Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 6, pp. 1811-1820

Title:
Defining relations of a group $\Gamma=G^{3,4}(2, Z)$ and its action on real quadratic field

Author(s):

M. Ashiq, T. Imran and M.A. Zaighum

Published by the Iranian Mathematical Society http://bims.ims.ir

DEFINING RELATIONS OF A GROUP $\Gamma=G^{3,4}(2, Z)$ AND ITS ACTION ON REAL QUADRATIC FIELD

M. ASHIQ*, T. IMRAN AND M.A. ZAIGHUM

(Communicated by Ali Reza Ashrafi)

Abstract

In this paper, we have shown that the coset diagrams for the action of a linear-fractional group Γ generated by the linear-fractional transformations $r: z \rightarrow \frac{z-1}{z}$ and $s: z \rightarrow \frac{-1}{2(z+1)}$ on the rational projective line is connected and transitive. By using coset diagrams, we have shown that $r^{3}=s^{4}=1$ are defining relations for Γ. Furthermore, we have studied some important results for the action of group Γ on real quadratic field $Q(\sqrt{n})$. Also, we have classified all the ambiguous numbers in the orbit. Keywords: Coset diagrams, modular group, linear-fractional transformations, real quadratic field, ambiguous numbers. MSC(2010): Primary: 20F05; Secondary: 20G40, 20G15.

1. Introduction

It is well known $[4,6,7]$ that the modular group $\operatorname{PSL}(2, Z)$, where Z is the ring of integers, is generated by the linear-fractional transformations $x: z \longrightarrow$ $\frac{-1}{z}$ and $y: z \longrightarrow \frac{z-1}{z}$ which satisfy the relations:

$$
\begin{equation*}
x^{2}=y^{3}=1 \tag{1.1}
\end{equation*}
$$

The group Γ is a proper subgroup of the modular group $\operatorname{PSL}(2, Z)$, that is, it contains linear-fractional transformations of the form:

$$
\begin{equation*}
z \rightarrow \frac{a z+b}{c z+d} \tag{1.2}
\end{equation*}
$$

where $a, b, c, d \in Z$ and $a d-b c=1$ or 2 . Specifically, the linear-fractional transformations of Γ are $r: z \rightarrow \frac{z-1}{z}$ and $s: z \rightarrow \frac{-1}{2(z+1)}$ which satisfy the relations:

$$
\begin{equation*}
r^{3}=s^{4}=1 \tag{1.3}
\end{equation*}
$$

Article electronically published on 30 November, 2017.
Received: 7 April 2016, Accepted: 21 October 2016.

* Corresponding author.

The group Γ^{*} is the group of transformations of the form:

$$
\begin{equation*}
z \rightarrow \frac{a z+b}{c z+d} \tag{1.4}
\end{equation*}
$$

If t is the transformation $z \mapsto \frac{z+3}{4 z-1}$ so that it belongs to Γ^{*} and not to Γ, then r, s, t satisfy:

$$
\begin{equation*}
r^{3}=s^{4}=t^{2}=(r t)^{2}=(s t)^{2}=1 \tag{1.5}
\end{equation*}
$$

Once we show that (1.3) are the defining relations of Γ, it is obvious that the relations (1.5) are defining relations for Γ^{*}. Let $P L\left(F_{q}\right)$ denote the projective line over the finite field F_{q}, where q is a prime power. The points of $P L\left(F_{q}\right)$ are the elements of F_{q} together with the additional point ∞, i.e., $P L\left(F_{q}\right)=$ $F_{q} \cup\{\infty\}$.

A number is said to be square free if its prime decomposition contains no repeated factors. All primes are therefore trivially square free. The algebraic integer of the form $a+b \sqrt{n}$, where n is square free, forms a quadratic field and is denoted by $Q(\sqrt{n})$. If $n>0$, the field is called real quadratic field, and if $n<0$, it is called an imaginary quadratic field. The integers in $Q(\sqrt{1})$ are simply called the integers [5]. Consider a subset $Q^{*}(\sqrt{n})=\left\{\frac{a+\sqrt{n}}{c}: a, c \in Z, c \neq 0 b=\frac{a^{2}-n}{c},(a, b, c)=1\right\}$ of $Q(\sqrt{n})$. For a fixed non-square positive integer n, if the real quadratic irrational number $\beta=\frac{a+\sqrt{n}}{c}$ and its algebraic conjugate $\bar{\beta}=\frac{a-\sqrt{n}}{c}$ have different signs, such β is known as an ambiguous number $[3,4]$. They play an important role in classifying the orbits of group Γ on $Q(\sqrt{n})$. If β and $\bar{\beta}$ are both positive (negative), β is called a totally positive (negative) number. In the action of Γ on $Q(\sqrt{n}), \operatorname{Stab}_{\beta}(\Gamma)$ are the on non-trivial stabilizers and in the orbit $\Gamma(\beta)$). We have also classified all the ambiguous numbers in the orbit.

