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Abstract. The sharp bounds for the third and fourth coefficients of Ma-

Minda starlike functions having fixed second coefficient are determined.
These results are proved by using certain constraint coefficient problem
for functions with positive real part whose coefficients are real and the

first coefficient is kept fixed. Analogous results are obtained for a general
class of close-to-convex functions.
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1. Introduction and main results

Let S be the class of all univalent analytic functions f(z) = z +
∑∞

n=2 anz
n

defined in the open unit disk D. In 1916 Bieberbach conjectured that |an| ≤
n for f ∈ S, equality holds for Koebe function K(z) = z/(1 − z)2 and its
rotation e−iθK(eiθz). After a long period of time, this conjecture finally proved
by de Branges in 1985. In an attempt to resolve this conjecture, researchers
pursued many directions. Several subclasses were introduced and investigated
by imposing geometric properties on the image domain. Yet another option is to
consider functions whose Taylor coefficients are real. This condition naturally
implies that the image domain of such functions is symmetric with respect to
real axis. Functions in the class SR of univalent analytic functions in D having
the real coefficients satisfy −n ≤ an ≤ n for all n ≥ 2 [10, Theorem 1, p.
182]. In 1992, by using a Theorem of Dubins [8] related to the extreme points
crossections of convex set, Al-Amiri and Bshouty [1] gave the sharp upper
bounds for a3 and a4 of the functions in the subclass of S with real coefficient
and fixed second coefficient. Further, Al-Amiri and Bshouty [2] determined the
sharp upper bound for the fourth coefficients of close-to-convex functions with

Article electronically published on 30 November, 2017.

Received: 12 May 2016, Accepted: 26 October 2016.
∗Corresponding author.

c⃝2017 Iranian Mathematical Society

1837



Initial coefficients of starlike functions 1838

real coefficients under some restriction over the second coefficients. In 2000, by
using Carathéodory-Toeplitz conditions Samaris and Koulorizos [30] obtained
the sharp upper and lower bounds of the third and fourth coefficients of the
starlike functions with real coefficients and for any fixed second coefficient in
the interval [−2, 2]. Further, distortion results, Koebe and covering domains of
certain classes of functions with real coefficients are investigated in [19, 23, 33,
34]. In [26] Nunokawa et al. investigated differential subordination results for
functions with real coefficients. Recently, Kanas and Tatarczak [15] obtained
coefficient bounds for the initial coefficients of the generalized typically real
valued functions.

For two functions f and g analytic in D, f is subordinate to g, written
as f ≺ g, if there exists a function w : D → D with w(0) = 0 such that
f(z) = g(w(z)). If g is univalent in D, then f ≺ g is equivalent to f(0) =
g(0) and f(D) ⊆ g(D) (for details of differential subordination, we refer [25]).
Let φ be a univalent analytic function with positive real part in D satisfying
φ(0) = 1 and φ′(0) > 0. For such a function φ, Ma and Minda [22] and
Ravichandran [27] introduced the subclasses ST (φ) and ST S(φ) consisting
of the functions f ∈ S satisfying zf ′(z)/f(z) ≺ φ(z) and 2zf ′(z)/(f(z) −
f(−z)) ≺ φ(z) respectively. If we take φ(z) = (1 + z)/(1 − z), then the class
ST (φ) reduces to the well known class ST of normalized starlike functions and
similarly for different choices of φ, the class ST (φ) generates various subclasses
studied in [14, 17, 24, 36]. Similarly, we can consider such subclasses of the
class ST S(φ). For f ∈ ST (φ), the sharp bound for the second and the third
coefficients have been determined by Ma and Minda [22]. Later, Ali et al. [5]
determined the sharp bound for the fourth coefficients of the functions in the
class ST (φ). For the function f ∈ ST S(φ), the sharp bound for the second
and third coefficient are obtained in [31] by using the Fekete-Szegő coefficient
functional. Determination of bounds on the coefficients an for n ≥ 5 of the
function f ∈ ST (φ) is still an open problem. For more information regarding
coefficient bounds, we refer [3, 4, 6, 7, 12, 13, 16, 20, 21, 29, 32, 35]. In this paper,
we determine initial coefficient bounds for Ma-Minda type univalent functions
with real coefficients. We therefore, first consider such subclasses ST x

R(φ) and
ST Sx

R(φ), which are defined as:

ST x
R(φ) :=

{
f(z) = z + xz2 + a3z

3 + a4z
4 + · · · ∈ S :

zf ′(z)

f(z)
≺ φ(z)

}
and

ST Sx
R(φ) :=

{
f(z) = z + xz2 + a3z

3 + · · · ∈ S :
2zf ′(z)

f(z)− f(−z)
≺ φ(z)

}
for all an ∈ R and the function φ(z) = 1 + B1z + B2z

2 + · · · is a univalent
analytic function with positive real part in D satisfying B1 > 0 and Bn ∈ R
(n ∈ N). Let PR be the class of analytic functions p(z) = 1 + r1z + r2z

2 + · · ·
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with Re(p(z)) > 0 (z ∈ D) and for a fixed y with |y| ≤ 2, let Py
R be the subclass

of PR with r1 = y. Motivated by the work done in [1,2], we first find for a fixed
w ∈ R, the minimum value of the coefficient functional wr2 + r3 associated
with the function p(z) = 1+ xz+ r2z

2 + r3z
3 + · · · ∈ Px

R and then by applying
this minimum value of coefficient functional wr2 + r3 and the maximum value
of coefficient functional wr2+r3, given by Al-Amiri et al. [2], the sharp bounds
for the third and the fourth coefficients of the functions in the classes ST x

R(φ)
and ST Sx

R(φ) are obtained.
We state our first main result which yields the sharp bound for the third

and the fourth coefficient of the function belonging to the class ST x
R(φ).

