
...

Bulletin of the

.

Iranian Mathematical Society

.

ISSN: 1017-060X (Print)

.

ISSN: 1735-8515 (Online)

.

Vol. 43 (2017), No. 7, pp. 2137–2152

.

Title:

.

n-Array Jacobson graphs

.

Author(s):

.

H. Ghayour, A. Erfanian, A. Azimi and M. Farrokhi D.G.

.

Published by the Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 43 (2017), No. 7, pp. 2137–2152
Online ISSN: 1735-8515

n-ARRAY JACOBSON GRAPHS

H. GHAYOUR, A. ERFANIAN∗, A. AZIMI AND M. FARROKHI D.G.

(Communicated by Ali Reza Ashrafi)

Abstract. We generalize the notion of Jacobson graphs into n-array
columns called n-array Jacobson graphs and determine their connectiv-
ities and diameters. Also, we will study forbidden structures of these

graphs and determine when an n-array Jacobson graph is planar, outer
planar, projective, perfect or domination perfect.
Keywords: Jacobson graph, connectivity, planar graph, outer planar
graph, perfect graph.
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1. Introduction

Let R be a commutative ring with a non-zero identity and J(R) be the
Jacobson radical of R. The Jacobson graph of R, denoted by JR, is a graph
with R \ J(R) as its vertex set and two distinct vertices x and y are adjacent
if 1− xy /∈ U(R), the set of units of R.

The Jacobson graphs first introduced by Azimi, Erfanian and Farrokhi in [2]
where they obtained many graph theoretical properties of these graphs includ-
ing connectivity, planarity and perfectness (see [1, 3, 4] for further results on
Jacobson graphs).

The aim of this paper is to extend the notion of Jacobson graphs from ring
elements to n-array vectors with entries as elements of the underlying ring. Our
graphs can be considered as a variation of many other known graphs defined
on vector spaces, say symplectic graphs, unitary graphs, orthogonal graphs etc
(see for instance [8, 10,11]).

Let R be a commutative ring with a non-zero identity and n be a natural
number. Also, let Mn×1(R) = {[r1 . . . rn]

T : r1, . . . , rn ∈ R} and Jn(R) =
{[r1 . . . rn]

T ∈ Mn×1(R) : r1, . . . , rn ∈ J(R)}. Then the n-array Jacobson
graph of R, denoted by JnR, is a graph whose vertex set is Mn×1(R) \ Jn(R)
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and two distinct vertices X and Y are adjacent if 1−XT · Y /∈ U(R). Clearly,
J1R is the Jacobson graph of R.

Let f : R×R −→ S be a bilinear form of a ring R (vector space V ) over a ring
S (field F ) and Λ ⊆ S (Λ ⊆ F ). Then we may define a graph Γf,Λ(R,S) whose
vertices are elements of R (vectors in V ) and two distinct elements (vectors) u
and v are adjacent whenever f(u, v) ∈ Λ. Now, if f : Mn×1(R)×Mn×1(R) −→
R is the natural inner product and Λ = R\ (1−U(R)), then Γf,Λ(Mn×1(R), R)
is the mentioned n-array generalization of Jacobson graph JnR associated to R.
In particular, if F is a field and V is a vector space of dimension n over F ,
then JnF is the same as the graph Γ⟨·,·⟩,{1}(V, F ) where two distinct vertices are
adjacent if their inner products equals 1.

In this paper, we shall study some graph theoretical properties of an n-array
Jacobson graph for a natural number n. In Section 2, we discuss the con-
nectivity of this graph and show that an n-array Jacobson graph is connected
except when n = 1 and the underlying ring is local. In Section 3, we study for-
bidden structures in n-array Jacobson graphs and determine all planar, outer
planar, projective, perfect and domination perfect n-array Jacobson graphs.
Throughout this paper, all rings are assumed to be finite commutative rings
with a non-zero identity. It is known that such a ring R has a decomposition
R = R1⊕· · ·⊕Rm into local rings Ri, for i = 1, . . . ,m (see [9, Theorem VI.2]).
In what follows, ei denotes the element (0, . . . , 0, 1, 0, . . . , 0) of R with 1 on
the ith entry and 0 elsewhere. Also, 1 and 0 stand for the identity element
and the zero element of R, respectively. For 1 ≤ i ≤ n and 1 ≤ j ≤ m, the
elements [0 · · ·0 1 0 · · ·0]T and [0 · · ·0 ej 0 · · ·0]T are denoted by Ei and Eij ,
respectively, where the non-zero entry lies on the ith row. For convenience,
the finite field of order q is denoted by Fq. The union of n disjoint copies of
a graph Γ is denoted by nΓ. The dot product of two vertex transitive graphs
Γ1 and Γ2, denoted by Γ1 ·Γ2, is the graph obtained from the union of disjoint
copies of Γ1 and Γ2 by identification of a vertex of Γ1 with a vertex of Γ2.

