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Abstract. In this paper, we have shown that the coset diagrams for the
action of a linear-fractional group Γ generated by the linear-fractional
transformations r : z → z−1

z
and s : z → −1

2(z+1)
on the rational projec-

tive line is connected and transitive. By using coset diagrams, we have
shown that r3 = s4 = 1 are defining relations for Γ. Furthermore, we

have studied some important results for the action of group Γ on real
quadratic field Q(

√
n). Also, we have classified all the ambiguous num-

bers in the orbit.
Keywords: Coset diagrams, modular group, linear-fractional transfor-

mations, real quadratic field, ambiguous numbers.
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1. Introduction

It is well known [4, 6, 7] that the modular group PSL(2, Z), where Z is the
ring of integers, is generated by the linear-fractional transformations x : z −→
−1
z and y : z −→ z−1

z which satisfy the relations:

(1.1) x2 = y3 = 1.

The group Γ is a proper subgroup of the modular group PSL(2, Z), that is, it
contains linear-fractional transformations of the form:

(1.2) z → az + b

cz + d
,

where a, b, c, d ∈ Z and ad − bc = 1 or 2. Specifically, the linear-fractional
transformations of Γ are r : z → z−1

z and s : z → −1
2(z+1) which satisfy the

relations:

(1.3) r3 = s4 = 1.
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The group Γ∗ is the group of transformations of the form:

(1.4) z → az + b

cz + d
·

If t is the transformation z 7→ z+3
4z−1 so that it belongs to Γ∗ and not to Γ, then

r, s, t satisfy:

(1.5) r3 = s4 = t2 = (rt)2 = (st)2 = 1.

Once we show that (1.3) are the defining relations of Γ, it is obvious that the
relations (1.5) are defining relations for Γ∗. Let PL(Fq) denote the projective
line over the finite field Fq, where q is a prime power. The points of PL(Fq)
are the elements of Fq together with the additional point ∞, i.e., PL(Fq) =
Fq ∪ {∞}.

A number is said to be square free if its prime decomposition contains
no repeated factors. All primes are therefore trivially square free. The al-
gebraic integer of the form a + b

√
n, where n is square free, forms a qua-

dratic field and is denoted by Q(
√
n). If n > 0, the field is called real qua-

dratic field, and if n < 0, it is called an imaginary quadratic field. The
integers in Q(

√
1) are simply called the integers [5]. Consider a subset

Q∗(
√
n) = {a+

√
n

c : a, c ∈ Z, c ̸= 0 b = a2−n
c , (a, b, c) = 1} of Q(

√
n). For a fixed

non-square positive integer n, if the real quadratic irrational number β = a+
√
n

c

and its algebraic conjugate β = a−
√
n

c have different signs, such β is known as
an ambiguous number [3, 4]. They play an important role in classifying the
orbits of group Γ on Q(

√
n). If β and β are both positive (negative), β is called

a totally positive (negative) number. In the action of Γ on Q(
√
n), Stabβ(Γ)

are the on non-trivial stabilizers and in the orbit Γ(β)). We have also classified
all the ambiguous numbers in the orbit.

2. Coset diagrams

Let G be a group generated by the elements g1, g2, g3, . . . , gk acting on a set
S. Then the elements of S may be represented by the vertices of a diagram,
with edge of ‘colour j’ directed from vertex e to vertex f whenever egj = f.

y 7→ egj = f.

The resulting diagram is a graph whose vertices can be identified with the right
cosets in G of the stabiliser N of any given point of S. Hence an edge of ‘colour
j’ joins the coset Nh to the coset Nhgj , for each h in G, and the resulting
diagram is called a coset diagram.

This is very similar to the notion of a Schreier’s coset graph whose vertices
represent the cosets of any given subgroup in a finitely-generated group, and
also to that of a Cayley graph whose vertices are the group elements themselves
[1, 2], with trivial stabilizer.
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We use coset diagrams for the group Γ∗ and study its action on the projective
line over finite field PL(Fq), where q is a prime power. The coset diagrams
defined for the actions of Γ∗ are special in a number of ways [4]. First, they
are defined for a particular group, namely, Γ∗, which has a presentation in
terms of three generators t, r and s. Since there are only three generators, it
is possible to avoid using colours as well as the orientation of edges associated
with the involution t. For r having order 3 and s having order 4, there is a
need to distinguish r from r2 and also s from s2 and s3 . The three cycles
(clockwise) of the transformation r are denoted by three green (unbroken)
edges of a r-triangle and the four cycles (anti-clockwise) of the transformation
s are denoted by four black (broken) edges of a s-square. The action of t is
depicted by the symmetry about vertical axis. Fixed points of t, r and s, if they
exist, are denoted by heavy dots. For example, the following diagram depicts
a permutation representation of Γ∗ on twelve points in which:

r acts as: (1 0 ∞)(2 6 10)(3 8 5)(4 9 7)
s acts as: (0 5 10 ∞)(1 8 3 4)(2 9 6 7), and
t acts as: (0 3)(1 10)(2 6)(4 ∞)(5 8)(7)(9)