Theorem 1.1. Let the function f ∈ ST x
R(φ) and φ(z) = 1 + B1z + B2z

2 +
B3z

3 + · · · be a univalent analytic function with positive real part, B1 > 0 and
Bn ∈ R. Then

(a) For −B1 ≤ x ≤ B1, we have the following bound on the third coefficient:

((B2
1 +B1 +B2)x

2 −B3
1)/2B

2
1 ≤ a3 ≤ ((B2

1 −B1 +B2)x
2 +B3

1)/2B
2
1 .

(b) We have the following upper and lower bounds of the coefficient a4:
(i) If (3B2

1 − 4B1 + 4B2)x+ 4B2
1 ∈ (−8B1x, 8B

2
1 ], then

48B4
1a4 ≤ 16B5

1 +B1(9B
4
1 − 16B2

1 + 24B2
1B2 + 16B2

2)x
2

+ (−B4
1 − 16B2

2 + 16B1B3)x
3.

(ii) If (3B2
1−4B1+4B2)x+4B2

1 /∈ (−8B1x, 8B
2
1 ] and (3B2

1+4B2)x >
0, then

6B3
1a4 ≤ B2

1(−2B1 + 3B2
1 + 4B2)x

+ (2B1 − 3B2
1 +B3

1 − 4B2 + 3B1B2 + 2B3)x
3.

(iii) If (3B2
1−4B1+4B2)x+4B2

1 /∈ (−8B1x, 8B
2
1 ] and (3B2

1+4B2)x <
0, then

6B3
1a4 ≤ B2

1(−2B1 − 3B2
1 − 4B2)x

+ (2B1 + 3B2
1 +B3

1 + 4B2 + 3B1B2 + 2B3)x
3.

(iv) If 4B2
1 + (−3B2

1 + 4B1 − 4B2)x ∈ (8B1x, 8B
2
1 ], then

48B4
1a4 ≥ −(16B5

1 +B1(−4B1 + 3B2
1 + 4B2)(4B1 + 3B2

1 + 4B2)x
2

+ (B4
1 + 16B2

2 − 16B1B3)x
3).

(v) If 4B2
1+(−3B2

1+4B1−4B2)x /∈ (8B1x, 8B
2
1 ] and (3B2

1+4B2)x <
0, then

6B3
1a4 ≥ B2

1(−2B1 + 3B2
1 + 4B2)x

+ (−4B2 +B1(2− 3B1 +B2
1 + 3B2) + 2B3)x

3.
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(vi) If 4B2
1+(−3B2

1+4B1−4B2)x /∈ (8B1x, 8B
2
1 ] and (3B2

1+4B2)x >
0, then

6B3
1a4 ≥ −B2

1(2B1 + 3B2
1 + 4B2)x

+ (B1(2 + 3B1 +B2
1 + 3B2) + 4B2 + 2B3)x

3.

The bounds are sharp.

On taking φ(z) =
√
1 + z, φ(z) = ez, and φ(z) = (1+ z)/(1− z) in the class

ST x
R(φ), we get the subclasses ST

x
R(

√
1 + z) = ST x

R,L, ST
x
R(e

z) = ST x
R,e and

ST x
R((1 + z)/(1 − z)) = ST x

R respectively. For more information regarding
these classes, see [2, 14, 24, 36]. The following corollaries are the immediate
consequence of Theorem 1.1.

Corollary 1.2. Let the function f ∈ ST x
R,e. Then for |x| ≤ 1, the sharp lower

and upper bounds of the third coefficient are given by a3 ≥ −(1/2) + (5/4)x2

and a3 ≤ (1/2) + (1/4)x2. Sharp upper bound for fourth coefficient is given
by a4 ≤ (−7x + (59/6)x3)/6 for x ∈ [−1, −4/9] and for x ∈ (−4/9, 1], a4 ≤
1/3 + (3/16)x2 − (7/144)x3. Further, sharp lower bound for fourth coefficient
is given by a4 ≥ (−48−27x2−7x3)/144 for x ∈ [−1, 4/9) and for x ∈ [4/9, 1],
a4 ≥ x(−42 + 59x2)/36.

Corollary 1.3. Suppose that the function f belongs to the class ST x
R,L. Then

we have sharp bounds for the third coefficient: a3 ≥ (5/4)x2 − (1/4) and a3 ≤
−(3/4)x2+(1/4) for x ∈ [−1/2, 1/2]. The upper bound of the fourth coefficient
is given as: a4 ≤ −(5/12)x + (7/4)x3 for x ∈ [−1/2, −4/9] and for x ∈
(−4/9, 1/2], a4 ≤ (1/6)− (21/32)x2 + (1/16)x3. The lower sharp bound of the
fourth coefficient is given as: a4 ≥ (−16 + 63x2 + 6x3)/96 for x ∈ [−1/2, 4/9)
and for x ∈ [4/9, 1/2], a4 ≥ x(−5 + 21x2)/12.