2. Connectedness

In this section, we discuss the connectivity and compute the diameter of n-
array Jacobson graphs. Recall that the results are known for Jacobson graphs
as in the following theorem.

Theorem 2.1. Let R be a finite non-local ring. Then J1R is a connected graph
and diam(J1R) ≤ 3.

Proof. See [2, Theorem 4.1]. □

Now, we consider n-array Jacobson graphs when n ≥ 2.

Theorem 2.2. Let R be a finite ring and n ≥ 2. Then JnR is connected.
Moreover,
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(1) diam(JnR) ≤ 4 if R is local, and
(2) diam(JnR) ≤ 3 if R is not local.

Proof. (1) Let m be the maximal ideal of R and assume that X = [x1 . . . xn]
T

and Y = [y1 . . . yn]
T are distinct non-adjacent vertices of JnR. If xi, yj /∈ m for

some distinct 1 ≤ i, j ≤ n, then

X ∼ x−1
i Ei ∼ xiEi + yjEj ∼ y−1

j Ej ∼ Y

and we are done. Hence we assume that xi, yi /∈ m for some 1 ≤ i ≤ n, and
xj , yj ∈ m for all j ̸= i. So

X ∼ x−1
i Ei +Ej ∼ Ej ∼ y−1

i Ei +Ej ∼ Y.

Hence d(X,Y ) ≤ 4 so that diam(JnR) ≤ 4. In particular, JnR is connected.
(2) Let R = R1 ⊕ · · · ⊕ Rm (m ≥ 2) be a decomposition of R into local

rings (Ri,mi), for i = 1, . . . ,m. Let X = [x1 . . . xn]
T and Y = [y1 . . . yn]

T

be distinct non-adjacent vertices of JnR, where xi = (x1
i , . . . , x

m
i ) /∈ J(R) and

yj = (y1j , . . . , y
m
j ) /∈ J(R) for some 1 ≤ i, j ≤ n. Now, choose s and t as the

least indices such that xs
i ∈ U(Rs) and ytj ∈ U(Rt). If i ̸= j then

X ∼ (xs
i )

−1Eis + ytjEjt ∼ xs
iEis + (ytj)

−1Ejt ∼ Y

is a path between X and Y . Hence assume that i = j. We consider two cases:
Case 1. s ̸= t. Without loss of generality we assume that t < s. Then

X ∼ (yti)
−1Eis + (xs

i )
−1Eis ∼ Y is a path connecting vertices X and Y .

Case 2. s = t. If xs
i = ysi then X ∼ (xs

i )
−1Eis ∼ Y is a path connecting

vertices X and Y . Also, in the case xs
i ̸= ysi ,

X ∼ Ei1 +Ei2 + · · ·+ (xs
i )

−1Eis + · · ·+Eim

∼ Ei1 +Ei2 + · · ·+ (ysi )
−1Eis + · · ·+Eim

∼ Y

is a path between X and Y . Therefore, diam(JnR) ≤ 3 and subsequently JnR is
connected. □

Theorem 2.3. Let R be a finite ring. Then diam(JnR) = 2 if and only if
R = R1 ⊕ · · · ⊕ Rm (m ≥ 2) such that (Ri,mi) are local rings with associated
fields of order 2.

Proof. Suppose on the contrary that R/J(R) ≇ Z2 ⊕ · · · ⊕ Z2. Hence there
exists an element u ∈ U(Ri) \ {1} such that u /∈ 1 + mi for some 1 ≤ i ≤ n.
Then NJn

R
(uEi) ∩NJn

R
(u−1Ei) = ∅, which contradicts the assumption.

Conversely, let X = [x1 . . . xn]
T and Y = [y1 . . . yn]

T be distinct
non-adjacent vertices of JnR, where xi = (x1

i , . . . , x
m
i ) /∈ J(R) and yj =

(yj1, . . . , y
j
m) /∈ J(R) for some 1 ≤ i, j ≤ n. Now if s and t are the least

indices such that xs
i ∈ U(Rs) and ytj ∈ U(Rt), then there exists ms ∈ ms and
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mt ∈ mt such that xs
i = 1 +ms and ytj = 1 +mt. So X ∼ Eis + Ejt ∼ Y is a

path between X and Y . The proof is completed. □

3. Forbidden structures

In this section, we shall study an n-array Jacobson graph, which lacks special
subgraphs. This enables us to determine an n-array Jacobson graph that is
planar, outer planar, projective, perfect or domination perfect. The following
lemma will be used frequently in the sequel.