2. Coset diagrams

Let G be a group generated by the elements $g_{1}, g_{2}, g_{3}, \ldots, g_{k}$ acting on a set S. Then the elements of S may be represented by the vertices of a diagram, with edge of 'colour j ' directed from vertex e to vertex f whenever $e g_{j}=f$.

$$
y \mapsto e g_{j}=f
$$

The resulting diagram is a graph whose vertices can be identified with the right cosets in G of the stabiliser N of any given point of S. Hence an edge of 'colour j' joins the coset $N h$ to the coset $N h g_{j}$, for each h in G, and the resulting diagram is called a coset diagram.

This is very similar to the notion of a Schreier's coset graph whose vertices represent the cosets of any given subgroup in a finitely-generated group, and also to that of a Cayley graph whose vertices are the group elements themselves $[1,2]$, with trivial stabilizer.

We use coset diagrams for the group Γ^{*} and study its action on the projective line over finite field $P L\left(F_{q}\right)$, where q is a prime power. The coset diagrams defined for the actions of Γ^{*} are special in a number of ways [4]. First, they are defined for a particular group, namely, Γ^{*}, which has a presentation in terms of three generators t, r and s. Since there are only three generators, it is possible to avoid using colours as well as the orientation of edges associated with the involution t. For r having order 3 and s having order 4, there is a need to distinguish r from r^{2} and also s from s^{2} and s^{3}. The three cycles (clockwise) of the transformation r are denoted by three green (unbroken) edges of a r-triangle and the four cycles (anti-clockwise) of the transformation s are denoted by four black (broken) edges of a s-square. The action of t is depicted by the symmetry about vertical axis. Fixed points of t, r and s, if they exist, are denoted by heavy dots. For example, the following diagram depicts a permutation representation of Γ^{*} on twelve points in which:
r acts as: $\quad(10 \infty)(2610)(385)(497)$
s acts as: $\quad(0510 \infty)(1834)(2967)$, and
t acts as: $\quad(03)(110)(26)(4 \infty)(58)(7)(9)$

Figure 1. Action of Γ^{*} on $P L\left(F_{12}\right)$

3. Observations

(i) If $z \neq 1,0, \infty$ then of the vertices $z, r(z), r^{2}(z)$ of a r-triangle, in a coset diagram for the action of Γ on any subset of the real projective line, one vertex is negative and two are positive.
(ii) If $z \neq-1 / 2,-1,0, \infty$ then of the vertices $z, s(z), s^{2}(z), s^{3}(z)$ of a ssquare, in a coset diagram for the action of Γ on any subset of the real projective line, one vertex is positive and three are negative.
(iii) Let $z= \pm \frac{m}{n}$ where m, n are positive integers with no common factor. For $z \neq 0, \infty$ we define $\|z\|=\max (|m|,|n|)$, then

Figure 2.