Corollary 1.4. Let the function f ∈ ST x
R. Then we have the following sharp

bound: x2 − 1 ≤ a3 ≤ x2/2 + 1 for x ∈ [−2, 2]. The upper bound of the fourth
coefficient is given as: a4 ≤ −2x + x3 for x ≤ −4/7, a4 ≤ (2/3) + (7/8)x2 −
(1/48)x3 for x ∈ (−4/7, 4/3] and for x > 4/3, a4 ≤ (4/3)x + (1/6)x3. The
lower bound of the fourth coefficient is given as: a4 ≥ (4/3)x + (1/6)x3 for
x < −4/3, a4 ≥ −(2/3) − (7/8)x2 − (1/48)x3 for x ∈ [−4/3, 4/7) and for
x ≥ 4/7, a4 ≥ −2x+ x3.

Remark 1.5. For f ∈ ST x
R, the upper bounds of the third coefficient for −2 ≤

x ≤ 2 and for x ≥ 4/3, the upper bound of the fourth coefficient are precisely
proved in [1, Theorem 1, p. 33].

In the next result, we determine the sharp bounds for the third and the
fourth coefficients of the function belonging to the class ST Sx

R(φ).

Theorem 1.6. Suppose that the function f ∈ ST Sx
R(φ) and φ(z) = 1+B1z+

B2z
2+B3z

3+· · · is a univalent analytic function with positive real part, B1 > 0
and Bn ∈ R. Then,
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(a) For |x| ≤ B1/2, we have the following estimate of the third coefficient:

(2(B1 +B2)x
2 −B3

1)/2B
2
1 ≤ a3 ≤ (2(B2 −B1)x

2 +B3
1)/2B

2
1 .

(b) We have the following upper and lower bound of the fourth coefficient:
(i) If x(−4B1 +B2

1 + 4B2) ∈ [−2B1(4x+B1), 2B
2
1), then

16B4
1a4 ≤ 4B5

1 +B1(B
4
1 + 8B2

1(−2 +B2) + 16B2
2)x

2

+ 2((−B4
1 − 16B2

2 + 16B1B3))x
3.

(ii) If x(−4B1+B2
1+4B2) /∈ [−2B1(4x+B1), 2B

2
1) and (B2

1+4B2)x <
0, then

4B3
1a4 ≤ (−2B1 −B2

1 − 4B2)B
2
1x

+ 4(B2
1 +B1(2 +B2) + 2(2B2 +B3))x

3.

(iii) If x(−4B1+B2
1+4B2) /∈ [−2B1(4x+B1), 2B

2
1) and (B2

1+4B2)x >
0, then

4B3
1a4 ≤ B2

1(−2B1 +B2
1 + 4B2)x

− 4(B2
1 + 4B2 −B1(2 +B2)− 2B3)x

3.

(iv) If x(−4B1 +B2
1 + 4B2) ∈ [−2B2

1 , −8B1x+ 2B2
1 ), then

16B4
1a4 ≥ −4B5

1 +B1(16B
2
1 −B4

1 − 8B2
1B2 − 16B2

2)x
2

+ 2(−B4
1 − 16B2

2 + 16B1B3)x
3.

(v) If x(−4B1+B2
1+4B2) /∈ [−2B2

1 , −8B1x+2B2
1 ) and (B2

1+4B2)x <
0, then

4B3
1a4 ≥ −B2

1(2B1 −B2
1 − 4B2)x

− (−8B1 + 4B2
1 + 16B2 − 4B1B2 − 8B3)x

3.

(vi) If x(−4B1+B2
1+4B2) /∈ [−2B2

1 , −8B1x+2B2
1 ) and (B2

1+4B2)x >
0, then

4B3
1a4 ≥ −B2

1(2B1 +B2
1 + 4B2)x

+ (8B1 + 4B2
1 + 16B2 + 4B1B2 + 8B3)x

3.

The bounds are sharp.

On taking φ(z) =
√
1 + z, φ(z) = ez and φ(z) = (1 + z)/(1 − z), the class

ST Sx
R(φ) reduces to the subclasses ST Sx

R,L, ST Sx
R,e and ST Sx

R respectively.
The following corollaries are the immediate consequence of Theorem 1.6.

Corollary 1.7. Suppose that the function f ∈ ST Sx
R,e. Then we have 3x2 −

(1/2) ≤ a3 ≤ (1/2) − x2 for x ∈ [−1/2, 1/2]. The upper bound of the fourth
coefficient is given as: a4 ≤ (−5/4)x+ (35/6)x3 for −1/2 ≤ x < −2/7 and for
−2/7 ≤ x ≤ 1/2, a4 ≤ (16 − 21x2 − 21x3)/48. The lower bound of the fourth
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coefficient is given as: a4 ≥ (−16 + 21x2 − 14x3)/48 for −1/2 ≤ x < 2/7 and
for 2/7 ≤ x ≤ 1/2, a4 ≥ (−5/4)x+ (35/6)x3.

Corollary 1.8. Suppose that the function f ∈ ST Sx
R,L. Then we have the

sharp bounds of the third coefficient: 3x2 − (1/4) ≤ a3 ≤ (1/4) − 5x2 for
x ∈ [−1/4, 1/4]. The upper bound of the fourth coefficient is given as: a4 ≤
(−3/8)x + (13/2)x3 for −1/4 ≤ x ≤ −2/9 and for −2/9 < x ≤ 1/4, a4 ≤
(4 − 63x2 + 24x3)/32. The lower bound of the fourth coefficient is given as:
a4 ≥ (−4 + 63x2 + 12x3)/32 for −1/4 ≤ x ≤ 2/9 and for 2/9 < x ≤ 1/4,
a4 ≥ (−5/8)x+ (21/2)x3.

