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HÖLDER CONTINUITY OF SOLUTION MAPS TO A

PARAMETRIC WEAK VECTOR EQUILIBRIUM PROBLEM

P. PREECHASILP∗ AND R. WANGKEEREE

(Communicated by Maziar Salahi)

Abstract. In this paper, by using a new concept of strong convexity, we

obtain sufficient conditions for Hölder continuity of the solution mapping
for a parametric weak vector equilibrium problem in the case where the
solution mapping is a general set-valued one. Without strong monotonic-

ity assumptions, the Hölder continuity for solution maps to parametric
weak vector optimization problems is discussed.
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1. Introduction

Let X and Y be real topological vector spaces, and K a nonempty subset of
X. Let C be a nonempty, closed, and convex cone in Y with nonempty interior,
i.e., intC ̸= ∅. Let f : X ×X → Y be a vector-valued bifunction. The weak
vector equilibrium problem is to find x̄ ∈ K such that

f(x̄, y) /∈ −intC, ∀y ∈ K.

This model was extension and generalization from the equilibrium problem
in [10]. It is well known that the vector equilibrium problem provides a unified
model of several classes of problems, including, vector variational inequality
problems, vector complementarity problems, vector optimization problems, and
vector saddle point problems, so on.

The existence of solutions for weak vector equilibrium problems is the most
popular topics that has been studied intensively and extensively; for example,
see [7, 11, 19]. By the way, when constraint set and/or objective function are
perturbed by parameters, the stability analysis is also interesting topics for
optimization theory. Stability analysis considers the effect of slight change on
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a parameter to the solution of problem, for examples including, lower(upper)
semicontinuity, continuity, and lower(upper) Lipschitz or lower(upper) Hölder
continuity. Hölder stability is one of the most studied topic in the theory of
stability for vector equilibrium problems and related problems (see [1–4,6,8,9,
12,14–18,20–30]).

At first, the Hölder continuity of solution maps to parametric vector equilib-
rium problems depends upon the strong monotonicity assumptions, for example
we refer the reader to [1–3, 8, 9, 23]. Such conditions lead to uniqueness of the
solution and inapplicable for some special cases. In many situations, the so-
lution sets may not be a singleton. Is there a way to avoid the monotonicity
assumptions? In order to answer this problem, Li et al. [16, 18] introduced
Hölder related assumptions and established the Hölder continuity of solutions
to generalized vector (quasi)equilibrium problems. Although, these conditions
do not allow a uniqueness solution it requires have information about a solution
a solution set. Li and Li [17] introduced the concepts of Hölder strongly mono-
tone and Hölder continuous with respect to the interior point of an ordering
cone. By using a linear scalarization technique, they obtained the Hölder con-
tinuity of the set-valued solution sets for parametric weak vector equilibrium
problems in metric spaces. Peng et al. [25] could omit the strong monotonicity
assumption. Based on the linear scalarization technique, they obtained the
Hölder continuity of set-valued approximate solution maps. That means the
Hölder property holds for nearby original solution sets. For more related re-
sults, see [4,26]. Recently, Anh et al., [5] gave the sufficient condition for Hölder
continuity of unique solution mappings to parametric equilibrium problems, by
using the strong convexity assumption. Without strong monotonicity, their re-
sults can be applicable for parametric variational inequality and optimization
problems.

Based on the above literature, the aim of this paper is to establish the Hölder
continuity of solution maps to a parametric weak vector equilibrium problem
without the strong monotonicity assumptions and requirement for information
of solution sets. Inspired by [5, 17], we introduce the new concept of strong
convexity with respect to an interior point in ordering cones and establish the
sufficient conditions for Hölder continuity for set-valued exact solution maps to
a parametric weak vector equilibrium problem, by using a linear scalarization
method. Application to a parametric weak vector optimization problem is also
discussed when strong monotonicity assumptions could omit.

The structure of the paper is as follows. Section 2 presents a parametric
weak generalized vector equilibrium problem and materials used in the rest of
this paper. We establish, in Section 3, a sufficient condition for the Hölder
continuity of the solution mapping to a parametric weak vector equilibrium
problem. We give some examples to illustrate that our main results are dif-
ferent from the corresponding ones in the literature. Section 4 is reserved for
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an application of the main result to a parametric weak vector optimization
problem.

2. Preliminaries

In the sequel, ∥ · ∥ and d(·, ·) denote the norm and metric in any normed
space and metric space, respectively. BX(0, δ) denotes the closed ball with
centre 0 ∈ X and radius δ > 0, int C stands for the interior of C. Throughout
this paper, if not otherwise specified, X,Λ,M will denote three metric spaces
and Y a linear normed space. Let Y ∗ be the topological dual space of Y . For
any ξ ∈ Y ∗, we introduce ∥ξ∥∗ := sup{|⟨ξ, x⟩| : ∥x∥ = 1}, where ⟨ξ, x⟩ denotes
the value of ξ at x. Let C ⊂ Y be a pointed, closed and convex cone with
intC ̸= ∅. Let

C∗ := {ξ ∈ Y ∗ : ⟨ξ, y⟩ ≥ 0, ∀y ∈ C},
be the dual cone of C. Since intC ̸= ∅, the dual cone C∗ of C has a weak*
compact base. Let e ∈ intC. Then,

B∗
e := {ξ ∈ C∗ : ⟨ξ, e⟩ = 1},

is a weak* compact base of C∗.
Let N(λ0) ⊂ Λ and N(µ0) ⊂ M be neighborhoods of considered points λ0

and µ0, respectively. Let K : Λ ⇒ X be a set-valued mapping and f : X ×
X ×M → Y be a vector-valued mapping. For each λ ∈ N(λ0) and µ ∈ N(µ0),
we consider the following parametric weak vector equilibrium problem: Find
x̄ ∈ K(λ) such that

(2.1) f(x̄, y, µ) /∈ −intC, ∀y ∈ K(λ).

