ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 6, pp. 1811-1820

Title: Defining relations of a group $\Gamma = G^{3,4}(2, Z)$ and its action on real quadratic field Author(s):

M. Ashiq, T. Imran and M.A. Zaighum

Published by the Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 43 (2017), No. 6, pp. 1811–1820 Online ISSN: 1735-8515

DEFINING RELATIONS OF A GROUP $\Gamma = G^{3,4}(2,Z)$ AND ITS ACTION ON REAL QUADRATIC FIELD

M. ASHIQ*, T. IMRAN AND M.A. ZAIGHUM

(Communicated by Ali Reza Ashrafi)

ABSTRACT. In this paper, we have shown that the coset diagrams for the action of a linear-fractional group Γ generated by the linear-fractional transformations $r: z \to \frac{z-1}{z}$ and $s: z \to \frac{-1}{2(z+1)}$ on the rational projective line is connected and transitive. By using coset diagrams, we have shown that $r^3 = s^4 = 1$ are defining relations for Γ . Furthermore, we have studied some important results for the action of group Γ on real quadratic field $Q(\sqrt{n})$. Also, we have classified all the ambiguous numbers in the orbit.

Keywords: Coset diagrams, modular group, linear-fractional transformations, real quadratic field, ambiguous numbers. MSC(2010): Primary: 20F05; Secondary: 20G40, 20G15.

1. Introduction

It is well known [4,6,7] that the modular group PSL(2, Z), where Z is the ring of integers, is generated by the linear-fractional transformations $x: z \longrightarrow \frac{-1}{z}$ and $y: z \longrightarrow \frac{z-1}{z}$ which satisfy the relations:

(1.1)
$$x^2 = y^3 = 1.$$

The group Γ is a proper subgroup of the modular group PSL(2, Z), that is, it contains linear-fractional transformations of the form:

(1.2)
$$z \to \frac{az+b}{cz+d}$$

where $a, b, c, d \in Z$ and ad - bc = 1 or 2. Specifically, the linear-fractional transformations of Γ are $r : z \to \frac{z-1}{z}$ and $s : z \to \frac{-1}{2(z+1)}$ which satisfy the relations:

(1.3)
$$r^3 = s^4 = 1$$

©2017 Iranian Mathematical Society

Article electronically published on 30 November, 2017. Received: 7 April 2016, Accepted: 21 October 2016.

^{*}Corresponding author.

¹⁸¹¹

The group Γ^* is the group of transformations of the form:

(1.4)
$$z \to \frac{az+b}{cz+d}$$
.

If t is the transformation $z \mapsto \frac{z+3}{4z-1}$ so that it belongs to Γ^* and not to Γ , then r, s, t satisfy:

(1.5)
$$r^3 = s^4 = t^2 = (rt)^2 = (st)^2 = 1.$$

Once we show that (1.3) are the defining relations of Γ , it is obvious that the relations (1.5) are defining relations for Γ^* . Let $PL(F_q)$ denote the projective line over the finite field F_q , where q is a prime power. The points of $PL(F_q)$ are the elements of F_q together with the additional point ∞ , i.e., $PL(F_q) = F_q \cup \{\infty\}$.

A number is said to be square free if its prime decomposition contains no repeated factors. All primes are therefore trivially square free. The algebraic integer of the form $a + b\sqrt{n}$, where n is square free, forms a quadratic field and is denoted by $Q(\sqrt{n})$. If n > 0, the field is called real quadratic field, and if n < 0, it is called an imaginary quadratic field. The integers in $Q(\sqrt{1})$ are simply called the integers [5]. Consider a subset $Q^*(\sqrt{n}) = \{\frac{a+\sqrt{n}}{c} : a, c \in Z, c \neq 0 \ b = \frac{a^2-n}{c}, (a, b, c) = 1\}$ of $Q(\sqrt{n})$. For a fixed non-square positive integer n, if the real quadratic irrational number $\beta = \frac{a+\sqrt{n}}{c}$ and its algebraic conjugate $\overline{\beta} = \frac{a-\sqrt{n}}{c}$ have different signs, such β is known as an ambiguous number [3, 4]. They play an important role in classifying the orbits of group Γ on $Q(\sqrt{n})$. If β and $\overline{\beta}$ are both positive (negative), β is called a totally positive (negative) number. In the action of Γ on $Q(\sqrt{n})$, $Stab_{\beta}(\Gamma)$ are the on non-trivial stabilizers and in the orbit $\Gamma(\beta)$). We have also classified all the ambiguous numbers in the orbit.