Lemma 3.1. The only finite local rings (R,m) with |m| = p are Zp2 and
Zp[x]/(x

2).

Proof. Let m = {ix : i = 0, . . . , p − 1} and α + m be a generator of the
multiplicative group of R/m. Since αx ∈ m and α is a unit, we have that
αx = ix for some 1 ≤ i ≤ p − 1, hence (α − i)x = 0. Then α − i is a non-
unit element of R, which implies that α − i ∈ m. Thus α − i = jx for some
1 ≤ j ≤ p−1, from which it follows that R = ⟨1, x⟩. Since R is finite, J(R) = m
is nilpotent, which implies that x2 = 0. Therefore R ∼= Zp2 or Zp[x]/(x

2), as
required. □

Remind that a graph is planar if it can be drawn in the plane in such a
way that two edges intersect only on the endpoints. A well-known theorem of
Kuratowski states that a graph is planar if and only if it does not have any
subdivision of K5 or K3,3 as a subgraph. The following lemma, as a corollary
to Euler’s formula, gives a simple criterion for planarity of graphs. Recall that
δ(Γ) is the minimum valency of a graph Γ.

Lemma 3.2. If Γ is a planar graph, then δ(Γ) ≤ 5.

Planar Jacobson graphs are completely described in [2] as follows.

Theorem 3.3 ([2, Theorem 4.3]). Let R be a finite ring. Then JR is planar if
and only if either R is a field, or R is isomorphic to one of the following rings:

(i) Z4, Z2 ⊕ Z2, Z2[x]/(x
2) of order 4,

(ii) Z6 of order 6,
(iii) Z8, Z2⊕Z4, Z2⊕Z2⊕Z2, Z2[x]/(x

3), Z4[x]/(2x, x
2), Z2⊕Z2[x]/(x

2),
Z2 ⊕Z2[x]/(x

2 + x+ 1), Z4[x]/(2x, x
2 − 2), Z2[x, y]/(x, y)

2 of order 8,
and

(iv) Z9, Z3 ⊕ Z3, Z3[x]/(x
2) of order 9.

Theorem 3.4. Let R be a finite ring and n ≥ 2. Then JnR is planer if and
only if

(1) n = 2 and either R ∼= Z2 or R ∼= Z3, or
(2) n = 3 and R ∼= Z2.
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Figure 1

Proof. Suppose that JnR is planar. First assume that R is not a local ring. Let
R = R1⊕· · ·⊕Rm be a decomposition of R into local rings Ri, for i = 1, . . . ,m.
Then the subgraph induced by

E11,E11 +E21,E11 +E21 +E22,E11 +E12,E11 +E22

is isomorphic to K5, which is a contradiction. Hence R is local with maximal
ideal m. It is easy to see that δ(JnR) > 5 when m ̸= 0. Hence, by invoking
Lemma 3.2, it follows that m = 0 so that R is a field. If n ≥ 3, then the
same argument shows that δ(JnR) > 5 unless n = 3 and R ∼= Z2. Finally
assume that n = 2. If |R| ≥ 4, then JnR has a subdivision of K3,3 as drawn in
Figure 1, in which a = E1, b = uE1, c = vE1, d = E1 + vE2, e = E1 + uE2,
f = E1+E2, g = u−1E1+(1−u−1)E2, h = v−1E1+(1−v−1)E2, i = u−1E1+
u−1(1− u−1)E2, j = v−1E1 + u−1(1− v−1)E2, k = u−1E1 + v−1(1− u−1)E2,
l = v−1E1 + v−1(1− v−1)E2 and that u, v ∈ R \ {0, 1} with v ̸= u. Therefore,
R ∼= Z2 or Z3. The converse is straightforward by Figures 2, 3 and 4. □

....

Figure 2. J2Z2

.........

Figure 3. J2Z3

........

Figure 4. J3Z2

Utilizing the above classifications of planar n-array Jacobson graphs, it is
now easy to describe all outer planar n-array Jacobson graphs. Recall that a
graph is outer planar if it has a planar embedding such that all vertices belong
to the outer region.