Corollary 1.9. Suppose that the function f ∈ ST Sx
R. Then we have the sharp

bounds of the third coefficient: 2x2 − 1 ≤ a3 ≤ 1 for x ∈ [−1, 1]. The upper
bound of the fourth coefficient is given as: a4 ≤ −2x+3x2 for −1 ≤ x < −2/5
and for −2/5 ≤ x ≤ 1, a4 ≤ (4 + 5x2 − x3)/8. The lower bound of the fourth
coefficient is given as: a4 ≥ (−4 − 5x2 − x3)/8 for −1 ≤ x < 2/5 and for
2/5 ≤ x ≤ 1, a4 ≥ −2x+ 3x3.

2. Proof of main results

The proof of the Theorem 1.1 and other results rely on some lemmas. We
first present three important lemmas which play vital role in the proof of results.
For α ∈ [0, 1), let P(α) be the class of analytic functions p(z) = 1+r1z+r2z

2+
· · · with real part greater than α on D. Lecko [18] investigated the coefficient
estimates of the functions in the class P(α). Note that P(0) = P, the well
known class of Carathéodory functions having positive real part in D.

Lemma 2.1 ([9, Carathéodory Lemma, p. 41]). For a Carathéodory function
p(z) = 1 +

∑∞
n=1 rnz

n, we have a sharp inequality |rn| ≤ 2 for each n.

Lemma 2.2 ([2, Lemma 1, p. 243]). Let r(z) = 1+ yz+ r2z
2 + · · · in Py

R and
let w be real. Then

wr2 + r3 ≤


(8 + 4yw + w2(2− y))/4, if − (w + 2)/2 ∈ [−2, y)

y3 + wy2 − 3y − 2w, if − (w + 2)/2 /∈ [−2, y), y + w < 0

y + 2w, if − (w + 2)/2 /∈ [−2, y), y + w > 0.

The bounds are sharp for all w and −2 ≤ y ≤ 2.

Lemma 2.3. For a real number w and r(z) = 1 + yz + r2z
2 + · · · in the class

Py
R, we have

wr2 + r3 ≥


−(8 + 4wy + w2(y + 2))/4, if (2− w)/2 ∈ (y, 2]

y3 + wy2 − 3y − 2w, if (2− w)/2 /∈ (y, 2], y + w > 0

y + 2w, if (2− w)/2 /∈ (y, 2], y + w < 0.

These estimates are sharp for all w and −2 ≤ y ≤ 2.
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Proof of Lemma 2.3. The proof of this Lemma is essentially based on the proof
of [2, Lemma 1, p. 243]. From [11], we observe that the subclass PR is a closed
convex set with respect to the topology of local uniform convergence and the
set of extreme points Ext(PR) of the class PR consists of all functions px given
by

(2.1) px(z) =
1− z2

1− xz + z2
(−2 ≤ x ≤ 2).

The set PR is closed convex hull of all its extreme points: PR = C̄o(Ext(PR)).
In order to prove our lemma, we need to minimize the linear functional wr2+r3
on the intersection PR with the hyperplane r1 = y. The extreme points of the
intersection of the linear functional wr2 + r3 with r1 = y are contained in the
set of all convex combinations of two extreme points of PR (see [8]). We need
to find the extremum of the functional

(2.2) wr2 + r3 = λ(s3 + ws2) + (1− λ)(t3 + wt2)− 3y − 2w

under the constraints λs + (1 − λ)t = y, 0 ≤ λ ≤ 1 and −2 ≤ s ≤ t ≤ 2. We
use Lagrange method of multipliers to find the minimum value of the wr2 + r3
and for this purpose we construct the auxiliary function

H(s, t, λ, µ) = (wr2 + r3) + µ(λs+ (1− λ)t− y)

= λ(s3 + ws2) + (1− λ)(t3 + wt2)− 3y − 2w + µ(λs+ (1− λ)t− y).

The necessary conditions ∂H/∂s = 0, ∂H/∂t = 0, ∂H/∂l = 0 and ∂H/∂µ = 0
for the extreme value give the following equations

λ(2ws+ 3s2 + µ) = 0, (1− λ)(3t2 + 2wt+ µ) = 0,

ws2 + s3 − t3 − wt2 + µs− tµ = 0, λs+ (1− λ)t− y = 0.

This system of equations has a solution in −2 < s ≤ t < 2 if and only if either
λ = 0 or λ = 1 or s = t and in all these cases, we have, from (2.2),

wr2 + r3 = y3 + wy2 − 3y − 2w.(2.3)

Next we consider the boundary points of the interval −2 ≤ s ≤ t ≤ 2. For
s ̸= t, two cases arise:

Case(i) Let t = 2, −2 ≤ s < 2. In this case λ = (2−y)/(2−s) for −2 ≤ s ≤ y.
Since the function wr2+r3 = −(2−y)s2−(2−y)(2+w)s+2(w+2)y−3y−2w
is concave in s, its minimum is attained at s = −2 or s = y. If s = −2, t = 2
then we get wr2 + r3 = y + 2w. The case s = y, λ = 1 has already been
considered in (2.3).