2. Coset diagrams

Let G be a group generated by the elements $g_1, g_2, g_3, \ldots, g_k$ acting on a set S. Then the elements of S may be represented by the vertices of a diagram, with edge of 'colour j' directed from vertex e to vertex f whenever $eg_j = f$.

$$y \mapsto eg_j = f_j$$

The resulting diagram is a graph whose vertices can be identified with the right cosets in G of the stabiliser N of any given point of S. Hence an edge of 'colour j' joins the coset Nh to the coset Nhg_j , for each h in G, and the resulting diagram is called a *coset diagram*.

This is very similar to the notion of a Schreier's coset graph whose vertices represent the cosets of any given subgroup in a finitely-generated group, and also to that of a Cayley graph whose vertices are the group elements themselves [1,2], with trivial stabilizer.

Ashiq, Imran and Zaighum

We use coset diagrams for the group Γ^* and study its action on the projective line over finite field $PL(F_q)$, where q is a prime power. The coset diagrams defined for the actions of Γ^* are special in a number of ways [4]. First, they are defined for a particular group, namely, Γ^* , which has a presentation in terms of three generators t, r and s. Since there are only three generators, it is possible to avoid using colours as well as the orientation of edges associated with the involution t. For r having order 3 and s having order 4, there is a need to distinguish r from r^2 and also s from s^2 and s^3 . The three cycles (clockwise) of the transformation r are denoted by three green (unbroken) edges of a r-triangle and the four cycles (anti-clockwise) of the transformation s are denoted by four black (broken) edges of a s-square. The action of t is depicted by the symmetry about vertical axis. Fixed points of t, r and s, if they exist, are denoted by heavy dots. For example, the following diagram depicts a permutation representation of Γ^* on twelve points in which:

r acts as:	$(1\ 0\ \infty)(2\ 6\ 10)(3\ 8\ 5)(4\ 9\ 7)$
s acts as:	$(0\ 5\ 10\ \infty)(1\ 8\ 3\ 4)(2\ 9\ 6\ 7)$, and
t acts as:	$(0\ 3)(1\ 10)(2\ 6)(4\ \infty)(5\ 8)(7)(9)$

FIGURE 1. Action of Γ^* on $PL(F_{12})$

3. Observations

- (i) If z ≠ 1,0,∞ then of the vertices z, r(z), r²(z) of a r-triangle, in a coset diagram for the action of Γ on any subset of the real projective line, one vertex is negative and two are positive.
- (ii) If $z \neq -1/2, -1, 0, \infty$ then of the vertices $z, s(z), s^2(z), s^3(z)$ of a s-square, in a coset diagram for the action of Γ on any subset of the real projective line, one vertex is positive and three are negative.
- (iii) Let $z = \pm \frac{m}{n}$ where m, n are positive integers with no common factor. For $z \neq 0, \infty$ we define $||z|| = \max(|m|, |n|)$, then

1813

FIGURE 2.

FIGURE 3. Representation of s

(a) If z is positive, then ||z|| < ||s(z)||, $||z|| < ||s^2(z)||$ and $||z|| < ||s^3(z)||$.

(b) If z is negative with n < 0, then ||z|| < ||r(z)|| and $||z|| < ||r^2(z)||$.