Corollary 3.5. Let R be a finite ring. Then JnR is outer planer if and only if
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(1) n = 1 and R is a field or R ∼= Z4, Z2⊕Z2, Z2[x]/(x
2), Z6, Z9, Z3⊕Z3

or Z3[x]/(x
2), or

(2) n = 2 and R ∼= Z2.

Proof. If JnR is outer planar, then it is planar and must be one of the rings in
Theorems 3.3 or 3.4. Now, a simple verification shows that all rings except
those written in the corollary have a subdivision of non-outer planar graphs
K4 or K2,3, as required. □

Studying embeddings of n-array Jacobson graphs on surfaces of higher genus
is very difficult in general. For this reason, in this paper, we just consider the
embedding of n-array Jacobson graphs on the non-orientable surface of genus
1 known as the projective plane. A non-planar graph is said to be projective
if it can be drawn in the projective plane in such a way that two edges are
crossing only at the end vertices. Examples of non-projective graphs are K7,
2K5, K4,4, 2K3,3 and K3,3 ·K3,3 possessing the graphs A2, A5, E18, E42 and
E1 of [7, pp. 365–369] as subgraph, respectively.

Theorem 3.6. The graph JnR is projective if and only if n = 1 and R ∼= Z10

or Z3 ⊕ F4.

Proof. First suppose that JnR is a projective graph and R = R1 ⊕ · · · ⊕ Rm is
a decomposition of R into local rings R1, . . . , Rm. If m,n ≥ 2 then, by Figure
5, JnR has a subgraph isomorphic to K3,3 ·K3,3, the dot product of two copies
of K3,3, which is a contradiction. Now, we proceed in two cases:

Case 1. m = 1 and n ≥ 2. Then R is a local ring with a maximal ideal m. If
|m| ≥ 3 and m,m′ ∈ m \ {0}, then, by Figure 6, JnR has a subgraph isomorphic
to K3,3 · K3,3, a contradiction. Now let |m| = 2 and m ∈ m \ {0}. Then, by
Lemma 3.1, R ∼= Z4 or Z2[x]/(x

2), hence JnR has a bipartite subgraph with
bipartition

{E1 +E2,E1 + xE2, xE1 +E2, xE1 + xE2} and {E1,E2, xE1, xE2},

where x ∈ R \ (J(R) ∪ {1}) and this is a contradiction.
Now suppose that m = 0, hence R is a finite field. If n ≥ 4 then JnR has a

subgraph isomorphic to the non-projective graph G (see [7, p. 370]) as drawn in
Figure 7, where a, b, c, d, e, f, g, h, i, j, k, l denote E1+E4, E1, E1+E2+E4, E2,
E1+E2, E2+E3, E1+E3, E3+E4, E2+E3+E4, E3, E2+E4, E1+E2+E3+E4,
respectively, a contradiction. Hence n ≤ 3.

Suppose n = 3. If R has an element α different from 0,±1, then, by Figure
8, JnR is not projective, a contradiction. Also, if R ∼= Z3 then, by Figure 9, JnR
is not projective from which it follows that R ∼= Z2. This implies that JnR is
planar, which is a contradiction. Finally, assume n = 2. First, observe that
by Figures 10 and 11, the graph JnR is not projective when |R| = 4 and 5,
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respectively. Note that a, b, c, d, e, f, g, h, i, j, k, l,m, n denote the vertices[
1
θ2

]
,

[
θ2

θ2

]
,

[
θ2

1

]
,

[
1
θ

]
,

[
1
0

]
,

[
1
1

]
,

[
θ2

θ

]
,

[
0
θ2

]
,

[
θ
θ

]
,

[
θ
1

]
,

[
θ2

0

]
,

[
θ
θ2

]
,

[
0
θ

]
,

[
θ
0

]
in Figure 10 where θ is the multiplicative generator of R and denote the vertices[

4
2

]
,

[
1
1

]
,

[
0
1

]
,

[
4
1

]
,

[
4
0

]
,

[
4
3

]
,

[
2
1

]
,

[
3
0

]
,

[
2
2

]
,

[
0
3

]
,

[
0
2

]
,

[
2
3

]
,

[
2
4

]
,

[
1
2

]
in Figure 11. Hence we must have |R| ≥ 7. Now, by [6, Proposition 3], we have
|E(JnR)| ≤ 3|V (JnR)| − 6, which is impossible for

degJn
R

([
a
b

])
=

{
|R|, (a, b) ̸= (±1, 0) and (0,±1),

|R| − 1, (a, b) = (±1, 0) or (0,±1).