Figure 3. Representation of s
(a) If z is positive, then $\|z\|<\|s(z)\|,\|z\|<\left\|s^{2}(z)\right\|$ and $\|z\|<$ $\left\|s^{3}(z)\right\|$.
(b) If z is negative with $n<0$, then $\|z\|<\|r(z)\|$ and $\|z\|<\left\|r^{2}(z)\right\|$.
(iv) Let $\beta=\frac{a+\sqrt{n}}{c}$ be a totally positive quadratic number, then $\beta \bar{\beta}=$ $\frac{a^{2}-n}{c^{2}}>0$ implying that $\frac{b}{c}>0$. Therefore, either $b, c>0$ or $b, c<0$. if $b, c>0$, then as $\frac{a-\sqrt{n}}{c}>0$ implies $a-\sqrt{n}>0$ or $a>\sqrt{n}$ and so $a>0$. Now if $b, c<0$, then as $\frac{a+\sqrt{n}}{c}>0$ implies $a+\sqrt{n}<0$ or $a<-\sqrt{n}$ and so $a<0$. Thus β is a totally positive quadratic number either $a, b, c>0$ or $a, b, c<0$.
(v) Let $\beta=\frac{a+\sqrt{n}}{c}$ be a totally negative quadratic number, then β and $\bar{\beta}$ both are negative. Thus, $\beta \bar{\beta}=\frac{a^{2}-n}{c^{2}}>0$ implying that $\frac{b}{c}>0$. Therefore, either $b, c>0$ or $b, c<0$. If $b, c>0$, then as $\frac{a+\sqrt{n}}{c}<0$ but $c>0$. Thus $a+\sqrt{n}<0$ or $a<-\sqrt{n}$ and so $a<0$. Now if $b, c<0$, then as $\frac{a-\sqrt{n}}{c}<0$ but $c<0$. Thus $a-\sqrt{n}>0$ or $a>\sqrt{n}$ and so $a>0$. This proves that β is a totally negative quadratic number either $a<0$ and $b, c>0$ or $a>0$ and $b, c<0$.
(vi) Let $\beta=\frac{a+\sqrt{n}}{c}$ be an ambiguous number, then β and $\bar{\beta}$ both have opposite signs. Therefore $\beta \bar{\beta}=\frac{a^{2}-n}{c^{2}}<0$ implying that $\frac{b}{c}<0$ and so
b and c have different signs and so $b c<0$. Thus α is an ambiguous number if $b c<0$.

4. Main Results

Theorem 4.1. The coset diagrams for the action of the group Γ on the rational projective line is connected.

Proof. To prove this we need only to show that for any rational number z there is a path joining z to ∞.

Let $z=z_{0}=\frac{m}{n}$ be a positive rational number. Then $s^{i}\left(z_{0}\right)=\frac{-n}{(m+n)}$ and $\frac{-(m+n)}{m}$ for $i=1,2$ or 3 . Then, by observation (iii), $\left\|s\left(z_{0}\right)\right\|=(m+n)$ and $\left\|s^{2}\left(z_{\circ}\right)\right\|=(m+n)$, so, $\left\|s^{i}\left(z_{\circ}\right)\right\|>\left\|z_{\circ}\right\|$ for $i=1,2$ or 3 respectively. Similarly, if $z_{\circ}=\frac{m}{n}$ is a negative rational number with $n<0$, then $r^{j}\left(z_{\circ}\right)=\frac{m-n}{m}$ and $\frac{-m}{m-n}$ for $j=1$ or 2 respectively. That is $\left\|r\left(z_{\circ}\right)\right\|=(m-n)$ and $\left\|r^{2}\left(z_{\circ}\right)\right\|=$ $(m-n)$. Hence $\left\|r^{j}\left(z_{\circ}\right)\right\|>\left\|z_{\circ}\right\|$ for $j=1$ or 2 .

If z_{0} is positive then one of $r^{i}\left(z_{0}\right)$ is negative. If we let this negative number to be z_{1} then $\left\|z_{0}\right\|>\left\|z_{1}\right\|$. As z_{1} is negative one of $s^{i}\left(z_{1}\right)$ is positive. Let it be z_{2}, that is, $z_{2}=s^{i}\left(z_{1}\right)$ where $i=1,2$ or 3 . This implies that $\left\|z_{1}\right\|>\left\|z_{2}\right\|$. If we continue in this way, we obtain a unique alternating sequence of positive and negative rational numbers $z_{0}, z_{1}, z_{2}, \ldots$ such that $\left\|z_{0}\right\|>\left\|z_{1}\right\|>\left\|z_{2}\right\| \ldots$

The decreasing sequence of positive integers must terminate, and it can terminate only because ultimately the directed path leads us to a r-triangle with the vertices $1,0, \infty$ or s-square with the vertices $-1,1,0, \infty$.

An alternating sequence of positive and negative rational numbers $z_{0}, z_{1}, z_{2}, \ldots$ such that $\left\|z_{0}\right\|>\left\|z_{1}\right\|>\left\|z_{2}\right\|>\cdots$ shows that there is a directed graph joining z_{0} to ∞. This implies that every rational number occurs in the diagram and that the diagram for the action of Γ on the rational projective line is connected.

Theorem 4.2. The coset diagrams for the action of $\Gamma=G^{3,4}(2, Z)$ on the rational projective line is transitive.

Proof. We shall prove the transitivity of this action, by showing that, if there is a path from a rational number u to a rational number v then there exists some w in Γ such that $u w=v$.