For each λ ∈ N(λ0) and µ ∈ N(µ0), the weak solution set of (2.1) is defined
by

SW (λ, µ) := {x ∈ K(λ) : f(x, y, µ) /∈ −intC, ∀y ∈ K(λ)}.
For each ξ ∈ C∗ \ {0}, λ ∈ N(λ0) and µ ∈ N(µ0), the ξ-solution set of (2.1) is
defined by

S(ξ, λ, µ) := {x ∈ K(λ) : ⟨ξ, f(x, y, µ)⟩ ≥ 0, ∀y ∈ K(λ)}.

In this paper, we focus on stability properties of this class of problems, so
we shall always assume that S(ξ, λ, µ) is nonempty in a neighborhood of the
considered point (λ0, µ0). For proving our main result, we will refer to the
following useful result and existence result for the ξ-solution.

We first introduce the new concept of strong convexity with respect to
(w.r.t.) an interior point of an ordering cone C.

Definition 2.1. Let φ : X → Y , B ⊆ X and h, β > 0. A vector-valued
mapping φ is said to be



Hölder continuity of solution maps 1754

(i) C-convex on B, with B being convex if and only if for any x, y ∈ B and
t ∈ (0, 1),

tφ(x) + (1− t)φ(y) ∈ φ(tx+ (1− t)y) + C.

(ii) h.β-strongly C-convex on B w.r.t. e ∈ intC, with B being convex if and
only if for any x, y ∈ X and t ∈ (0, 1),

tφ(x) + (1− t)φ(y) ∈ φ(tx+ (1− t)y) + ht(1− t)dβ(x, y)e+ C.

Remark 2.2. (1) From the previous definition, it is clear that (ii) ⇒ (i).
(2) If for each µ ∈ N(µ0) and x ∈ K(N(λ0)), f(x, ·, µ) satisfies (i) onK(N(λ0))

w.r.t. e ∈ intC, then f(x,K(N(λ0)), µ) + C is a convex set.
(3) In the case where Y = R, C = [0,+∞) and e = 1 ∈ intC = (0,+∞),

Definition 2.1 (ii) is reduced to h.β-strongly C-convex in [5, Definition
2.2].

Lemma 2.3 ([17, Theorem 2.1], [13, Theorem 3.1]). If for each µ ∈ N(µ0)
and x ∈ K(N(λ0)), f(x,K(N(λ0)), µ) + C is a convex set, then

SW (λ, µ) =
∪

ξ∈C∗\{0}

S(ξ, λ, µ) =
∪

ξ∈B∗
e

S(ξ, λ, µ).

Lemma 2.4 ([17, Theorem 2.2]). Suppose that the following conditions hold:

(i) For each µ ∈ N(µ0) and each x ∈ K(N(λ0)), f(x, x, µ) ∈ C;
(ii) For each µ ∈ N(µ0) and each y ∈ K(N(λ0)), f(·, y, µ) is continuous on

K(N(λ0));
(iii) For each x ∈ K(N(λ0)) and each µ ∈ N(µ0), f(x, ·, µ) is C-convex on

K(N(λ0));
(iv) For each λ ∈ N(λ0), K(λ) is a nonempty, compact and convex set.

Then

(a) For each ξ ∈ B∗
e ⊆ C∗ and (λ, µ) ∈ N(λ0)×N(µ0), S(ξ, λ, µ) ̸= ∅.

(b) For each (λ, µ) ∈ N(λ0)×N(µ0), SW (λ, µ) is a nonempty compact set.

Definition 2.5. A vector-valued mapping g : X × X → Y is said to be C-
monotone on S ⊆ X if and only if for any x, y ∈ S,

g(x, y) + g(y, x) ∈ −C.

Definition 2.6 ([17]). For h, β > 0. A vector-valued mapping g : X ×X → Y
is said to be h.β-Hölder strongly monotone w.r.t. e ∈ intC on S ⊂ X if and
only if for any x, y ∈ S with x ̸= y,

g(x, y) + g(y, x) + hdβ(x, y)e ∈ −C.

Remark 2.7. It is clear that Hölder strongly monotone implies monotone but
the converse may not be true. An easy example is that

g(x, y) = h(y)− h(x), ∀x, y ∈ X,
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where h : X → Y , we see that g is C-monotone but not Hölder strongly
monotone. Indeed, for any x, y ∈ X with x ̸= y,

g(x, y) + g(y, x) = (h(y)− h(x)) + (h(x)− h(y)) = 0Y ∈ −C.

In order to obtain Hölder properties for solution maps to a parametric weak
vector equilibrium problem, the Hölder strong monotonicity assumption has
been imposed in [17, Theorem 3.1]. This causes the theorem cannot be applied
to the parametric weak vector optimization problem.

Now, we recall definitions of Hölder continuity for real-valued and vector-
valued mappings, respectively.