Case 2. n = 1. If R is a finite local ring, then |R| = |m||F | is a prime
power in which m and F are the maximal ideal and the associated field of R,
respectively. By [2, Theorem 2.2], J1R

∼= (1+εF )K|m|∪ (|F |−2−εF )/2K|m|,|m|,

where εF is the parity of |F |. Since J1R has no subgraphs isomorphic to K4,4,
2K3,3 and 2K5, it follows that |m| ≤ 4 and |F | ≤ 3 so that J1R is planar, a
contradiction. Hence R is a finite non-local ring. Let R = R1 ⊕ · · · ⊕ Rm

(m ≥ 2) be a decomposition of R into local rings (Ri,mi) with associated fields
Fi, for i = 1, . . . ,m. If m is a maximal ideal of R, then |m| ≤ 6 for otherwise
1 + m induces a complete subgraph with |m| ≥ 7 vertices, a contradiction.
Hence

|R|
|Fi|

= |R1 ⊕ · · · ⊕Ri−1 ⊕mi ⊕Ri+1 ⊕ · · · ⊕Rm| ≤ 6.

Moreover, |Fi| ≤ 5 since |Fi| is a prime power and |Fi| ≤ |R|/|Fj | ≤ 6 for any
j ̸= i. On the other hand, none of the graphs of Z5 ⊕ Z5, Z5 ⊕ F4, F4 ⊕ F4

and Z5 ⊕ Z3 is projective for they have subgraphs isomorphic to 2K5, 2K5,
K3,3 · K3,3 and 2K5, respectively. Hence, by using [2, Theorem 4.3], R is
isomorphic to one of the rings Z5 ⊕ Z2, Z4 ⊕ Z3, Z2[x]/(x

2) ⊕ Z3, F4 ⊕ Z3,
Z4⊕Z4, Z4⊕Z2[x]/(x

2), Z4⊕F4, Z2[x]/(x
2)⊕Z2[x]/(x

2), Z2[x]/(x
2)⊕F4 and

Z3 ⊕ Z2 ⊕ Z2. By Figure 12, J1Z3⊕Z2⊕Z2
is not projective, where a, b, c, d, e, f, g

denote e2, e1+e2, −e1+e2, −e1+e2+e3, e2+e3, e1+e3, −e1+e3, e1+e2+e3,
respectively.

On the other hand, if A = Z4 or Z2[x]/(x
2), B = Z4 or Z2[x]/(x

2) or F4,
and A \J(A) = {a, b}, then JA⊕B has a bipartite subgraph isomorphic to K4,4

whose parts are a⊕B and b⊕B. Therefore, R ∼= Z5 ⊕ Z2
∼= Z10 and F4 ⊕ Z3,

as required.
Conversely, from Figures 13, 14 and 15, the graphs J1Z2[x]/(x2)⊕Z3

∼= J1Z3⊕Z4
,

J1Z5⊕Z2
and J1F4⊕Z3

are projective, where a, b, c, d, e, f, g, h, i, j denote e2, −e2,
e1 + e2, e1 − e2, −e1 − e2, −e1 + e2, e1, e1 +2e2, −e1, −e1 +2e2 in Figure 13
with R = Z3 ⊕ Z4, a, b, c, d, e, f, g, h, i denote e2, e1 + e2, 2e1 + e2, −2e1 + e2,
−e1 + e2, e1, −2e1, 2e1, −e1 in Figure 14, and a, b, c, d, e, f, g, h, i, j, k denote
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e2, αe1 + e2, α
−1e1, αe1 − e2, e1 − e2, −e2, α

−1e1 − e2, αe1, α
−1e1 + e2,

e1 + e2, e1 in Figure 15 with α ∈ F4 \ {0, 1}. The proof is complete. □
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In what follows we consider two problems of different nature which can be
state in terms of forbidden subgraphs. A proper coloring of a graph is an as-
signment of some colors to its vertices in such a way that adjacent vertices
have distinct colors. The minimum number of colors required to color a graph
properly is called the chromatic number of the graph. A graph is perfect if the
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Figure 13. J1Z2[x]/(x2)⊕Z3

∼= J1Z3⊕Z4

chromatic and clique number of its induced subgraphs are the same. The fol-
lowing theorem of Chudnovsky, Robertson, Seymour and Thomas characterizes
all perfect graphs.