Case(ii) Let s = −2, −2 ≤ t < 2. In this case λ = (t − y)/(t + 2), where
y ≤ t ≤ 2. Since wr2+ r3 = (y+2)t2+(2+ y)(w− 2)t+2y(2−w)− 3y− 2w is
convex in t, its minimum is attained at either t = y or t = 2 or t = (2− w)/2.
If t = y, then λ = 0 and if t = 2, s = −2. These two cases have already been
considered. If t = (2−w)/2 ∈ (y, 2), then wr2+r3 = −(w2y+4wy+2w2+8)/4
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would give global minimum and in other cases, the minimum value is smaller
than y+2w and y3+wy2−3y−2w. Also we note that y+2w > y3+wy2−3y−2w
if and only if y + w > 0, and the result follows. □

Proof of Theorem 1.1. Let p(z) = zf ′(z)/f(z) = 1 + b1z + b2z
2 + · · · . By a

simple computation in this relation, we obtain a2 = b1, 2a3 = (b21 + b2) and
2a4 = b31 +3b1b2 +2b3. Since φ(z) = 1+B1z+B2z

2 +B3z
3 + · · · is univalent,

Bn ∈ R and

p(z) =
zf ′(z)

f(z)
≺ φ(z),

the function

p1(z) =
1 + φ−1(p(z))

1− φ−1(p(z))
= 1 + c1z + c2z

2 + c3z
3 · · ·

is in PR. A simple calculation yields

p(z) = φ

(
p1(z)− 1

p1(z) + 1

)
.

We now express the initial coefficients of the function f(z) = z+
∑∞

n=1 anz
n ∈

ST x
R(φ) in terms of Bi and ci (i = 1, 2, 3). The last equation and the equation

that expresses an in terms of bn’s yield the following expressions for the initial
coefficients

2a2 = B1c1,

(2.4) 8a3 = (B2
1 −B1 +B2)c

2
1 + 2B1c2,

48a4 = (B3
1 − 3B2

1 + 3B1B2 + 2B1 − 4B2 + 2B3) c
3
1(2.5)

+ 2(3B2
1 − 4B1 + 4B2)c1c2 + 8B1c3.

For more details on the expressions a3 and a4 in terms of Bi and ci (i =
1, 2, 3), we refer [28]. Note that a2 is fixed, namely, a2 = x and consequently
c1 = 2x/B1. On substituting c1 = 2x/B1 in the equation (2.4), we get

(2.6) a3 =
(B2

1 −B1 +B2)

2B2
1

x2 +
1

4
B1c2.

(a) Using the Carathéodory Lemma (Lemma 2.1) in equation (2.6) yields
the desired upper bound for a3. Let the function f0 : D → C be given by

f0(z) = z exp

 z∫
0

(
φ

(
q0(t)− 1

q0(t) + 1

)
− 1

)
t−1 dt

 ,(2.7)

where

q0(t) =
B1 − x

2B1
p−2(t) +

B1 + x

2B1
p2(t)
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and the function px(z) is given by (2.1). The Taylor series expansion of f0 is
given by

f0(z) = z + xz2 +
1

2

(
(B2

1 +B2 −B1)x
2

B2
1

+B1

)
z3

+

(
(−2B1 + 3B2

1 + 4B2)

6B1
x

+
(2B1 − 3B2

1 +B3
1 − 4B2 + 3B1B2 + 2B3)

6B3
1

x3

)
z4 + · · · .

The upper bound on a3 is clearly sharp for this function f0.
On taking y = c1 = 2x/B1 and letting w → ∞ in Lemma 2.3, we get the

inequality r2 = c2 ≥ (4x2/B2
1) − 2 and by using this minimum value of c2 in

(2.6), we get the desired lower bound of a3. To show the sharpness of the lower
bound on a3, consider the function g0 : D → C given by

g0(z) = z exp

 z∫
0

(
φ

(
l0(t)− 1

l0(t) + 1

)
− 1

)
t−1 dt

 ,(2.8)

where

l0(t) =
(1− t2)B1

(B1 − 2xt+B1t2)
.

The Taylor’s series expansion of g0 given by

g0(z) = z + xz2 +
1

2

(
(B2

1 +B2 +B1)x
2

B2
1

−B1

)
z3 +

(
− (2B1 + 3B2

1 + 4B2)

6B1
x

+
2B1 + 3B2

1 +B3
1 + 3B1B2 + 4B2 + 2B3

6B3
1

x3

)
z4 + · · ·

shows that the lower bound is sharp.
(b) On substituting c1 = 2x/B1 in (2.5), the coefficient a4 is expressed as

a4 =
1

6B3
1

(B3
1 − 3B2

1 + 3B1B2 + 2B1 − 4B2 + 2B3)x
3

+
1

12B1
(3B2

1 − 4B1 + 4B2)xc2 +
1

6
B1c3

=
1

6B3
1

(B3
1 − 3B2

1 + 3B1B2 + 2B1 − 4B2 + 2B3)x
3 +

B1

6
g(c2, c3),(2.9)

where

g(c2, c3) =
(3B2

1 − 4B1 + 4B2)x

2B2
1

c2 + c3.

We apply Lemma 2.2 to the function g(c2, c3). The upper bound on a4 is
discussed in the following three cases (i)-(iii):
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(i) If (3B2
1 − 4B1 + 4B2)x + 4B2

1 ∈ (−8B1x, 8B
2
1 ], then Lemma 2.2 shows

that

g(c2, c3) ≤ 2 +
(−16B2

1 + 9B4
1 + 24B2

1B2 + 16B2
2)

8B4
1

x2

+
(−16B2

1 + 24B3
1 − 9B4

1 + 32B1B2 − 24B2
1B2 − 16B2

2)

8B5
1

x3.