Definition 2.8 ([2]). For m,β > 0 and θ ≥ 0. A function f : X×X×M → R
is said to be m.β-Hölder continuous around µ0, θ-uniformly in S ⊂ X if and
only if there is a neighborhood N(µ0) such that for any µ1, µ2 ∈ N(µ0) and
x, y ∈ S with x ̸= y,

|f(x, y, µ1)− f(x, y, µ2)| ≤ mdβ(µ1, µ2)d
θ(x, y).

Now, we further recall the concept of Hölder continuity with respect to
the element in interior of a fixed cone C for vector-valued mappings, which is
generalized from real-valued mappings.

Definition 2.9. For m,β > 0 and θ ≥ 0. A vector-valued mapping f :
X ×X ×M → Y is said to be m.β-Hölder continuous around µ0, θ-uniformly
over a subset S ⊆ X w.r.t. e ∈ intC if and only if there is a neighborhood
N(µ0) of µ0 such that for any µ1, µ2 ∈ N(µ0) and x, y ∈ S with x ̸= y,

f(x, y, µ1) ∈ f(x, y, µ2) + mdθ(x, y)dβ(µ1, µ2)[−e, e],

where [−e, e] := {x : x ∈ e− C and x ∈ −e+ C}.

Remark 2.10. If β = 1, then f is said to be Lipschitz continuity. Note that,
if θ = 0, we say that f is m.β-Hölder continuous around µ0 which was first
introduced in [17, Definition 2.6]. The dependence of x, y helps to sharpen the
Hölder continuity result. In particular, if S is bounded, we can take θ = 0
because d(x, y) ≤ L for some positive real number L for all x, y ∈ S.

Next, we recall the definition of Hölder continuity for general set-valued
mappings.

Definition 2.11 (Classical notation). For l, α > 0, a set-valued mapping G :
(Λ, dΛ) ⇒ (X, dX) is said to be l.α-Hölder continuous around λ0 if and only if
there is a neighborhood N(λ0) of λ0 such that for any λ1, λ2 ∈ N(λ0),

G(λ1) ⊆ G(λ2) + lB(0, dα(λ1, λ2)).
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3. Hölder continuity of solution maps

To obtain the Hölder continuity of the solution mapping around (λ0, µ0), we
assume that there exist neighborhood N(λ0)×N(µ0) of (λ0, µ0) which satisfied
the following assumptions:

(H1) K(·) is l.β-Hölder continuous around µ0 on N(λ0) and has midpoint
convex valued, i.e., for any λ ∈ N(λ0),

x+y
2 ∈ K(λ), ∀x, y ∈ K(λ).

(H2) For each µ ∈ N(µ0), f(·, ·, µ) is C-monotone on K(N(λ0))×K(N(λ0)).
(H3) For each µ ∈ N(µ0) and x ∈ K(N(λ0)), f(x, ·, µ) is n.δ-Hölder continuous

as well as h.α-strongly C-convex w.r.t. e ∈ intC on conv (K(N(λ0))).
(H4) For each x, y ∈ K(N(λ0)), f(x, y, ·) is m.γ-Hölder continuous around µ0

on N(µ0), θ uniformly in K(N(λ0)) w.r.t. e ∈ intC with θ < α.

Remark 3.1. In condition (H1), a convex set is obviously a midpoint convex
set, but converse is not true. An example is that the set of all rational numbers
Q. It can be proved that closed and midpoint convex set is a convex set. Since
the union of convex sets may not be convex, condition (H3) was assumed on
convex hull of union of convex set.

The following two lemmas are useful for proving Hölder properties for the
solution map S(ξ, λ, µ).

Lemma 3.2. Under assumption (H3), the following properties hold:

(i) For each ξ ∈ B∗
e , µ ∈ N(µ0), x ∈ K(N(λ0)) and for each y1, y2 ∈

conv (K(N(λ0)))

|⟨ξ, f(x, y1, µ)⟩ − ⟨ξ, f(x, y2, µ)⟩| ≤ ndδ(y1, y2).

(ii) For each t ∈ (0, 1)

⟨ξ, f (x, ty1 + (1− t)y2, µ)⟩
≤ t ⟨ξ, f (x, y1, µ)⟩+ (1− t) ⟨ξ, f (x, y2, µ)⟩ − t(1− t)dβ(x, y).

Proof. (i) Since f(x, ·, µ) is n.δ-Hölder continuous on conv (K(N(λ0))) w.r.t.
e ∈ intC, for each y1, y2 ∈ conv (K(N(λ0))) and ξ ∈ B∗

e , we get

−ndδ(y1, y2) ≤ ⟨ξ, f(x, y1, µ)⟩ − ⟨ξ, f(x, y2, µ)⟩ ≤ ndδ(y1, y2).

This implies that

|⟨ξ, f(x, y1, µ)⟩ − ⟨ξ, f(x, y2, µ)⟩| ≤ ndδ(y1, y2).

(ii) For each t ∈ (0, 1), it follows from the strong convexity of f that⟨
ξ, f (x, ty1 + (1− t)y2, µ) + t(1− t)dβ(x, y)e

⟩
≤ ⟨ξ, tf (x, y1, µ) + (1− t)f (x, y2, µ)⟩ .