Figure 1. Action of Γ∗ on PL(F12)

3. Observations

(i) If z ̸= 1, 0,∞ then of the vertices z, r(z), r2(z) of a r-triangle, in a
coset diagram for the action of Γ on any subset of the real projective
line, one vertex is negative and two are positive.

(ii) If z ̸= −1/2,−1, 0,∞ then of the vertices z, s(z), s2(z), s3(z) of a s-
square, in a coset diagram for the action of Γ on any subset of the real
projective line, one vertex is positive and three are negative.

(iii) Let z = ±m
n where m, n are positive integers with no common factor.

For z ̸= 0, ∞ we define ∥z∥ = max(|m| , |n|), then
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Figure 2.

Figure 3. Representation of s

(a) If z is positive, then ∥z∥ < ∥s(z)∥ , ∥z∥ <
∥∥s2(z)∥∥ and ∥z∥ <∥∥s3(z)∥∥ .

(b) If z is negative with n < 0, then ∥z∥ < ∥r(z)∥ and ∥z∥ <
∥∥r2(z)∥∥ .

(iv) Let β = a+
√
n

c be a totally positive quadratic number, then ββ =
a2−n
c2 > 0 implying that b

c > 0. Therefore, either b, c > 0 or b, c < 0. if

b, c > 0, then as a−
√
n

c > 0 implies a−
√
n > 0 or a >

√
n and so a > 0.

Now if b, c < 0, then as a+
√
n

c > 0 implies a +
√
n < 0 or a < −

√
n

and so a < 0. Thus β is a totally positive quadratic number either
a, b, c > 0 or a, b, c < 0.

(v) Let β = a+
√
n

c be a totally negative quadratic number, then β and

β both are negative. Thus, ββ = a2−n
c2 > 0 implying that b

c > 0.

Therefore, either b, c > 0 or b, c < 0. If b, c > 0, then as a+
√
n

c < 0 but
c > 0. Thus a +

√
n < 0 or a < −

√
n and so a < 0. Now if b, c < 0,

then as a−
√
n

c < 0 but c < 0. Thus a−
√
n > 0 or a >

√
n and so a > 0.

This proves that β is a totally negative quadratic number either a < 0
and b, c > 0 or a > 0 and b, c < 0.

(vi) Let β = a+
√
n

c be an ambiguous number, then β and β both have

opposite signs. Therefore ββ = a2−n
c2 < 0 implying that b

c < 0 and so
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b and c have different signs and so bc < 0. Thus α is an ambiguous
number if bc < 0.

4. Main Results

Theorem 4.1. The coset diagrams for the action of the group Γ on the rational
projective line is connected.

Proof. To prove this we need only to show that for any rational number z there
is a path joining z to ∞.

Let z = z◦ = m
n be a positive rational number. Then si(z◦) =

−n
(m+n) and

−(m+n)
m for i = 1, 2 or 3. Then, by observation (iii), ∥s(z◦)∥ = (m + n) and∥∥s2(z◦)∥∥ = (m+n), so,

∥∥si(z◦)∥∥ > ∥z◦∥ for i = 1, 2 or 3 respectively. Similarly,

if z◦ = m
n is a negative rational number with n < 0, then rj(z◦) =

m−n
m and

−m
m−n for j = 1 or 2 respectively. That is ∥r(z◦)∥ = (m − n) and

∥∥r2(z◦)∥∥ =

(m− n). Hence
∥∥rj(z◦)∥∥ > ∥z◦∥ for j = 1 or 2.

If z◦ is positive then one of ri(z◦) is negative. If we let this negative number
to be z1 then ∥z◦∥ > ∥z1∥ . As z1 is negative one of si(z1) is positive. Let it
be z2, that is, z2 = si(z1) where i = 1, 2 or 3. This implies that ∥z1∥ > ∥z2∥.
If we continue in this way, we obtain a unique alternating sequence of positive
and negative rational numbers z◦, z1, z2, . . . such that ∥z◦∥ > ∥z1∥ > ∥z2∥ . . . .