As we have shown in Theorem 4.1 that there exists a path joining z_{0} to ∞, that is, there exists an element $w_{1}=r^{\alpha_{1}} s^{\delta_{1}} r^{\alpha_{2}} s^{\delta_{2}} r^{\alpha_{3}} s^{\delta_{3}} \ldots r^{\alpha_{m}} s^{\delta_{m}}$ of Γ such that $\infty=u w_{1}=u\left(r^{\alpha_{1}} s^{\delta_{1}} r^{\alpha_{2}} s^{\delta_{2}} r^{\alpha_{3}} s^{\delta_{3}} \cdots r^{\alpha_{m}} s^{\delta_{m}}\right)$ where $\alpha_{i}=0,1$ or 2 for $i=1,2, \ldots, m$ and $\delta_{j}=0,1,2$ or 3 , where $j=1,2, \ldots, m$. Similarly we can find another element w_{2} in Γ such that $\infty=v w_{2}$. Hence $u w_{1}=v w_{2}$ or $u v_{1} v_{2}^{-1}=s$. That is, the action of Γ on the rational projective line is transitive.

Theorem 4.3. $r^{3}=s^{4}=1$ are defining relations for $\Gamma=G^{3,4}(2, Z)$.

Figure 4. Defining relations of Γ

Proof. Suppose $r^{3}=s^{4}=1$ are not defining relations of Γ. Then there is a relation of the form $r^{\alpha_{1}} s^{\delta_{1}} r^{\alpha_{2}} s^{\delta_{2}} r^{\alpha_{3}} s^{\delta_{3}} \cdots r^{\alpha_{m}} s^{\delta_{m}}=1$ where $m \geq 1, \alpha_{i}=1$ or $2, \delta_{j}=1,2$ or 3 and $i, j=1,2, \ldots, m$. We know that neither r nor s can be 1 .

The coset diagram (Figure 4) depicts that it does not contain any closed path [7]. For if it contains a closed path and $z_{1}, z_{2}, \ldots, z_{m}$ are the vertices of the triangles in the diagram such that $z_{\circ}>0$, then this leads to a contradiction $\left\|z_{\circ}\right\|>\left\|z_{1}\right\| \cdots>\left\|z_{m}\right\|>\left\|z_{0}\right\|$. So the coset diagram (Figure 4) does not contain any closed path.

This shows that there are points in the diagram whose 'distance' from the point ∞ is arbitrarily large. Choose $z>0$, so that the 'distance' from the point z to the point ∞ is greater than m. Define $z_{i}=r^{\alpha_{1}} s^{\delta_{1}} r^{\alpha_{2}} s^{\delta_{2}} r^{\alpha_{3}} s^{\delta_{3}} \cdots r^{\alpha_{j}} s^{\delta_{j}}(z)$ where $i, j=1,2, \ldots, m$. Then $\left\|z_{0}\right\|>\left\|z_{1}\right\|>\cdots>\left\|z_{m}\right\|$ and in particular

Figure 5. Connection of r and s
Table 1. Actions of r on β

β	a	b	c
$r(\beta)$	$b-a$	$-2 a+b+c$	b
$r^{2}(\beta)$	$-a+c$	c	$-2 a+b+c$

$z_{m} \neq z_{0}$. Thus $r^{\alpha_{1}} s^{\delta_{1}} r^{\alpha_{2}} s^{\delta_{2}} r^{\alpha_{3}} s^{\delta_{3}} \cdots r^{\alpha_{m}} s^{\delta_{m}}(z) \neq 1$ and so $r^{3}=s^{4}=1$ are defining relations for $\Gamma=G^{3,4}(2, Z)$.

This of course shows that $r^{3}=s^{4}=t^{2}=(r t)^{2}=(s t)^{2}=1$ are defining relations for $\Gamma^{*}=<r, s, t>$.

Theorem 4.4.

(a) If β is totally negative quadratic number then $r(\beta)$ and $r^{2}(\beta)$ both are totally positive quadratic numbers.
(b) If β is totally positive quadratic number then $s(\beta), s^{2}(\beta)$ and $s^{3}(\beta)$ both are totally negative quadratic numbers.

Proof. (a) Let β be a totally negative quadratic number. Then by Observation (v) there are two possibilities either $a<0$ and $b, c>0$ or $a>0$ and $b, c<0$. Let $a<0$ and $b, c>0$. We can easily tabulate the following information:

From the above information we see that the new values of a, b and c for $r(\beta)$ and $r^{2}(\beta)$ are positive. Therefore $r(\beta)$ and $r^{2}(\beta)$ are totally positive quadratic numbers. Now let $a>0$ and $b, c<0$, then the new values of a, b and c for $r(\beta)$ and $r^{2}(\beta)$ are negative. Therefore, $r(\beta)$ and $r^{2}(\beta)$ are totally positive quadratic numbers.