(2.10)

Using (2.10) in (2.9), we get the desired bound for the fourth coefficient. To
prove the sharpness of the bound, consider the function f1 : D → C defined by

f1(z) = z exp

 z∫
0

(
φ

(
q1(t)− 1

q1(t) + 1

)
− 1

)
t−1 dt

 ,

where

q1(z) =
8B1(B1 − x)

−4B1x+ 4B2x+ 3B2
1(4 + x)

ps(z)

+
4B1x+ 4B2x+B2

1(4 + 3x)

−4B1x+ 4B2x+ 3B2
1(4 + x)

p2(z),

s = ((4B1 − 3B2
1 − 4B2)x− 4B2

1)/4B
2
1 and the function px(z) is given by (2.1).

The Taylor series expansion of f1 is given by

f1(z) =z + xz2 +

(
(3B2

1 + 4B2)

8B1
x+

1

8
x2

)
z3

+

(
B1

3
+

(−4B1 + 3B2
1 + 4B2)(4B1 + 3B2

1 + 4B2)

48B3
1

x2

+
(−B4

1 − 16B2
2 + 16B1B3)

48B4
1

x3

)
z4 + · · ·

and it clearly shows that the bound is sharp.
(ii) If (3B2

1 − 4B1 + 4B2)x + 4B2
1 /∈ (−8B1x, 8B

2
1 ] and (3B2

1 + 4B2)x > 0,
then Lemma 2.2 shows that

g(c2, c3) ≤
(−2B1 + 3B2

1 + 4B2)

B2
1

x.(2.11)

Use of (2.11) in (2.9) gives the required upper bound on a4. The bound is
clearly sharp for the function f0 defined by (2.7).

(iii) If (3B2
1 − 4B1 + 4B2)x + 4B2

1 /∈ (−8B1x, 8B
2
1 ] and (3B2

1 + 4B2)x < 0,
then Lemma 2.2 yields

g(c2, c3) ≤
(−2B1 − 3B2

1 − 4B2)

B2
1

x+
2(3B2

1 + 4B2)

B4
1

x3.(2.12)
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Using (2.12) in (2.9), the desired bound on a4 is obtained and equality is
attained for the function g0 defined by (2.8).

The lower bound for the fourth coefficients given in (iv)-(vi) are proved by
applying Lemma 2.3 to the function g(c2, c3). As before, the construction of
the extremal function is the important step in the proof.

(iv) If 4B2
1 + (−3B2

1 + 4B1 − 4B2)x ∈ (8B1x, 8B
2
1 ], then Lemma 2.3 shows

g(c2, c3) ≥ −2 +
(16B3

1 − 9B5
1 − 24B3

1B2 − 16B1B
2
2)

8B5
1

x2

+
(−16B2

1 + 24B3
1 − 9B4

1 + 32B1B2 − 24B2
1B2 − 16B2

2)

8B5
1

x3.

(2.13)

The required lower bound of a4 follows from the equation (2.10) upon using
(2.13). Consider the function g1 : D → C defined by

g1(z) = z exp

 z∫
0

(
φ

(
l1(t)− 1

l1(t) + 1

)
− 1

)
t−1 dt

 ,

where

l1(z) =
4B1x+ 4B2x+B2

1(−4 + 3x)

3B2
1(−4 + x)− 4B1x+ 4B2x

p−2(z)

− 8B1(B1 + x)

3B2
1(−4 + x)− 4B1x+ 4B2x

ps(z),

s = (4B2
1 +4B1x−3B2

1x−4B2x)/4B
2
1 and the function px(z) is given by (2.1).

The Taylor series expansion of g1 is given by

g1(z) = z + xz2 +

(
− (3B2

1 + 4B2)

8B1
x+

x2

8

)
z3

−
(
(B4

1 + 16B2
2 − 16B1B3)

48B4
1

x3

+
(−4B1 + 3B2

1 + 4B2)(4B1 + 3B2
1 + 4B2)

48B3
1

x2 +
B1

3

)
z4 + · · ·

The bound is clearly sharp for the function g1.
(v) If 4B2

1 + (−3B2
1 + 4B1 − 4B2)x /∈ (8B1x, 8B

2
1 ] and (3B2

1 + 4B2)x < 0,
then Lemma 2.3 shows that

g(c2, c3) ≥
(−2B1 + 3B2

1 + 4B2)

B2
1

x.(2.14)

The equation (2.9) and the inequality (2.14) together yield the required result.
The bound is sharp for the function f0 defined by (2.7).
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(vi) If 4B2
1 + (−3B2

1 + 4B1 − 4B2)x /∈ (8B1x, 8B
2
1 ] and (3B2

1 + 4B2)x > 0,
then Lemma 2.3 shows

g(c2, c3) ≥
−(2B1 + 3B2

1 + 4B2)

B2
1

x+
2(3B2

1 + 4B2)

B4
1

x3.(2.15)

The equation (2.9) and the inequality (2.15) together yield the required result.
The bound is sharp for the function g0 defined by (2.8). □

Proof of Theorem 1.6. As in the proof of Theorem 1.1, we first determine the
initial three coefficients of the function f(z) = z +

∑∞
n=1 anz

n ∈ ST Sx
R(φ) in

terms of Bi and ci (i = 1, 2, 3, 4), where ci’s are the coefficients of a suitably
defined function with positive real part. Let p(z) = 2zf ′(z)/(f(z)− f(−z)) =
1 + b1z + b2z

2 + b3z
2 + · · · . Since f(z) = z +

∑∞
n=2 anz

n, then 2zf ′(z) =
(1 +

∑∞
k=1 bkz

k)(f(z)− f(−z)) readily gives

z +
∞∑

n=2

nanz
n =

(
1 +

∞∑
k=1

bkz
k

)(
z +

∞∑
n=2

a2n+1z
2n+1

)