- (iv) Let $\beta = \frac{a+\sqrt{n}}{c}$ be a totally positive quadratic number, then $\beta\overline{\beta} = \frac{a^2-n}{c^2} > 0$ implying that $\frac{b}{c} > 0$. Therefore, either b, c > 0 or b, c < 0. if b, c > 0, then as $\frac{a-\sqrt{n}}{c} > 0$ implies $a \sqrt{n} > 0$ or $a > \sqrt{n}$ and so a > 0. Now if b, c < 0, then as $\frac{a+\sqrt{n}}{c} > 0$ implies $a + \sqrt{n} < 0$ or $a < -\sqrt{n}$ and so a < 0. Now if b, c < 0, then as $\frac{a+\sqrt{n}}{c} > 0$ implies $a + \sqrt{n} < 0$ or $a < -\sqrt{n}$ and so a < 0. Now if b, c < 0, then as $\frac{a+\sqrt{n}}{c} > 0$ implies $a + \sqrt{n} < 0$ or $a < -\sqrt{n}$ and so a < 0. Thus β is a totally positive quadratic number either a, b, c > 0 or a, b, c < 0. (v) Let $\beta = \frac{a+\sqrt{n}}{c}$ be a totally negative quadratic number, then β and
- (v) Let $\beta = \frac{a+\sqrt{n}}{c}$ be a totally negative quadratic number, then β and $\overline{\beta}$ both are negative. Thus, $\beta\overline{\beta} = \frac{a^2-n}{c^2} > 0$ implying that $\frac{b}{c} > 0$. Therefore, either b, c > 0 or b, c < 0. If b, c > 0, then as $\frac{a+\sqrt{n}}{c} < 0$ but c > 0. Thus $a + \sqrt{n} < 0$ or $a < -\sqrt{n}$ and so a < 0. Now if b, c < 0, then as $\frac{a-\sqrt{n}}{c} < 0$ but c < 0. Thus $a - \sqrt{n} > 0$ or $a > \sqrt{n}$ and so a > 0. This proves that β is a totally negative quadratic number either a < 0 and b, c > 0 or a > 0 and b, c < 0.
- (vi) Let $\beta = \frac{a+\sqrt{n}}{c}$ be an ambiguous number, then β and $\overline{\beta}$ both have opposite signs. Therefore $\beta\overline{\beta} = \frac{a^2-n}{c^2} < 0$ implying that $\frac{b}{c} < 0$ and so

b and c have different signs and so bc < 0. Thus α is an ambiguous number if bc < 0.

4. Main Results

Theorem 4.1. The coset diagrams for the action of the group Γ on the rational projective line is connected.

Proof. To prove this we need only to show that for any rational number z there is a path joining z to ∞ .

Let $z = z_{\circ} = \frac{m}{n}$ be a positive rational number. Then $s^{i}(z_{\circ}) = \frac{-n}{(m+n)}$ and $\frac{-(m+n)}{m}$ for i = 1, 2 or 3. Then, by observation (iii), $||s(z_{\circ})|| = (m+n)$ and $||s^{2}(z_{\circ})|| = (m+n)$, so, $||s^{i}(z_{\circ})|| > ||z_{\circ}||$ for i = 1, 2 or 3 respectively. Similarly, if $z_{\circ} = \frac{m}{n}$ is a negative rational number with n < 0, then $r^{j}(z_{\circ}) = \frac{m-n}{m}$ and $\frac{-m}{m-n}$ for j = 1 or 2 respectively. That is $||r(z_{\circ})|| = (m-n)$ and $||r^{2}(z_{\circ})|| = (m-n)$. Hence $||r^{j}(z_{\circ})|| > ||z_{\circ}||$ for j = 1 or 2.

If z_{\circ} is positive then one of $r^{i}(z_{\circ})$ is negative. If we let this negative number to be z_{1} then $||z_{\circ}|| > ||z_{1}||$. As z_{1} is negative one of $s^{i}(z_{1})$ is positive. Let it be z_{2} , that is, $z_{2} = s^{i}(z_{1})$ where i = 1, 2 or 3. This implies that $||z_{1}|| > ||z_{2}||$. If we continue in this way, we obtain a unique alternating sequence of positive and negative rational numbers $z_{\circ}, z_{1}, z_{2}, \ldots$ such that $||z_{\circ}|| > ||z_{1}|| > ||z_{2}|| \ldots$

The decreasing sequence of positive integers must terminate, and it can terminate only because ultimately the directed path leads us to a *r*-triangle with the vertices $1, 0, \infty$ or *s*-square with the vertices $-1, 1, 0, \infty$.

An alternating sequence of positive and negative rational numbers $z_{\circ}, z_1, z_2, \ldots$ such that $||z_{\circ}|| > ||z_1|| > ||z_2|| > \cdots$ shows that there is a directed graph joining z_{\circ} to ∞ . This implies that every rational number occurs in the diagram and that the diagram for the action of Γ on the rational projective line is connected.

Theorem 4.2. The coset diagrams for the action of $\Gamma = G^{3,4}(2, Z)$ on the rational projective line is transitive.