By virtue of linearity of ξ and e ∈ intC, one has

⟨ξ, f (x, ty1 + (1− t)y2, µ)⟩
≤ t ⟨ξ, f (x, y1, µ)⟩+ (1− t) ⟨ξ, f (x, y2, µ)⟩ − t(1− t)dβ(x, y).
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□

Lemma 3.3. Suppose that assumption (H4) is satisfied. Then, for each ξ ∈ B∗
e ,

µ1, µ2 ∈ N(µ0) and x, y ∈ K(N(λ0)) with x ̸= y,

|⟨ξ, f(x, y, µ1)⟩ − ⟨ξ, f(x, y, µ2)⟩| ≤ mdγ(µ1, µ2)d
θ(x, y).

Proof. Now, we show that the conclusion holds. Arguing as in the proof of
Lemma 3.2, for each ξ ∈ B∗

e , we have

−mdγ(µ1, µ2)d
θ(x, y)

≤ ⟨ξ, f(x, y, µ1)⟩ − ⟨ξ, f(x, y, µ2)⟩ ≤ mdγ(µ1, µ2)d
θ(x, y),

that is,

|⟨ξ, f(x, y, µ1)⟩ − ⟨ξ, f(x, y, µ2)⟩| ≤ mdγ(µ1, µ2)d
θ(x, y).

□

We now present the Hölder continuity for the ξ-solution maps to the para-
metric weak vector equilibrium problem (PWVEP).

Lemma 3.4. Assume that for each ξ ∈ B∗
e , the ξ-solution set S(ξ, λ, µ) for

(2.1) exists in a neighborhood N(λ0)×N(µ0) of the considered point (λ0, µ0).
Furthermore, assume that assumptions (H1)-(H4) hold. Then, for any ξ ∈ B∗

e ,
there exist open neighborhoods N ′(ξ̄) of ξ̄, N ′

ξ̄
(λ0) of λ0 and N ′

ξ̄
(µ0) of µ0, such

that, the ξ-solution set S(·, ·, ·) on N ′(ξ̄)×N ′
ξ̄
(λ0)×N ′

ξ̄
(µ0) is a singleton and

satisfies the following condition, for each ξ ∈ N ′(ξ̄) and (λ1, µ1), (λ2, µ2) ∈
N ′

ξ̄
(λ0)×N ′

ξ̄
(µ0):

d(x(ξ, λ1, µ1), x(ξ, λ2, µ2))

≤
(m
h

) 1
α−θ

d
γ

α−θ (µ1, µ2) +

(
2nlδ

h

) 1
α

d
δβ
α (λ1, λ2),(3.1)

where x(ξ, λ1, µ1) ∈ S(ξ, λ1, µ1) and x(ξ, λ2, µ2) ∈ S(ξ, λ2, µ2).

Proof. For any ξ̄ ∈ B∗
e , let N ′(ξ̄) × N ′

ξ̄
(λ0) × N ′

ξ̄
(µ0) ⊆ B∗

e × N(λ0) × N(µ0)

be open (where N ′
ξ̄
(λ0), N

′
ξ̄
(µ0) depend on ξ̄). Obviously, for each (ξ, λ, µ) ∈

N ′(ξ̄)×N ′
ξ̄
(λ0)×N ′

ξ̄
(µ0), S(ξ, λ, µ) is nonempty. First, we want to show that

(3.2) d(x(ξ, λ1, µ1), x(ξ, λ1, µ2)) ≤
(m
h

) 1
α−θ

d
γ

α−θ (µ1, µ2),

for all x(ξ, λ1, µ1) ∈ S (ξ, λ1, µ1) and x(ξ, λ1, µ2) ∈ S (ξ, λ1, µ2).
Since K(λ1) is midpoint convex, one has (x(ξ, λ1, µ1) + x(ξ, λ1, µ2))/2 ∈

K(λ1). Then

(3.3)

⟨
ξ, f

(
x(ξ, λ1, µ2),

x(ξ, λ1, µ1) + x(ξ, λ1, µ2)

2
, µ2

)⟩
≥ 0.
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Thanks to Lemma 3.2(ii), one has

h

4
dα(x(ξ, λ1, µ1), x(ξ, λ1, µ2))

≤ −
⟨
ξ, f

(
x(ξ, λ1, µ2),

x(ξ, λ1, µ1) + x(ξ, λ1, µ2)

2
, µ2

)⟩
+
1

2
⟨ξ, f(x(ξ, λ1, µ2), x(ξ, λ1, µ1), µ2)⟩

+
1

2
⟨ξ, f(x(ξ, λ1, µ2), x(ξ, λ1, µ2), µ2)⟩ .

By virtue of (3.3), we get that

h

2
dα(x(ξ, λ1, µ1), x(ξ, λ1, µ2))

≤ ⟨ξ, f(x(ξ, λ1, µ2), x(ξ, λ1, µ1), µ2)⟩+⟨ξ, f(x(ξ, λ1, µ2), x(ξ, λ1, µ2), µ2)⟩ .

It follows from monotonicity of f that

h

2
dα(x(ξ, λ1, µ1), x(ξ, λ1, µ2))

≤ ⟨ξ, f(x(ξ, λ1, µ2), x(ξ, λ1, µ1), µ2)⟩
≤ − ⟨ξ, f(x(ξ, λ1, µ1), x(ξ, λ1, µ2), µ2)⟩ .(3.4)

Notice that (x(ξ, λ1, µ1) + x(ξ, λ1, µ2))/2 ∈ K(λ1) because of midpoint con-
vexity. Then

(3.5)

⟨
ξ, f

(
x(ξ, λ1, µ1),

x(ξ, λ1, µ1) + x(ξ, λ1, µ2)

2
, µ1

)⟩
≥ 0.