=
∞∑

n=1

a2n−1z
2n−1 +

∞∑
p=1

⌊ p
2 ⌋∑

n=1

bp−2n+1a2n−1

 zp.(2.16)

On equating the coefficients of z2, z3 and z4 on both sides, we obtain a2 = b1/2,
a3 = b2/2 and a4 = (b1b2 + 2b3)/8. Since φ(z) = 1 +B1z +B2z

2 +B3z
3 + · · ·

is univalent and 2zf ′(z)/(f(z)− f(−z)) ≺ φ(z), the function

p2(z) =
1 + φ−1(p(z))

1− φ−1(p(z))
= 1 + c1z + c2z

2 + c3z
3 + · · · ∈ PR.

A simple calculation gives

p(z) = φ

(
p2(z)− 1

p2(z) + 1

)
,

and by power series expansion, we get

2b1 = B1c1,

4b2 = (B2 −B1)c
2
1 + 2B1c2,

8b3 = (B1 − 2B2 +B3)c
3
1 + 4(B2 −B1)c1c2 + 4B1c3,

16b4 = (−B1 + 3B2 − 3B3 +B4)c
4
1 + 6(B3 − 2B2 +B1)c

2
1c2 + 4(B2 −B1)c

2
2

+ 8(B2 −B1)c1c3 + 8B1c4.

The coefficients an (n = 2, 3, 4) of the function f ∈ ST Sx
R(φ) in terms of Bi

and ci are given by

(2.17) a2 = x =
B1c1
4

,
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(2.18) a3 =
1

8
((B2 −B1)c

2
1 + 2B1c2),

a4 =
1

64
(2B1 −B2

1 − 4B2 +B1B2 + 2B3)c
3
1

+
1

32
(−4B1 +B2

1 + 4B2)c1c2 +
1

8
B1c3.

(2.19)

(a) On using c1 = 4x/B1 in the equation (2.18), we get

(2.20) a3 =
2(B2 −B1)

B2
1

x2 +
1

4
B1c2.

Using the Carathéodory Lemma (Lemma 2.1) in (2.20) yields the desired result.
Consider the function f0 : D → C given by

(2.21)
2zf ′

0(z)

f0(z)− f0(−z)
= φ

(
q0(z)− 1

q0(z) + 1

)
,

where

q0(z) =
B1 − 2x

2B1
p−2(z) +

B1 + 2x

2B1
p2(z)

and the function px(z) is given by (2.1). The Taylor series expansion of f0 is
given by

f0(z) =z + xz2 +

(
2(B2 −B1)

B2
1

x2 +
B1

2

)
z3 +

(
(−2B1 +B2

1 + 4B2)

4B1
x

− (B2
1 + 4B2 − 2B1 −B1B2 − 2B3)

B3
1

x3

)
z4 + · · · .

The upper bound on a3 is clearly sharp for the function f0.
Further, from Lemma 2.3, we have c2 ≥ 16x2/B2

1 − 2. By using the inequality
c2 ≥ 16x2/B2

1 − 2 in (2.20), the required lower bound for a3 follows. Consider
the function g0 : D → C given by

(2.22)
2zg′0(z)

g0(z)− g0(−z)
= φ

(
l0(z)− 1

l0(z) + 1

)
,

where

l0(z) =
(1− z2)B1

(1 + z2)B1 − 4xz
.

The Taylor series expansion of g0 is given by

g0(z) =z + xz2 +

(
2(B1 +B2)

B2
1

x2 − B1

2

)
z3 +

(
− (2B1 +B2

1 + 4B2)

4B1
x

+
(2B1 +B2

1 + 4B2 +B1B2 + 2B3)

B3
1

x3

)
z4 + · · · .

The lower bound is clearly sharp for the function g0.
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(b) Putting c1 = 4x/B1 in equation (2.19), the coefficient a4 is expressed as

a4 =
(2B1 −B2

1 − 4B2 +B1B2 + 2B3)

B3
1

x3 +
(−4B1 +B2

1 + 4B2)

8B1
xc2 +

1

8
B1c3

=
(2B1 −B2

1 − 4B2 +B1B2 + 2B3)

B3
1

x3 +
B1

8
h(c2, c3),

(2.23)

where

h(c2, c3) =
(−4B1 +B2

1 + 4B2)x

B2
1

c2 + c3.

We apply Lemma 2.2 to the function h(c2, c3). The upper bound on a4 is
discussed in following three cases (i)-(iii):

(i) If x(−4B1 +B2
1 +4B2) ∈ [−2B1(4x+B1), 2B

2
1), then Lemma 2.2 shows

h(c2, c3) ≤ 2 +
(−16B2

1 +B4
1 + 8B2

1B2 + 16B2
2)

2B4
1

x2

+
(−16B2

1 + 8B3
1 −B4

1 + 32B1B2 − 8B2
1B2 − 16B2

2)

B5
1

x3(2.24)

On using the estimate of h(c2, c3) from (2.24) in (2.23), the required result
follows. Consider the function f1 : D → C given by

2zf ′
1(z)

f1(z)− f1(−z)
= φ

(
q1(z)− 1

q1(z) + 1

)
,

where

q1(z) =
4B1(B1 − 2x)

−4B1x+ 4B2x+B2
1(6 + x)

ps(z)

+
4B1x+ 4B2x+B2

1(2 + x)

−4B1x+ 4B2x+B2
1(6 + x)

p2(z),

s = (−2B2
1 + 4B1x − B2

1x − 4B2x)/(2B
2
1) and px(z) is given by (2.1). The

Taylor series expansion of function f1 is

f1(z) = z + xz2 +

(
(B2

1 + 4B2)

4B1
x− x2

2

)
z3

+

(
− (B4

1 + 16B2
2 − 16B1B3)

8B4
1

x3

+
(B4

1 + 8B2
1B2 − 16B2

1 + 16B2
2)

16B3
1

x2 +
B1

4

)
z4 + · · · .