Proof. We shall prove the transitivity of this action, by showing that, if there is a path from a rational number u to a rational number v then there exists some w in Γ such that uw = v.

As we have shown in Theorem 4.1 that there exists a path joining z_0 to ∞ , that is, there exists an element $w_1 = r^{\alpha_1} s^{\delta_1} r^{\alpha_2} s^{\delta_2} r^{\alpha_3} s^{\delta_3} \cdots r^{\alpha_m} s^{\delta_m}$ of Γ such that $\infty = uw_1 = u(r^{\alpha_1} s^{\delta_1} r^{\alpha_2} s^{\delta_2} r^{\alpha_3} s^{\delta_3} \cdots r^{\alpha_m} s^{\delta_m})$ where $\alpha_i = 0, 1$ or 2 for $i = 1, 2, \ldots, m$ and $\delta_j = 0, 1, 2$ or 3, where $j = 1, 2, \ldots, m$. Similarly we can find another element w_2 in Γ such that $\infty = vw_2$. Hence $uw_1 = vw_2$ or $uv_1v_2^{-1} = s$. That is, the action of Γ on the rational projective line is transitive. \Box

Theorem 4.3. $r^3 = s^4 = 1$ are defining relations for $\Gamma = G^{3,4}(2, Z)$.

1815

FIGURE 4. Defining relations of Γ

Proof. Suppose $r^3 = s^4 = 1$ are not defining relations of Γ . Then there is a relation of the form $r^{\alpha_1}s^{\delta_1}r^{\alpha_2}s^{\delta_2}r^{\alpha_3}s^{\delta_3}\cdots r^{\alpha_m}s^{\delta_m} = 1$ where $m \ge 1$, $\alpha_i = 1$ or 2, $\delta_j = 1, 2$ or 3 and $i, j = 1, 2, \ldots, m$. We know that neither r nor s can be 1.

The coset diagram (Figure 4) depicts that it does not contain any closed path [7]. For if it contains a closed path and z_1, z_2, \ldots, z_m are the vertices of the triangles in the diagram such that $z_0 > 0$, then this leads to a contradiction $||z_0|| > ||z_1|| \cdots > ||z_m|| > ||z_0||$. So the coset diagram (Figure 4) does not contain any closed path.

This shows that there are points in the diagram whose 'distance' from the point ∞ is arbitrarily large. Choose z > 0, so that the 'distance' from the point z to the point ∞ is greater than m. Define $z_i = r^{\alpha_1} s^{\delta_1} r^{\alpha_2} s^{\delta_2} r^{\alpha_3} s^{\delta_3} \cdots r^{\alpha_j} s^{\delta_j}(z)$ where $i, j = 1, 2, \ldots, m$. Then $||z_0|| > ||z_1|| > \cdots > ||z_m||$ and in particular

FIGURE 5. Connection of r and s

TABLE 1. Actions of r on β

β	a	b	c
r(eta)	b-a	-2a+b+c	b
$r^2(eta)$	-a+c	С	-2a+b+c

 $z_m \neq z_{\circ}$. Thus $r^{\alpha_1}s^{\delta_1}r^{\alpha_2}s^{\delta_2}r^{\alpha_3}s^{\delta_3}\cdots r^{\alpha_m}s^{\delta_m}(z) \neq 1$ and so $r^3 = s^4 = 1$ are defining relations for $\Gamma = G^{3,4}(2,Z)$.

This of course shows that $r^3 = s^4 = t^2 = (rt)^2 = (st)^2 = 1$ are defining relations for $\Gamma^* = < r, s, t > .$

Theorem 4.4.

- (a) If β is totally negative quadratic number then $r(\beta)$ and $r^2(\beta)$ both are totally positive quadratic numbers.
- (b) If β is totally positive quadratic number then s(β), s²(β) and s³(β) both are totally negative quadratic numbers.

Proof. (a) Let β be a totally negative quadratic number. Then by Observation (v) there are two possibilities either a < 0 and b, c > 0 or a > 0 and b, c < 0. Let a < 0 and b, c > 0. We can easily tabulate the following information:

From the above information we see that the new values of a, b and c for $r(\beta)$ and $r^2(\beta)$ are positive. Therefore $r(\beta)$ and $r^2(\beta)$ are totally positive quadratic numbers. Now let a > 0 and b, c < 0, then the new values of a, b and c for $r(\beta)$ and $r^2(\beta)$ are negative. Therefore, $r(\beta)$ and $r^2(\beta)$ are totally positive quadratic numbers.