Table 2. Actions of s on β

β	a	b	c
$s(\beta)$	$-a-c$	$\frac{c}{2}$	$2(2 a+b+c)$
$s^{2}(\beta)$	$-3 a-2 b-c$	$2 a+b+c$	$4 a+4 b+c$
$s^{3}(\beta)$	$-a-2 b$	$2 a+2 b+\frac{c}{2}$	$2 b$

Table 3. Ambiguous numbers of r

β	$r(\beta)$	$r^{2}(\beta)$	$\bar{\beta}$	$\overline{r(\beta)}$	$\overline{r^{2}(\beta)}$
+	-	+	-	+	+
+	+	-	-	+	+

(b) Let β be a totally positive quadratic number. Then by Observation (iv), there are two possibilities either $a, b, c>0$ or $a, b, c<0$. Let $a, b, c>0$ then we can easily tabulate the following information:

From the above information we see that the new value of a for $s(\beta), s^{2}(\beta)$ and $s^{3}(\beta)$ is negative and the new values of b, c for $s(\beta), s^{2}(\beta)$ and $s^{3}(\beta)$ are positive. Therefore $s(\beta), s^{2}(\beta)$ and $s^{3}(\beta)$ are totally negative quadratic numbers. Now let $a, b, c<0$ then new value of a for $s(\beta), s^{2}(\beta)$ and $s^{3}(\beta)$ is positive and the new values of b, c for $s(\beta), s^{2}(\beta)$ and $s^{3}(\beta)$ are negative. Therefore $s(\beta), s^{2}(\beta)$ and $s^{3}(\beta)$ are totally negative quadratic numbers.

5. Existence of Ambiguous Numbers

Remark 5.1. The coset diagrams depicting an orbit of the action of Γ on $Q^{*}(\sqrt{n})$ do not contain a closed path unless there is an ambiguous number in the orbit. A closed path, if it exists, will evolve the element $g=$ $r^{\alpha_{1}} s^{\delta_{1}} r^{\alpha_{2}} s^{\delta_{2}} \cdots r^{\alpha_{1 n}} s^{\delta_{n}}$ of Γ, where $\alpha_{i}=0,1,2$ fixing the elements of s_{1} of $Q^{*}(\sqrt{n})$. Let $\beta \in Q^{*}(\sqrt{n})$ and $\Gamma(\beta)$ denote the orbits of β in Γ. The existence of ambiguous numbers in $\Gamma(\beta)$ is related to the stabilization of Γ. We describe the action of Γ on $Q^{*}(\sqrt{n})$ in the following theorems.

Theorem 5.2.

(a) If β is an ambiguous number the one of the $r(\beta)$ and $r^{2}(\beta)$ is ambiguous and the other is totally positive.
(b) If β is an ambiguous number the $s^{2}(\beta)$ is totally negative while one of the $s(\beta)$, and $s^{3}(\beta)$ is ambiguous and the other is totally negative.

Proof. (a) We first assume that β is a positive number, then we have following information:

Similarly, if β is negative number, then we have following information:
Therefore, from above tables we can easily deduce that one of $r(\beta)$ and $r^{2}(\beta)$ is ambiguous and the other is totally positive.

TABLE 4. Ambiguous numbers of r

β	$r(\beta)$	$r^{2}(\beta)$	$\bar{\beta}$	$\overline{r(\beta)}$	$\overline{r^{2}(\beta)}$
-	+	+	+	-	+
-	+	+	+	+	-

TABLE 5. Ambiguous numbers of s

β	$s(\beta)$	$s^{2}(\beta)$	$s^{3}(\beta)$	$\bar{\beta}$	$\overline{s(\beta)}$	$\overline{s^{2}(\beta)}$	$s^{3}(\beta)$
+	-	-	-	-	-	-	+
+	-	-	-	-	+	-	-

TABLE 6. Ambiguous numbers of s

β	$s(\beta)$	$s^{2}(\beta)$	$s^{3}(\beta)$	$\bar{\beta}$	$\overline{s(\beta)}$	$\overline{s^{2}(\beta)}$	$s^{3}(\beta)$
+	+	-	-	+	-	-	-
+	-	-	-	+	-	-	-

(b) First we suppose that β is a positive number, then we have the following information:

Similarly, if β is a negative number, then we have the following information:
Therefore from above information we can easily deduce that if β is an ambiguous number the $s^{2}(\beta)$ is totally negative while one of the $s(\beta)$ and $s^{3}(\beta)$ is ambiguous and the other is totally negative.