The result is clearly sharp for the function f1.
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(ii) If x(−4B1 +B2
1 +4B2) /∈ [−2B1(4x+B1), 2B

2
1) and (B2

1 +4B2)x < 0,
then Lemma 2.2 shows that

(2.25) h(c2, c3) ≤
−2(2B1 +B2

1 + 4B2)

B2
1

x+
16(B2

1 + 4B2)

B4
1

x3

On putting the value of h(c2, c3) from (2.25) in (2.23), we get the desired result.
The bound is clearly sharp for the function g0 defined by (2.22).

(iii) If x(−4B1+B2
1 +4B2) /∈ [−2B1(4x+B1), 2B

2
1) and (B2

1 +4B2)x > 0,
then Lemma 2.2 shows that

(2.26) h(c2, c3) ≤
2(−2B1 +B2

1 + 4B2)

B2
1

x.

The required bound of a4 follows from the equation (2.23) upon using (2.26).
The bound is sharp for the function f0 given by (2.21).

The lower bound for the fourth coefficient given in (iv)-(vi) are proved by
applying Lemma 2.3 to the function h(c2, c3).
(iv) If x(−4B1 +B2

1 + 4B2) ∈ [−2B2
1 , −8B1x+ 2B2

1 ), then Lemma 2.3 gives

h(c2, c3) ≥ −2 +
(16B2

1 −B4
1 − 8B2

1B2 − 16B2
2)

2B4
1

x2

+
(−16B2

1 + 8B3
1 −B4

1 + 32B1B2 − 8B2
1B2 − 16B2

2)

B5
1

x3(2.27)

The required bound of a4 follows from the equation (2.23) upon using (2.27).
Consider the function g1 : D → C given by

2zg′1(z)

g1(z)− g1(−z)
= φ

(
l1(z)− 1

l1(z) + 1

)
,

where

l1(z) =
−4B1(B1 + 2x)

−6B2
1 + (B2

1 − 4B1 + 4B2)x
ps(z)

+
−2B2

1 + (B2
1 + 4B1 + 4B2)x

−6B2
1 + (B2

1 − 4B1 + 4B2)x
p−2(z),

s = (2B2
1 − (−4B1 + B2

1 + 4B2)x)/(2B
2
1) and px(z) is given by (2.1). In fact,

the Taylor series expansion of function g1 is given by

g1(z) =z + xz2 − x(B2
1 + 4B2 + 2B1x)

4B1
z3

+

(
(−B4

1 − 16B2
2 + 16B1B3)

8B4
1

x3

+
(16B2

1 −B4
1 − 8B2

1B2 − 16B2
2)

16B3
1

x2 − B1

4

)
z4 + · · · ,

which shows that the bound is sharp.
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(v) If x(−4B1 +B2
1 + 4B2) /∈ [−2B2

1 , −8B1x+ 2B2
1 ) and (B2

1 + 4B2)x < 0,
then Lemma 2.3 shows that

(2.28) h(c2, c3) ≥
2(−2B1 +B2

1 + 4B2)

B2
1

x

Using (2.28) in (2.23) gives the required bound on a4. The bound is sharp for
the function f0 defined by (2.21)

(vi) If x(−4B1 +B2
1 +4B2) /∈ [−2B2

1 , −8B1x+2B2
1 ) and (B2

1 +4B2)x > 0,
then Lemma 2.3 shows that

(2.29) h(c2, c3) ≥ −2(2B1 +B2
1 + 4B2)

B2
1

x+
2(8B2

1 + 32B2)

B4
1

x3

Using (2.29) in (2.23) gives the required bound on a4. The bound is sharp for
the function g0 defined by (2.22). □

Acknowledgement

The third author is supported by a Senior Research Fellowship from the
National Board for Higher Mathematics, Mumbai, India.

References

[1] H.S. Al-Amiri and D. Bshouty, Constraint coefficient problems for subclasses of univalent

functions, in: Current Topics in Analytic Function Theory, pp. 29–35, World Scientific
Publ. River Edge, NJ, 1992.

[2] H.S. Al-Amiri and D.H. Bshouty, A constraint coefficient problem with an application

to a convolution problem, Complex Variables Theory Appl. 22 (1993), no. 3-4, 241–246.
[3] R.M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math.

Sci. Soc. (2) 26 (2003), no. 1, 63–71.
[4] R.M. Ali, S.K. Lee, V. Ravichandran and S. Supramaniam, The Fekete-Szegő coefficient
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subclasses of starlike functions with respect to symmetric points, Bull. Korean Math.
Soc. 43 (2006), no. 3, 589–598.

[32] T.N. Shanmugam and V. Ravichandran, Certain properties of uniformly convex func-
tions, in: Computational Methods and Function Theory 1994 (Penang), pp. 319–324,

Ser. Approx. Decompos. 5, World Scientific Publ. River Edge, NJ, 1995.
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