Theorem 3.7 (Strong perfect graph theorem [5]). A graph Γ is perfect if and
only if neither Γ nor Γ contains an induced odd cycle of length ≥ 5.

The perfect Jacobson graphs are already classified as follows.
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Figure 14. J1Z5⊕Z2
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Figure 15. J1F4⊕Z3

Theorem 3.8 ([2, Theorem 4.6]). Let R be a finite ring. Then JR is perfect
if and only if

(1) R is a local ring,
(2) R/J(R) ∼= Z3 ⊕ Z3 or Z2 ⊕ F or Z3 ⊕ Z2 ⊕ Z2 or Z2 ⊕ Z2 ⊕ Z2 or

Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2,

where F is a finite field.

In Theorem 3.10, we complete the classification of perfect n-array Jacobson
graphs. Our proof uses the following lemma, which can be proved in the same
way as in [2, Lemma 4.5].

Lemma 3.9. Let R be a finite ring. Then JnR is perfect if and only if JnR/J(R)

is perfect.
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Theorem 3.10. Let R be a finite ring and n ≥ 2. Then JnR is perfect if and
only if

(1) n ≤ 4 and R is a local ring with associated field of order 2, or
(2) n = 2 and R/J(R) ∼= Z2 ⊕ Z2.

Proof. Let R be a finite ring with perfect n-array Jacobson graph. By Lemma
3.9, we may assume that J(R) = 0. First suppose that R is not local and that
R = F1 ⊕ · · · ⊕ Fm (m ≥ 2) is a decomposition of R into fields Fi. The five
vertices

E11 +E13,E11 +E12,E12 +E21 +E23,E21 +E22,E13 +E22

induce a five-cycle in JnR when m ≥ 3. Hence m = 2. If 0, 1 ̸= α ∈ U(Fi) and
j ̸= i, then the five vertices

Eii +Eij +Eji, αEii +Eij , α
−1Eii, αEii +Ejj ,Eji +Ejj

induce a five-cycle in JnR, which is impossible. Hence R ∼= Z2 ⊕ Z2. Moreover,
n = 2 for otherwise the five vertices

E12 +E31,E11 +E21 +E31,E11,E11 +E32,E12 +E22 +E32

induce a five-cycle in JnR, which is a contradiction.
Now suppose that R is a local ring. Then R is a field. If |R| ≥ 4, then the

five vertices

uE1, u
−1E1 + uE2, u

−1E2, uE2, u
−1E1 + u−1E2

induce a five-cycle in JnR whenever u ∈ R\{0,±1}, hence we must have |R| ≤ 3.
Also, if |R| = 3 then the five vertices

E1,E1 −E2,−E1 +E2,E2,E1 +E2

induce a five-cycle in JnR, which is a contradiction. Therefore R ∼= Z2. On the
other hand, if n ≥ 5 then the five vertices

E1 +E2,E2 +E3,E3 +E4,E4 +E5,E5 +E1

induce a five-cycle in JnR, which is impossible. Hence n ≤ 4, as required. The
converse is straightforward. □

We conclude this paper with studying a variation of the notion of perfect
graphs. A graph Γ is said to be domination perfect provided that γ(S) = ι(S)
for every induced subgraph S of Γ, where γ(S) is the domination number of S
and ι(S) is the minimum cardinality among all maximal independent sets of S.

The following theorem of I.E. Zverovich and V.E. Zverovich is crucial in our
investigation, so we mention it here for convenience.

Theorem 3.11 (Zverovich and Zverovich, [12, Theorem 11]). A graph Γ is
domination perfect if and only if it does not have the following graphs as an
induced subgraph.
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We note that in the above theorem G4
∼= K3,3. In what follows the

labeled graph G1 shown below is called an H-graph and it is denoted by
H (a, b, c, d, e, f).
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To prove the next key lemma, we use the fact that the map v 7→ NGi [v], the
closed neighborhood of v in Gi, is injective for all 1 ≤ i ≤ 17.

Lemma 3.12. Let R = R1 ⊕ · · · ⊕ Rm be a decomposition of the ring R into
local rings Ri with associated fields Fi (|Fi| ≤ 3), for i = 1, . . . ,m. Then JR is
domination perfect if and only if JR/J(R) is domination perfect.