The decreasing sequence of positive integers must terminate, and it can
terminate only because ultimately the directed path leads us to a r-triangle
with the vertices 1, 0, ∞ or s-square with the vertices −1, 1, 0,∞.

An alternating sequence of positive and negative rational numbers
z◦, z1, z2, . . . such that ∥z◦∥ > ∥z1∥ > ∥z2∥ > · · · shows that there is a directed
graph joining z◦ to ∞. This implies that every rational number occurs in the
diagram and that the diagram for the action of Γ on the rational projective
line is connected. □

Theorem 4.2. The coset diagrams for the action of Γ = G3,4(2, Z) on the
rational projective line is transitive.

Proof. We shall prove the transitivity of this action, by showing that, if there
is a path from a rational number u to a rational number v then there exists
some w in Γ such that uw = v.

As we have shown in Theorem 4.1 that there exists a path joining z◦ to ∞,
that is, there exists an element w1 = rα1sδ1rα2sδ2rα3sδ3 · · · rαmsδm of Γ such
that ∞ = uw1 = u(rα1sδ1rα2sδ2rα3sδ3 · · · rαmsδm) where αi = 0, 1 or 2 for
i = 1, 2, . . . ,m and δj = 0, 1, 2 or 3, where j = 1, 2, . . . ,m. Similarly we can find

another element w2 in Γ such that ∞ = vw2. Hence uw1 = vw2 or uv1v
−1
2 = s.

That is, the action of Γ on the rational projective line is transitive. □

Theorem 4.3. r3 = s4 = 1 are defining relations for Γ = G3,4(2, Z).
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Figure 4. Defining relations of Γ

Proof. Suppose r3 = s4 = 1 are not defining relations of Γ. Then there is a
relation of the form rα1sδ1rα2sδ2rα3sδ3 · · · rαmsδm = 1 where m ≥ 1, αi = 1 or
2, δj = 1, 2 or 3 and i, j = 1, 2, . . . ,m. We know that neither r nor s can be 1.

The coset diagram (Figure 4) depicts that it does not contain any closed
path [7]. For if it contains a closed path and z1, z2, . . . , zm are the vertices of
the triangles in the diagram such that z◦ > 0, then this leads to a contradiction
∥z◦∥ > ∥z1∥ · · · > ∥zm∥ > ∥z◦∥ . So the coset diagram (Figure 4) does not
contain any closed path.

This shows that there are points in the diagram whose ‘distance’ from the
point ∞ is arbitrarily large. Choose z > 0, so that the ‘distance’ from the point
z to the point ∞ is greater than m. Define zi = rα1sδ1rα2sδ2rα3sδ3 · · · rαjsδj (z)
where i, j = 1, 2, . . . ,m. Then ∥z◦∥ > ∥z1∥ > · · · > ∥zm∥ and in particular
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Figure 5. Connection of r and s

Table 1. Actions of r on β

β a b c
r(β) b− a −2a+ b+ c b
r2(β) −a+ c c −2a+ b+ c

zm ̸= z◦. Thus rα1sδ1rα2sδ2rα3sδ3 · · · rαmsδm(z) ̸= 1 and so r3 = s4 = 1 are
defining relations for Γ = G3,4(2, Z). □

This of course shows that r3 = s4 = t2 = (rt)2 = (st)2 = 1 are defining
relations for Γ∗ =< r, s, t > .

Theorem 4.4.

(a) If β is totally negative quadratic number then r(β) and r2(β) both are
totally positive quadratic numbers.

(b) If β is totally positive quadratic number then s(β), s2(β) and s3(β) both
are totally negative quadratic numbers.

Proof. (a) Let β be a totally negative quadratic number. Then by Observation
(v) there are two possibilities either a < 0 and b, c > 0 or a > 0 and b, c < 0.
Let a < 0 and b, c > 0. We can easily tabulate the following information:

From the above information we see that the new values of a, b and c for r(β)
and r2(β) are positive. Therefore r(β) and r2(β) are totally positive quadratic
numbers. Now let a > 0 and b, c < 0, then the new values of a, b and c for
r(β) and r2(β) are negative. Therefore, r(β) and r2(β) are totally positive
quadratic numbers.
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Table 2. Actions of s on β

β a b c
s(β) −a− c c

2 2(2a+ b+ c)
s2(β) −3a− 2b− c 2a+ b+ c 4a+ 4b+ c
s3(β) −a− 2b 2a+ 2b+ c

2 2b

Table 3. Ambiguous numbers of r

β r(β) r2(β) β r(β) r2(β)
+ − + − + +
+ + − − + +

(b) Let β be a totally positive quadratic number. Then by Observation (iv),
there are two possibilities either a, b, c > 0 or a, b, c < 0. Let a, b, c > 0 then we
can easily tabulate the following information:

From the above information we see that the new value of a for s(β), s2(β)
and s3(β) is negative and the new values of b, c for s(β), s2(β) and s3(β)
are positive. Therefore s(β), s2(β) and s3(β) are totally negative quadratic
numbers. Now let a, b, c < 0 then new value of a for s(β), s2(β) and s3(β)
is positive and the new values of b, c for s(β), s2(β) and s3(β) are negative.
Therefore s(β), s2(β) and s3(β) are totally negative quadratic numbers. □

5. Existence of Ambiguous Numbers

Remark 5.1. The coset diagrams depicting an orbit of the action of Γ on
Q∗(

√
n) do not contain a closed path unless there is an ambiguous num-

ber in the orbit. A closed path, if it exists, will evolve the element g =
rα1sδ1rα2sδ2 · · · rα1nsδn of Γ, where αi = 0, 1, 2 fixing the elements of s1 of
Q∗(

√
n). Let β ∈ Q∗(

√
n) and Γ(β) denote the orbits of β in Γ. The existence

of ambiguous numbers in Γ(β) is related to the stabilization of Γ. We describe
the action of Γ on Q∗(

√
n) in the following theorems.

Theorem 5.2.

(a) If β is an ambiguous number the one of the r(β) and r2(β) is ambiguous
and the other is totally positive.

(b) If β is an ambiguous number the s2(β) is totally negative while one of
the s(β), and s3(β) is ambiguous and the other is totally negative.

Proof. (a) We first assume that β is a positive number, then we have following
information:

Similarly, if β is negative number, then we have following information:
Therefore, from above tables we can easily deduce that one of r(β) and r2(β)

is ambiguous and the other is totally positive.
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Table 4. Ambiguous numbers of r

β r(β) r2(β) β r(β) r2(β)
− + + + − +
− + + + + −

Table 5. Ambiguous numbers of s

β s(β) s2(β) s3(β) β s(β) s2(β) s3(β)
+ − − − − − − +
+ − − − − + − −

Table 6. Ambiguous numbers of s

β s(β) s2(β) s3(β) β s(β) s2(β) s3(β)
+ + − − + − − −
+ − − − + − − −

(b) First we suppose that β is a positive number, then we have the following
information:

Similarly, if β is a negative number, then we have the following information:
Therefore from above information we can easily deduce that if β is an am-

biguous number the s2(β) is totally negative while one of the s(β) and s3(β) is
ambiguous and the other is totally negative. □

Theorem 5.3. The ambiguous numbers in the coset diagram for the orbit Γ(β),

where β = a+
√
n

c ∈ Q∗(
√
n), form a closed path and it is the only closed path

contained in it.

Proof. If z0 is an ambiguous number in Γ(β), then either ri(z0) is ambiguous
or sj(z0) is ambiguous for i = 1 or 2 and j = 1, 2 or 3. We may therefore
assume that sj(z0) is an ambiguous number. Due to Theorem 5.2, each triangle
representing three edges of r and each square representing four edges of s
contains two ambiguous numbers, so within the z− th triangle, we successively
apply r (or s) to reach the next ambiguous number in the (z+1)th triangle or
square. Suppose the z−th triangle (square) depicting three (four) cycles of r (s)

contains two ambiguous numbers, namely δ1 and δ2. Then, δ
(z−1)
2 = δ

(z−1)
1 sε1 ,

δ
(z)
2 = δ

(z)
1 rε2 and δ

(z+1)
2 = δ

(z+1)
1 sε3 where ε1, ε2, ε3 = 1, 2 or 3. Also since

δ
(z−1)
2 = δ

(z)
1 and δ

(z)
2 = δ

(z+1)
1 , therefore, δ

(z−1)
1 sε1sε2sε3 = δ

(z+1)
2 . We can

continue in this way and since by [3, Theorem 3] there are only a finite number
of ambiguous numbers, so after a finite number of steps we reach the vertex

(ambiguous number) δ
(z+m)
2 = δ

(z−1)
1 . Hence the ambiguous number s form a
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path in coset diagram. The path is closed because there are only a finite number
of ambiguous numbers in a coset diagram. Since only ambiguous numbers form
a closed path and these are the only ambiguous numbers therefore they form
a single closed path in the coset diagram of the orbit Γ(β). □
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