Lemma 3.2(ii) give that

h

4
dα(x(ξ, λ1, µ1), x(ξ, λ1, µ2))

≤ −
⟨
ξ, f

(
x(ξ, λ1, µ1),

x(ξ, λ1, µ1) + x(ξ, λ1, µ2)

2
, µ1

)⟩
+
1

2
⟨ξ, f(x(ξ, λ1, µ1), x(ξ, λ1, µ1), µ1)⟩

+
1

2
⟨ξ, f(x(ξ, λ1, µ1), x(ξ, λ1, µ2), µ1)⟩ .

By virtue of (3.5) we get that

h

2
dα(x(ξ, λ1, µ1), x(ξ, λ1, µ2))

≤ ⟨ξ, f(x(ξ, λ1, µ1), x(ξ, λ1, µ1), µ1)⟩+ ⟨ξ, f(x(ξ, λ1, µ1), x(ξ, λ1, µ2), µ1)⟩ .

It follows from condition (H2) that
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h

2
dα(x(ξ, λ1, µ1), x(ξ, λ1, µ2))

≤ ⟨ξ, f(x(ξ, λ1, µ1), x(ξ, λ1, µ2), µ1)⟩ .(3.6)

Adding (3.4) and (3.6) together with Lemma 3.3, we get that

hdα(x(ξ, λ1, µ1), x(ξ, λ1, µ2))

≤ ⟨ξ, f(x(ξ, λ1, µ1), x(ξ, λ1, µ2), µ1)⟩−⟨ξ, f(x(ξ, λ1, µ1), x(ξ, λ1, µ2), µ2)⟩
≤ mdγ(µ1, µ2)d

θ(x(ξ, λ1, µ1), x(ξ, λ1, µ2)).

Hence, (3.2) holds.
Next, we want to show that for all x(ξ, λ1, µ2) ∈ S(ξ, λ1, µ2) and

x(ξ, λ2, µ2) ∈ S(ξ, λ2, µ2),

(3.7) d(x(ξ, λ1, µ2), x(ξ, λ2, µ2)) ≤
(
4nlδ

h

) 1
α

d
δβ
α (λ1, λ2).

By the definition of S(ξ, λ2, µ2), we have

⟨ξ, f (x(ξ, λ2, µ2), y, µ2)⟩ ≥ 0, ∀y ∈ K(λ2).

By l.β-Hölder continuity of K(·), there exist σ1 ∈ K(λ1) and σ2 ∈ K(λ2) such
that

d(x(ξ, λ2, µ2), σ1) ≤ ldβ(λ1, λ2) and d(x(ξ, λ1, µ2), σ2) ≤ ldβ(λ1, λ2).

Also, we have that

⟨ξ, f(x(ξ, λ1, µ2), σ1, µ2)⟩ ≥ 0 and ⟨ξ, f(x(ξ, λ2, µ2), σ2, µ2⟩ ≥ 0.

Lemma 3.2(ii) implies

1

4
hdα(x(ξ, λ1, µ2), x(ξ, λ2, µ2))(3.8)

≤ −
⟨
ξ, f

(
x(ξ, λ2, µ2),

x(ξ, λ2, µ2) + x(ξ, λ1, µ2)

2
, µ2

)⟩
+

1

2
⟨ξ, f(x(ξ, λ2, µ2), x(ξ, λ2, µ2), µ2)⟩

+
1

2
⟨ξ, f(x(ξ, λ2, µ2), x(ξ, λ1, µ2), µ2)⟩.

In view of C-monotonicity of f , one has

⟨ξ, f(x(ξ, λ2, µ2), x(ξ, λ2, µ2), µ2)⟩ = 0,

and

⟨ξ, f(x(ξ, λ2, µ2), x(ξ, λ1, µ2), µ2)⟩ ≤ −⟨ξ, f(x(ξ, λ1, µ2), x(ξ, λ2, µ2), µ2)⟩.
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It follows from (3.8) that

1

4
hdα(x(ξ, λ1, µ2), x(ξ, λ2, µ2))(3.9)

≤ −1

2
⟨ξ, f(x(ξ, λ1, µ2), x(ξ, λ2, µ2), µ2)⟩

−
⟨
ξ, f

(
x(ξ, λ2, µ2),

x(ξ, λ2, µ2) + x(ξ, λ1, µ2)

2
, µ2

)⟩
.

Since σ1 ∈ K(λ1), we have that

(3.10) ⟨ξ, f(x(ξ, λ1, µ2), σ1, µ2)⟩ ≥ 0.

And since x(ξ,λ2,µ2)+σ2

2 ∈ K(λ2), we also have

(3.11)

⟨
ξ, f

(
x(ξ, λ2, µ2),

x(ξ, λ2, µ2) + σ2

2
, µ2

)⟩
≥ 0.

Then, by (3.9), (3.10) and (3.11) we see that

1

4
hdα(x(ξ, λ1, µ2), x(ξ, λ2, µ2))

≤ −1

2
⟨ξ, f(x(ξ, λ1, µ2), x(ξ, λ2, µ2), µ2)⟩

−
⟨
ξ, f

(
x(ξ, λ2, µ2),

x(ξ, λ2, µ2) + x(ξ, λ1, µ2)

2
, µ2

)⟩
+

1

2
⟨ξ, f(x(ξ, λ1, µ2), σ1, µ2)⟩

+

⟨
ξ, f

(
x(ξ, λ2, µ2),

x(ξ, λ2, µ2) + σ2

2
, µ2

)⟩
=

1

2
[⟨ξ, f(x(ξ, λ1, µ2), σ1, µ2)⟩ − ⟨ξ, f(x(ξ, λ1, µ2), x(ξ, λ2, µ2), µ2)⟩]

+

[⟨
ξ, f

(
x(ξ, λ2, µ2),

x(ξ, λ2, µ2) + σ2

2
, µ2

)⟩

−
⟨
ξ, f

(
x(ξ, λ2, µ2),

x(ξ, λ2, µ2) + x(ξ, λ1, µ2)

2
, µ2

)⟩]
.