Proof. Clearly, JR/J(R) is domination perfect if JR is donimation perfect.
Hence, assume that JR/J(R) is domination perfect. If JR has an induced sub-
graph S isomorphic to Gi for some 1 ≤ i ≤ 17, then there must exist distinct
vertices x, y ∈ V (S) such that x + J(R) = y + J(R). Since |Fi| ≤ 3 for all
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1 ≤ i ≤ m, it follows that x and y are adjacent so that x and y have the same
closed neighborhood in S, which is a contradiction. □

Theorem 3.13. The graph JnR is domination perfect if and only if

(1) n = 3 and R ∼= Z2,
(2) n = 2 and R/J(R) ∼= Z2,
(3) n = 1 and R/J(R) ∼= Z2, Z3, Z2⊕Z2, Z3⊕Z2, Z3⊕Z3, Z2⊕Z2⊕Z2,

Z3 ⊕ Z2 ⊕ Z2 or Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2, or R = S ⊕ Z2, where S is a local
ring.

Proof. We first suppose that JnR is a domination perfect graph. Let R = R1 ⊕
· · ·⊕Rm be a decomposition of R into local rings R1, . . . , Rm. If m,n ≥ 2 then
JnR has an induced H-subgraph

H (E11,E11 +E12 +E22,E12,E22,E21 +E22,E21) ,

from where it is not domination perfect. Now, we proceed in two cases:
Case 1. m = 1 and n > 1. Then R is a local ring with a maximal ideal m.

Observe that n ≤ 3 for otherwise JnR has an induce H-subgraph

H (E1,E1 +E2 +E3,E2,E3,E3 +E4,E4) ,

which is a contradiction.
If α ∈ R \ (m+ {0, 1}), then JnR has an H-subgraph

H
(
E1,E1 +E2,E2, α

−1E1, αE1 + (1− α)E2, (1− α)−1E2

)
,

which is a contradiction. Thus R = m+{0, 1}, that is, R/m ∼= Z2. If n = 3 and
m ̸= 0, then JnR has an induced subgraph isomorphic to K3,3 with bipartition

{E1 +E2,E1 +E2 + xE3,E1 + (1 + x)E2},
{E2 +E3, xE1 +E2 +E3, (1 + x)E2 +E3}

for any x ∈ m\{0}, a contradiction. Hence, either n = 2, or n = 3 and R = Z2.
Case 2. n = 1 and m > 1. Let R be a finite non-local ring and R =

R1⊕· · ·⊕Rm be a decomposition of R into local rings Ri with maximal ideals
mi for i = 1, 2, . . . ,m. Suppose without loss of generality that |R1/m1| ≥ · · · ≥
|Rm/mm|. If m ≥ 5 then JnR has an induced H-subgraph

H (e1, e1 + e2 + e3, e2, e4, e3 + e4 + e5, e5) ,

which is impossible. Hence we must have m ≤ 4. Let T = R2 ⊕ · · · ⊕Rm. We
proceed in two cases:

(1) |R1/m1| ≥ 4. If |T | = 2 then we have noting to prove. Thus assume that
|T | ≥ 3. Let α ∈ R1 \ (m1 + {0,±1}) and a, b ∈ T \ {0} be distinct elements
such that 1−ab ∈ U(T ). Then JnR has an induced subgraph isomorphic to K3,3

with bipartition

{αe1, αe1 + ae2, αe1 + be2} and {α−1e1, α
−1e1 + ae2, α

−1e1 + be2}
which is impossible.
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(2) |R1/m1| ≤ 3. By Lemma 3.12, we may assume that J(R) = 0. If
|R1| = |R2| = 3 and m ≥ 3, then JnR has an induced H-subgraph

H (e1, e1 + e2 + e3, e2,−e2,−e1 − e2 + e3,−e1) ,

which is a contradiction. Also, if R ∼= Z3 ⊕ Z2 ⊕ Z2 ⊕ Z2, then JnR has an
induced H-subgraph

H (e1, e1 + e2 + e4, e4,−e1,−e1 + e2 + e3, e3) ,

a contradiction.
Conversely, suppose that R is one of the rings in the theorem. By Figures

2 and 4, each of the graphs J2Z2
and J3Z2

is domination perfect, respectively.
Now consider the case n = 2 and R is a local ring with associated field of order
2. Since any element of an independence set of size three of JnR has invertible
entries, this graph does not have any induced subgraph isomorphic to K3,3. On
the other hand, JnR does not have any induced path of length three. Therefore,
JnR is a domination perfect graph for any of the graphs G1, . . . , G17 is either
isomotphic to K3,3 or has an induced path of lenght three. Next assume that
n = 1. Let R = S ⊕ Z2 where S is a local ring. The graph JnR has no induced
subgraph isomorphic to K1,3, and since any of the graphs G1, . . . , G17 has an
induce subgraph isomorphic to K1,3, so JnR is a domination perfect graph. Now
assume that R is one of the remained rings. Then, by Lemma 3.12, we may
assume that J(R) = 0. Clearly, JnR is domination perfect when R ∼= Z3 ⊕ Z3