Defining relations of Γ

TABLE 2. Actions of s on β

β	a	b	С
$s(\beta)$	-a-c	$\frac{c}{2}$	2(2a+b+c)
$s^2(\beta)$	-3a-2b-c	2a+b+c	4a + 4b + c
$s^3(\beta)$	-a-2b	$2a + 2b + \frac{c}{2}$	2b

TABLE 3. Ambiguous numbers of r

β	$r(\beta)$	$r^2(\beta)$	$\overline{\beta}$	$\overline{r(\beta)}$	$\overline{r^2(\beta)}$
+	—	+	—	+	+
+	+	—	_	+	+

(b) Let β be a totally positive quadratic number. Then by Observation (iv), there are two possibilities either a, b, c > 0 or a, b, c < 0. Let a, b, c > 0 then we can easily tabulate the following information:

From the above information we see that the new value of a for $s(\beta)$, $s^2(\beta)$ and $s^3(\beta)$ is negative and the new values of b, c for $s(\beta)$, $s^2(\beta)$ and $s^3(\beta)$ are positive. Therefore $s(\beta)$, $s^2(\beta)$ and $s^3(\beta)$ are totally negative quadratic numbers. Now let a, b, c < 0 then new value of a for $s(\beta)$, $s^2(\beta)$ and $s^3(\beta)$ is positive and the new values of b, c for $s(\beta)$, $s^2(\beta)$ and $s^3(\beta)$ are negative. Therefore $s(\beta)$, $s^2(\beta)$ and $s^3(\beta)$ are totally negative quadratic numbers. \Box

5. Existence of Ambiguous Numbers

Remark 5.1. The coset diagrams depicting an orbit of the action of Γ on $Q^*(\sqrt{n})$ do not contain a closed path unless there is an ambiguous number in the orbit. A closed path, if it exists, will evolve the element $g = r^{\alpha_1}s^{\delta_1}r^{\alpha_2}s^{\delta_2}\cdots r^{\alpha_{1n}}s^{\delta_n}$ of Γ , where $\alpha_i = 0, 1, 2$ fixing the elements of s_1 of $Q^*(\sqrt{n})$. Let $\beta \in Q^*(\sqrt{n})$ and $\Gamma(\beta)$ denote the orbits of β in Γ . The existence of ambiguous numbers in $\Gamma(\beta)$ is related to the stabilization of Γ . We describe the action of Γ on $Q^*(\sqrt{n})$ in the following theorems.

Theorem 5.2.

- (a) If β is an ambiguous number the one of the $r(\beta)$ and $r^2(\beta)$ is ambiguous and the other is totally positive.
- (b) If β is an ambiguous number the s²(β) is totally negative while one of the s(β), and s³(β) is ambiguous and the other is totally negative.

Proof. (a) We first assume that β is a positive number, then we have following information:

Similarly, if β is negative number, then we have following information:

Therefore, from above tables we can easily deduce that one of $r(\beta)$ and $r^2(\beta)$ is ambiguous and the other is totally positive.

TABLE 4. Ambiguous numbers of r

β	$r(\beta)$	$r^2(\beta)$	$\overline{\beta}$	$\overline{r(\beta)}$	$\overline{r^2(eta)}$
-	+	+	+	—	+
_	+	+	+	+	_

TABLE 5. Ambiguous numbers of s

β	$s(\beta)$	$s^2(\beta)$	$s^3(\beta)$	$\overline{\beta}$	$\overline{s(\beta)}$	$\overline{s^2(\beta)}$	$s^3(\beta)$
+		l	l	—	—	_	+
+	_	_	_	—	+	-	-

TABLE 6. Ambiguous numbers of s

β	$s(\beta)$	$s^2(\beta)$	$s^3(\beta)$	$\overline{\beta}$	$\overline{s(\beta)}$	$\overline{s^2(\beta)}$	$s^3(\beta)$
+	+	_		+	-	_	-
+	—	_		+	_	_	—

(b) First we suppose that β is a positive number, then we have the following information:

Similarly, if β is a negative number, then we have the following information:

Therefore from above information we can easily deduce that if β is an ambiguous number the $s^2(\beta)$ is totally negative while one of the $s(\beta)$ and $s^3(\beta)$ is ambiguous and the other is totally negative.