Thanks to 3.2(i), one has

1

4
hdα(x(ξ, λ1, µ2), x(ξ, λ2, µ2))

≤ 1

2
ndδ(σ1, x(ξ, λ2, µ2)) +

1

2
ndδ(σ2, x(ξ, λ1, µ2))

≤ 1

2
nlδdδβ(λ1, λ2) +

1

2
nlδdδβ(λ1, λ2)

= nlδdδβ(λ1, λ2).
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Hence,

d(x(ξ, λ1, µ2), x(ξ, λ2, µ2)) ≤
(
4nlδ

h

) 1
α

d
δβ
α (λ1, λ2).

Finally, we are ready to finish the proof. It follows from (3.2) and (3.7) that

d(x(ξ, λ1, µ1), x(ξ, λ2, µ2))

≤ d(x(ξ, λ1, µ1), x(ξ, λ1, µ2)) + d(x(ξ, λ1, µ2), x(ξ, λ2, µ2))

≤
(m
h

) 1
α−θ

d
γ

α−θ (µ1, µ2) +

(
4nlδ

h

) 1
α

d
δβ
α (λ1, λ2).

Taking λ2 = λ1 and µ2 = µ1 in the last inequality, we can get the diameter of
S(ξ, λ1, µ1) is 0, i.e., the solution map of (PWVEP) is singleton in N(λ0) ×
N(µ0). □

Remark 3.5. The estimation (3.1) indicates the solution mapping S(ξ, λ, µ)
satisfies the Hölder property around (λ0, µ0). If γ/(α− θ) = 1 and δβ/α = 1,
we say that S(ξ, λ, µ) satisfies Lipschitz property around (λ0, µ0).

The following example shows that the midpoint convexity of K is essential.

Example 3.6. Let X = R, Y = R2, C = R2
+, e = (1, 1) ∈ intC, Λ = M =

[0, 1], K(λ) = [−1,−λ] ∪ [λ, 1] and f(x, y, λ) =
(
λ(y2 − x2), 0

)
. We see that

K(Λ) = [−1, 1] which is convex. Clearly, for each λ ∈ [0, 1], K(·) is 1.1-Hölder
continuous; for each λ ∈ [0, 1], f(·, ·, λ) is C-monotone on [−1, 1]× [−1, 1]; for
each λ ∈ [0, 1] and each x ∈ [−1, 1], f(x, ·, µ) is 2.1-Hölder continuous and
1.2-strongly C-convex w.r.t. e = (1, 1) ∈ intC; for each x, y ∈ [−1, 1], f(x, y, ·)
is 2.1-Hölder continuous w.r.t. e = (1, 1) ∈ intC. Then, all assumptions
in Lemma 3.4 are satisfied, except K(λ) has convex valued for all λ ∈ [0, 1].
Putting ξ ≡ (1, 0), by direct computations, we see that

S(ξ, λ) =

{
[0, 1], if λ = 0,

{−λ, λ}, if λ ̸= 0.

Hence, S(ξ, ·) is not lower semicontinuous at λ̄ = 0. The reason is that K(λ)
is not convex for all λ ∈ (0, 1].

Theorem 3.7. Assume that for each ξ ∈ B∗
e , the ξ-solution set S(ξ, λ, µ)

for (2.1) exists in a neighborhood N(λ0) × N(µ0) of the considered point
(λ0, µ0). Furthermore, assume that assumptions (H1)-(H4) hold. If for each
x ∈ K(N(λ0)) and µ ∈ N(µ0), f(x,K(N(λ0)), µ) + C is a convex set, then

there exist neighborhoods Ñ(λ0) of λ0 and Ñ(µ0) of µ0, such that, the weak

solution set SW (·, ·) on Ñ(λ0)× Ñ(µ0) is nonempty and satisfies the following
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condition, for each (λ1, µ1), (λ2, µ2) ∈ Ñ(λ0)× Ñ(µ0):

SW (λ1, µ1) ⊂ SW (λ2, µ2)(3.12)

+

((m
h

) 1
α−θ

d
γ

α−θ (µ1, µ2) +

(
4nlδ

h

) 1
α

d
δβ
α (λ1, λ2)

)
B(0, 1).

Proof. For system of {N ′(ξ̄)}ξ̄∈B∗
e
, which are given by Lemma 3.4, we have

B∗
e ⊆

∪
ξ̄∈B∗

e
N ′(ξ̄). Since B∗

e weak∗-compact set, there exists {ξ1, ξ2, . . . , ξk} ⊂
B∗

e such that

(3.13) B∗
e ⊂

k∪
i=1

N ′(ξi).