Theorem 5.3. The ambiguous numbers in the coset diagram for the orbit $\Gamma(\beta)$, where $\beta=\frac{a+\sqrt{n}}{c} \in Q^{*}(\sqrt{n})$, form a closed path and it is the only closed path contained in it.

Proof. If z_{0} is an ambiguous number in $\Gamma(\beta)$, then either $r^{i}\left(z_{0}\right)$ is ambiguous or $s^{j}\left(z_{0}\right)$ is ambiguous for $i=1$ or 2 and $j=1,2$ or 3 . We may therefore assume that $s^{j}\left(z_{0}\right)$ is an ambiguous number. Due to Theorem 5.2, each triangle representing three edges of r and each square representing four edges of s contains two ambiguous numbers, so within the $z-t h$ triangle, we successively apply r (or s) to reach the next ambiguous number in the $(z+1)$ th triangle or square. Suppose the $z-t h$ triangle (square) depicting three (four) cycles of $r(s)$ contains two ambiguous numbers, namely δ_{1} and δ_{2}. Then, $\delta_{2}^{(z-1)}=\delta_{1}^{(z-1)} s^{\varepsilon_{1}}$, $\delta_{2}^{(z)}=\delta_{1}^{(z)} r^{\varepsilon_{2}}$ and $\delta_{2}^{(z+1)}=\delta_{1}^{(z+1)} s^{\varepsilon_{3}}$ where $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}=1,2$ or 3. Also since $\delta_{2}^{(z-1)}=\delta_{1}^{(z)}$ and $\delta_{2}^{(z)}=\delta_{1}^{(z+1)}$, therefore, $\delta_{1}^{(z-1)} s^{\varepsilon_{1}} s^{\varepsilon_{2}} s^{\varepsilon_{3}}=\delta_{2}^{(z+1)}$. We can continue in this way and since by [3, Theorem 3] there are only a finite number of ambiguous numbers, so after a finite number of steps we reach the vertex (ambiguous number) $\delta_{2}^{(z+m)}=\delta_{1}^{(z-1)}$. Hence the ambiguous number s form a
path in coset diagram. The path is closed because there are only a finite number of ambiguous numbers in a coset diagram. Since only ambiguous numbers form a closed path and these are the only ambiguous numbers therefore they form a single closed path in the coset diagram of the orbit $\Gamma(\beta)$.

Acknowledgements

The authors wish to express their profound thanks to the referees for their detailed and helpful suggestions for revising the manuscript.

References

[1] M. Ashiq and Q. Mushtaq, Finite presentation of a linear-fractional group, Algebra Colloq. 12 (2005), no. 4, 585-589.
[2] H.S.M. Coxeter, The abstract group $G^{m, n, p}$, Trans. Amer. Math. Soc. 45 (1939), no. 1, 73-150.
[3] Q. Mushtaq, Modular group acting on real quadratic fields, Bull. Aust. Math. Soc. 37 (1988), no. 2, 303-309.
[4] Q. Mushtaq, On word structure of the modular group over finite and real quadratic fields, Discrete Math. 178 (1998), no. 1-3, 155-164.
[5] Q. Mushtaq and M. Aslam, Group generated by two elements of orders two and six acting on R and $Q(\sqrt{n})$, Discrete Math. 179 (1998), no. 1-3, 145-154.
[6] Q. Mushtaq and G.C.Rota, Alternating Groups as Quotients of two generator groups, Adv. Math. 96 (1992), no. 1, 113-121.
[7] W.W. Stothers, Subgroup of the (2,3,7)-triangle group, Manuscripta Math. 20 (1977), no. 4, 323-334.
(Muhammad Ashiq) National University of Sciences and Technology, MCS Campus, Rawalpindi, Pakistan.

E-mail address: ashiqjaved@yahoo.co.uk; m.ashiq@mcs.edu.pk
(Tahir Imran) Department of mathematics and statistics, Riphah International University, Islamabad, Pakistan.

E-mail address: tahirimran_78@yahoo.com
(Muhammad Asad Zaighum) Department of Basic Sciences Riphah International University Islamabad, Pakistan.

E-mail address: asadzaighum@gmail.com

