}+\frac{1}{2 d}+\frac{1}{2}=1$. This equality holds for $a=2$ and $b=c=d=6, a=2, b=4$ and $c=d=8$ or $a=b=c=d=4$. In the first and second case, since G possesses an element x with $\left|C_{G}(x)\right|=4$, Lemma 2.3 implies that M is of even order. Also since $|Z(G)|\left|\left|C_{G}(x)\right|,|Z(G)| \leq 2\right.$. If $|Z(G)|=1$, then M contains at least one non-central conjugacy class of G, such that the order of representative of it is 2 , this contradicts property P_{5}. Now suppose that $|Z(G)|=2$ and $a \in Z(G)$ be of order 2 . Let $\left|G^{\prime} \cap Z(G)\right|=1$ and $1 \neq b \in G^{\prime}$. Then $(a b)^{G}$ is a non-central conjugacy class of G contained in M, this contradicts property P_{5}. Now suppose that $\left|G^{\prime} \cap Z(G)\right|=2$. Thus $Z(G) \leq G^{\prime}$. If $Z(G)=G^{\prime}$, then $|G|=4$, which is not possible. So assume that $Z(G)<G^{\prime}$. Then there is $b \in G^{\prime}-Z(G)$, such that $(a b)^{G}$ is a noncentral conjugacy class of G contained in M, a contradiction. In the third case, $\left|C_{G}(x)\right|=\left|C_{G}(y)\right|=\left|C_{G}(z)\right|=\left|C_{G}(w)\right|=8$. Since $|Z(G)|\left|\left|C_{G}(x)\right|\right.$, $|Z(G)|=1,2$ or 4 . Also since $\left|C_{G}(x)\right|||G|,|G|$ is a multiple of 8 . If $| Z(G) \mid=1$, then $M=G^{\prime}$ and M contains at least one non-central conjugacy class of G, such that the order of its representative is 2 , this contradicts property P_{5}. Now assume that $|Z(G)|=2$ and $a \in Z(G)$ be of order 2 . Let $\left|G^{\prime} \cap Z(G)\right|=$ 1. Then there is $1 \neq b \in G^{\prime}$, such that $(a b)^{G}$ is a non-central conjugacy class of G contained in M, this contradicts property P_{5}. Now suppose that $\left|G^{\prime} \cap Z(G)\right|=2$. Thus $Z(G) \leq G^{\prime}$. Now using the argument mentioned before, we get a contradiction. Finally suppose that $|Z(G)|=4$ and $a \in Z(G)$ be of order 2. If $\left|G^{\prime} \cap Z(G)\right|=1$, then there is $1 \neq b \in G^{\prime}$, such that $(a b)^{G}$ is a non-central conjugacy class of G contained in M, which contradicts property P_{5}. Now assume that $\left|G^{\prime} \cap Z(G)\right|=2$. We know that $\left|G^{\prime}\right|$ is a multiple of 2. If $\left|G^{\prime}\right|=2$, then $|G|=8$ and therefore G is isomorphic to D_{8} or Q_{8}. But non of these groups satisfy in this case. So $\left|G^{\prime}\right| \geq 4$ and therefore there is an element $b \in G^{\prime}-Z(G)$, such that $(a b)^{G}$ is a non-central conjugacy class of G contained in M, which contradicts property P_{5}. Finally suppose that $\left|G^{\prime} \cap Z(G)\right|=4$. Thus $Z(G) \leq G^{\prime}$. Using the discussion mentioned before, we get a contradiction again.
5. Suppose that $k_{G}(G-M)=5$. It is easy to see that $\left|\frac{G}{M}\right|=6$. In this case, all elements in each of five non-trivial cosets of M in G are conjugate. Hence they
all have centralizers of order 6 . Let $g \in G$ such that $g M$ generates $\frac{G}{M}$. Then g is of order 6 , and G is a Frobenius group with kernel M and complement $\langle g\rangle$. This implies that $Z(G)=1$ and $M=G^{\prime}$. Since G satisfies property P_{5}, we have $M \in \operatorname{Syl}_{p}(G)$ and $k_{G}(M-\{1\}) \leq 4$. It follows that $\frac{|M|-1}{6} \leq 4$ and hence $|M| \leq 25$. Therefore, G is a Frobenius group with complement of order 6 and kernel $\mathbb{Z}_{7}, \mathbb{Z}_{13}, \mathbb{Z}_{19}$ or $\left(\mathbb{Z}_{5}\right)^{2}$.
6. Finally suppose that $k_{G}(G-M)=6$. It is easy to see that $\left|\frac{G}{M}\right|=6$. In this case, there is an element $g \in G-M$ of order 6 , such that $\left|C_{G}(g)\right|=6$. It implies that g acts fixed point freely on M. Thus G is a Frobenius group with kernel M and complement $\langle g\rangle$. Since G satisfies property P_{5}, we have $M \in \operatorname{Syl}_{p}(G)$ and $k_{G}(M-\{1\}) \leq 4$. It follows that $\frac{|M|-1}{6} \leq 4$ and hence $|M| \leq 25$. Therefore G is a Frobenius group with complement of order 6 and kernel $\mathbb{Z}_{7}, \mathbb{Z}_{13}, \mathbb{Z}_{19}$ or $\left(\mathbb{Z}_{5}\right)^{2}$, but non of these groups satisfy in this case.

Acknowledgements

The authors would like to thank the referee for carefully reading the manuscript and for giving constructive comments which substantially helped improving the quality of the paper.

References

[1] E.A. Bertram, M. Herzog and A. Mann, On a graph related to conjugacy classes of groups, Bull. Lond. Math. Soc. 22 (1990), no. 6, 569-575.
[2] D. Chillag, M. Herzog and A. Mann, On the diameter of a graph related to conjugacy classes of groups, Bull. Lond. Math. Soc. 25 (1993), no. 3, 255-262.
[3] M. Fang and P. Zhang, Finite groups with graphs without triangles, J. Algebra 264 (2003), no. 2, 613-619.
[4] Z. Foruzanfar and Z. Mostaghim, Classification of non-solvable groups with a given property, Proc. Indian Acad. Sci. Math. Sci 125 (2015), no. 1, 29-36.
[5] A. Moreto, G. Qian and W. Shi, Finite groups whose conjugacy class graphs have few vertices, Arch. Math. 85 (2005), no. 2, 101-107.
[6] G. Qian, W. Shi and X. You, Conjugacy classes outside a normal subgroup, Comm. Algebra 32 (2004), no. 12, 4809-4820.
[7] X. You and G. Qian, A new graph related to conjugacy classes of finite groups, (Chinese) Chinese Ann. Math. Ser. A 28 (2007), no. 5, 631-636.
(Mehdi Rezaei) Department of Mathematics, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran.

E-mail address: m_rezaei@bzte.ac.ir;mehdrezaei@gmail.com
(Zeinab Foruzanfar) Department of Engineering Sciences and Physics, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran.

E-mail address: zforouzanfar@gmail.com

[^0]: Article electronically published on 30 November, 2017.
 Received: 27 September 2015, Accepted: 15 October 2016.

 * Corresponding author.