Theorem 5.3. The ambiguous numbers in the coset diagram for the orbit $\Gamma(\beta)$, where $\beta = \frac{a+\sqrt{n}}{c} \in Q^*(\sqrt{n})$, form a closed path and it is the only closed path contained in it.

Proof. If z_0 is an ambiguous number in $\Gamma(\beta)$, then either $r^i(z_0)$ is ambiguous or $s^j(z_0)$ is ambiguous for i = 1 or 2 and j = 1, 2 or 3. We may therefore assume that $s^j(z_0)$ is an ambiguous number. Due to Theorem 5.2, each triangle representing three edges of r and each square representing four edges of scontains two ambiguous numbers, so within the z - th triangle, we successively apply r (or s) to reach the next ambiguous number in the (z + 1)th triangle or square. Suppose the z-th triangle (square) depicting three (four) cycles of r(s)contains two ambiguous numbers, namely δ_1 and δ_2 . Then, $\delta_2^{(z-1)} = \delta_1^{(z-1)}s^{\varepsilon_1}$, $\delta_2^{(z)} = \delta_1^{(z)}r^{\varepsilon_2}$ and $\delta_2^{(z+1)} = \delta_1^{(z+1)}s^{\varepsilon_3}$ where $\varepsilon_1, \varepsilon_2, \varepsilon_3 = 1, 2$ or 3. Also since $\delta_2^{(z-1)} = \delta_1^{(z)}$ and $\delta_2^{(z)} = \delta_1^{(z+1)}$, therefore, $\delta_1^{(z-1)}s^{\varepsilon_1}s^{\varepsilon_2}s^{\varepsilon_3} = \delta_2^{(z+1)}$. We can continue in this way and since by [3, Theorem 3] there are only a finite number of ambiguous numbers, so after a finite number of steps we reach the vertex (ambiguous number) $\delta_2^{(z+m)} = \delta_1^{(z-1)}$. Hence the ambiguous number s form a path in coset diagram. The path is closed because there are only a finite number of ambiguous numbers in a coset diagram. Since only ambiguous numbers form a closed path and these are the only ambiguous numbers therefore they form a single closed path in the coset diagram of the orbit $\Gamma(\beta)$.

Acknowledgements

The authors wish to express their profound thanks to the referees for their detailed and helpful suggestions for revising the manuscript.

References

- M. Ashiq and Q. Mushtaq, Finite presentation of a linear-fractional group, Algebra Colloq. 12 (2005), no. 4, 585–589.
- [2] H.S.M. Coxeter, The abstract group $G^{m,n,p},\ Trans.$ Amer. Math. Soc. 45 (1939), no. 1, 73–150.
- [3] Q. Mushtaq, Modular group acting on real quadratic fields, Bull. Aust. Math. Soc. 37 (1988), no. 2, 303–309.
- [4] Q. Mushtaq, On word structure of the modular group over finite and real quadratic fields, Discrete Math. 178 (1998), no. 1-3, 155–164.
- [5] Q. Mushtaq and M. Aslam, Group generated by two elements of orders two and six acting on R and Q(\sqrt{n}), Discrete Math. 179 (1998), no. 1-3, 145–154.
- [6] Q. Mushtaq and G.C.Rota, Alternating Groups as Quotients of two generator groups, Adv. Math. 96 (1992), no. 1, 113–121.
- [7] W.W. Stothers, Subgroup of the (2,3,7)-triangle group, Manuscripta Math. 20 (1977), no. 4, 323–334.

(Muhammad Ashiq) NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY, MCS CAM-PUS, RAWALPINDI, PAKISTAN.

E-mail address: ashiqjaved@yahoo.co.uk; m.ashiq@mcs.edu.pk

(Tahir Imran) DEPARTMENT OF MATHEMATICS AND STATISTICS, RIPHAH INTERNATIONAL UNIVERSITY, ISLAMABAD, PAKISTAN.

E-mail address: tahirimran_78@yahoo.com

(Muhammad Asad Zaighum) DEPARTMENT OF BASIC SCIENCES RIPHAH INTERNATIONAL UNIVERSITY ISLAMABAD, PAKISTAN.

E-mail address: asadzaighum@gmail.com