We put Ñ(λ0) := ∩k
i=1N

′
ξi
(λ0) and Ñ(µ0) := ∩k

i=1N
′
ξi
(µ0). Then Ñ(λ0) and

Ñ(µ0) are desired neighborhoods of λ0 and µ0, respectively. Let (λ, µ) ∈
Ñ(λ0)× Ñ(µ0) be given arbitrarily. For any ξ ∈ B∗

e , by virtue of (3.13), there
exists i0 ∈ {1, 2, . . . , k} such that ξ ∈ N ′(ξi0). From the construction of the

neighborhoods Ñ(λ0) and Ñ(µ0), one has (λ, µ) ∈ N ′
ξi0

(λ0) × N ′
ξi0

(µ0). It

follows from Lemma 3.4 that the ξ-solution S(ξ, λ, µ) is a nonempty singleton
set. By Lemma 2.3, SW (λ, µ) = ∪ξ∈B∗

e
S(ξ, λ, µ) is nonempty. We show that

(3.12) holds. Indeed, taking any (λ1, µ1), (λ2, µ2) ∈ Ñ(λ0) × Ñ(µ0), we need
to show that for any x1 ∈ SW (λ1, µ1), there exists x2 ∈ SW (λ2, µ2) such that

(3.14) d(x1, x2) ≤
(m
h

) 1
α−θ

d
γ

α−θ (µ1, µ2) +

(
4nlδ

h

) 1
α

d
δβ
α (λ1, λ2).

Since x1 ∈ SW (λ1, µ2) =
∪

ξ∈B∗
e
S(ξ, λ1, µ1), there exists ξ̄ ∈ B∗

e such that

x1 := x(ξ̄, λ1, µ1) ∈ S(ξ̄, λ1, µ1).

By (3.13), there exists i0 ∈ {1, 2, . . . , k} such that ξ̄ ∈ N ′(ξi0). Thus, by the

construction of the neighborhoods Ñ(λ0) and Ñ(µ0), we have

(λ1, µ1), (λ2, µ2) ∈ Nξi0
(λ0)×Nξi0

(µ0).

Then, it follows from Lemma 3.4 that

d(x(ξ̄, λ1, µ1), x(ξ̄, λ2, µ2))

≤
(m
h

) 1
α−θ

d
γ

α−θ (µ1, µ2) +

(
4nlδ

h

) 1
α

d
δβ
α (λ1, λ2).

Putting x2 = x(ξ̄, λ2, µ2) ∈ S(ξ̄, λ2, µ2), then (3.14) holds.
□

Remark 3.8. If K(N(λ0)) in (H4) of Theorem 3.7 is bounded, then we can
take θ = 0 because d(x, y) ≤ L for some L > 0 for all x, y ∈ K(N(λ0)).
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Then, the condition α > θ can be removed and we have that, for each (λ1, µ1),

(λ2, µ2) ∈ Ñ(λ0)× Ñ(µ0):

SW (λ1, µ1) ⊂ SW (λ2, µ2)

+

((m
h

) 1
α
d

γ
α (µ1, µ2) +

(
4nlδ

h

) 1
α

d
δβ
α (λ1, λ2)

)
B(0, 1).

Remark 3.9. Theorem 3.7 adapts the corresponding results of Li and Li [17] in
the following two aspects.

(i) The strong Hölder monotonicity assumption (H1) in [17, Theorem 3.1] is
relaxed to the monotonicity assumption (H2) in Theorem 3.7.

(ii) The assumption (H4) in [17, Theorem 3.1] is omitted.

In order to obtain the Hölder continuity for the solution map to a paramet-
ric weak vector equilibrium problem, the strong convexity (H3) was assumed.
However, the advantages of our results is that we can derive the Hölder conti-
nuity of a solution mapping to a parametric weak vector optimization problem
(see Section 4).

The following example give some situations that Theorem 3.7 is applicable
while [17, Theorem 3.1] is not.

Example 3.10. Let X = R, Y = R2, C = R2
+, e = (1, 1) ∈ intC, Λ = M =

[0, 1]. Define K(λ) := {(x1, x2) ∈ [0, 2]× [0, 2] : x1 + x2 ≥ 1 + λ} and

f(x, y, λ) = (1 + λ)
(
(y21 − x2

1), (y
2
2 − x2

2)
)
.

Direct computations show that K(Λ) = K(0) which is convex. Obviously,
for each λ ∈ Λ, K(·) is 1.1-Hölder continuous with convex valued; for each
λ ∈ [0, 1] and each x ∈ K(0), f(x, ·, λ) is 4.1-Hölder continuous and 1.2-strongly
C-convex w.r.t. e = (1, 1) ∈ intC on K(0); for each x, y ∈ K(0), f(x, y, ·) is
4.1-Hölder continuous on [0, 1], 1 uniformly on K(0) w.r.t. e = (1, 1) ∈ intC.
Assumption (H2) is clear. So all assumptions of Theorem 3.7 hold. Then,
Theorem 3.7 is applicable. However, for each x, y ∈ K(0) and λ ∈ [0, 1],

f(x, y, λ) + f(y, x, λ)

= (1 + λ)
(
(y21 − x2

1) + (x2
1 − y21), (y

2
2 − x2

2) + (x2
2 − y22)

)
= 0 ∈ −C,

which implies that f is not strongly monotone in the sense of Li and Li [17] and
so [17, Theorem 3.1] is not applicable. It follows from the direct computations
that

SW (λ) = A(λ) ∪ V (λ) ∪H(λ),

where A(λ) := {(x1, x2) ∈ [0, 2]× [0, 2] : x1 + x2 = 1 + λ}, V (λ) = {(0, v) : v ∈
[1 + λ, 2]} and H(λ) = {(h, 0) : h ∈ [1 + λ, 2]}.
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4. Application

Since the parametric weak vector equilibrium problem contains the paramet-
ric weak vector otimization problem, we can derive from Theorem 3.7 direct
consequences.

Let g : X × M → Y be a vector valued mapping. For each µ ∈ M , the
parametric weak optimization problem is to find x̄ ∈ K(λ) such that

(4.1) g(y, µ)− g(x̄, µ) /∈ −intC, ∀y ∈ K(λ).

Setting

(4.2) f(x, y, µ) = g(y, µ)− g(x, µ),

then the parametric weak optimization problem becomes a special case of the
parametric weak equilibrium problem.

For each µ ∈ M , the efficient solution set of (4.1) is denoted by

SO(λ, µ) := {x ∈ K(λ) : g(y, µ)− g(x, µ) /∈ −intC, ∀y ∈ K(λ)}.

The ξ-efficient solution set of (4.1) is

SO(ξ, λ, µ) := {x ∈ K(λ) : ξ(g(y, µ)) ≥ ξ(g(x, µ)), ∀y ∈ K(λ)} .

We directly obtain the following corollary from Theorem 3.7.

Corollary 4.1. Assume that for each ξ ∈ B∗
e , the ξ-solution set SO(ξ, λ, µ) for

(4.1) exists in a neighborhood N(λ0)×N(µ0) of the considered point (λ0, µ0).
Furthermore, assume that the following conditions hold.

(O1) K(·) is l1.β1-Hölder continuous around µ0 on N(λ0) and has midpoint
convex valued.

(O2) For each µ ∈ N(µ0) and x ∈ K(N(λ0)), g(·, µ) is n1.δ1-Hölder continuous
as well as h1.α1-strongly C-convex w.r.t. e ∈ intC on conv (K(N(λ0))).

(O3) For each x ∈ K(N(λ0)), g(x, ·) is m1.γ1-Hölder continuous around µ0 on
N(µ0), θ1 uniformly in K(N(λ0)) w.r.t. e ∈ intC with θ1 < α1.

If for each µ ∈ N(µ0), g(K(N(λ0)), µ) + C is convex set, then there exist

neighborhoods Ñ(λ0) of λ0 and Ñ(µ0) of µ0, such that, the solution set SO(·, ·)
on Ñ(λ0) × Ñ(µ0) is singleton and satisfies the following condition, for each

(λ1, µ1), (λ2, µ2) ∈ Ñ(λ0)× Ñ(µ0):

SO(λ1, µ1) ⊂ SO(λ2, µ2)

+

((
m1

h1

) 1
α1−θ1

d
γ1

α1−θ1 (µ1, µ2) +

(
4n1lδ1

h1

) 1
α1

d
δ1β1
α1 (λ1, λ2)

)
B(0, 1).

Proof. Setting f as in (4.2), we see that assumptions (H1) and (H2) are ob-
viously fulfilled. It sufficies to show that (H3) and (H4) are satisfied. Indeed,
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for any x ∈ K(N(λ0)), µ ∈ N(µ0), y1, y2 ∈ conv (K(N(λ0))) and t ∈ (0, 1), we
have

f(x, (1− t)y1 + ty2, µ)− (1− t)f(x, y1, µ)− tf(x, y2, µ) + h1t(1− t)dβ1(y1, y2)

= g((1− t)y1 + ty2, µ)− g(x, µ)− (1− t)g(y1, µ) + (1− t)g(x, µ)

− tg(y2, µ) + tg(x, µ) + h1t(1− t)dβ1(y1, y2)

= g((1− t)y1 + ty2, µ)− (1− t)g(y1, µ)− tg(y2, µ)

+ h1t(1− t)dβ1(y1, y2) ∈ C.

It is not hard to verify the Hölder continuity (H3), in fact,

f(x, y1, µ)− f(x, y2, µ) = g(y1, µ)− g(x, µ)− g(y2, µ) + g(x, µ)

= g(y1, µ)− g(y2, µ) ∈ n1d
δ1(y1, y2)[−e, e].

Hence (H3) is fulfilled. Finally, we need to check (H4) is satisfied. For any
µ1, µ2 ∈ N(µ0) and x, y ∈ K(N(λ0)) with x ̸= y,

f(x, y, µ1)− f(x, y, µ2) = g(y, µ1)− g(x, µ1)− g(y, µ2) + g(x, µ2)

= (g(y, µ1)− g(y, µ2)) + (g(x, µ2)− g(x, µ1))

= 2m1d
γ1(µ1, µ2)[−e, e].

Hence, (H4) is satisfied with m = 2m1 and θ = 0. □

5. Conclusions

In this paper, we consider a parametric weak vector equilibrium problem in
the case of the solution mapping is general set-valued. By using a linear scalar-
ization technique, we establish sufficient conditions for the Hölder continuity
of the set-valued mapping for the weak vector equilibrium problem under the
assumptions of strong convexity and Hölder continuity with respect to an inte-
rior point of a fixed cone. As an application, we derive this Hölder continuity
of solution maps to parametric weak vector optimization problems.
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[1] L.Q. Anh and P.Q. Khanh, On the Hölder continuity of solutions to multivalued vector
equilibrium problems, J. Math. Anal. Appl. 321 (2006) 308–315.

[2] L.Q. Anh and P.Q. Khanh, Uniqueness and Hölder continuity of solution to multivalued
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