(see [2, Figure 4]). Suppose R ∼= Z3 × Z2 × Z2. If JnR has a graph Gi as an
induced subgraph for some i, 1 ≤ i ≤ 17, then it contains an induced subgraph
isomorphic to K1,3 whose center must be c = ±e1+e2+e3. But c is adjacent to
all vertices expect for ∓e1 contradicting the fact that Gi is an induced subgraph
of JnR. Hence JnR is domination perfect. If R ∼= Z2 × Z2 × Z2 × Z2 and JnR has
an induced subgraph isomorphic to K1,3, then its center must be e1 + e2 + e3,
e1+e2+e4, e1+e3+e4, e2+e3+e4 or 1, which are adjacent to all but at most
one vertex. Hence the same argument as before shows that JnR is domination
perfect. Finally, if R ∼= Z2, Z3, Z2 ⊕ Z2, Z3 ⊕ Z2 or Z2 ⊕ Z2 ⊕ Z2, then JnR is
isomorphic to an induced subgraph of JnZ3⊕Z2⊕Z2

or JnZ2⊕Z2⊕Z2⊕Z2
, whence it is

domination perfect. The proof is complete. □

Acknowledgements

The authors would like to thank the referee for reading the paper carefully
and pointing inaccuracies in Figures 1, 12, 13 and the Jacobson graph of F4⊕F4

in Theorem 3.6.

References

[1] S. Akbari, S. Khojasteh, A. Yousefzadehfard, The proof of a conjecture in Jacobson graph

of a commutative ring, J. Algebra Appl. 14 (2015), no. 10, 1550107, 14 pages.



n-Array Jacobson graphs 2152

[2] A. Azimi, A. Erfanian and M. Farrokhi D.G., The Jacobson graph of commutative rings,

J. Algebra Appl. 12 (2013), no. 3, 1250179, 18 pages.
[3] A. Azimi, A. Erfanian and M. Farrokhi D.G., Isomorphisms between Jacobson graphs,

Rend. Circ. Mat. Palermo (2) 63 (2014), no. 2, 277–286.
[4] A. Azimi and M. Farrokhi D.G., Cycles and paths in Jacobson graphs, Ars Combin. 134

(2017), 61–74.
[5] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph

theorem, Ann. Math. (2), 164 (2006), no. 1, 51–229.
[6] A. Gagarin, G. Labelle and P. Leroux, The structure and labelled enumeration of K3,3-

subdivision-free projective-planar graphs, Pure Math. Appl. 16 (2005), no. 3, 267–286.
[7] H.H. Glover, J.P. Huneke and C.S. Wang, 103 graphs that are irreducible for the projective

plane, J. Combin.Theory Ser. B. 27 (1979) 332–370.
[8] Z. Gu and Z. Wan, Orthogonal graphs of odd characteristic and their automorphisms,

Finite Fields Appl. 14 (2008), no. 2, 291–313.
[9] B.R. McDonald, Finite Rings with Identity, Marcel Dekker Inc. New York, 1974.
[10] Z. Tang and Z. Wan, Symplectic graphs and their automorphisms, European J. Combin.

27 (2006), no. 1, 38–50.

[11] Z. Wan and K. Zhou, Unitary graphs and their automorphisms, Ann. Comb. 14 (2010),
no. 3, 367–395.

[12] I. E. Zverovich and V. E. Zverovich, An induced subgraph characterization of domination

perfect graphs, J. Graph Theory 20 (1995), no. 3, 375–395.

(Hasan Ghayour) Ferdowsi University of Mashhad, International Campus, Mash-
had, Iran.

E-mail address: hassan2815@yahoo.com

(Ahamad Erfanian) Department of Pure Mathematics, Ferdowsi University of
Mashhad, Mashhad, Iran.

E-mail address: erfanian@math.um.ac.ir

(Ali Azimi) Department of Mathematics, University of Neyshabur, P.O. Box
91136-899, Neyshabur, Iran.

E-mail address: ali.azimi61@gmail.com

(Mohammad Farrokhi Derakhshandeh Ghouchan) Department of Pure Mathematics,
Ferdowsi University of Mashhad, Mashhad, Iran.

E-mail address: m.farrokhi.d.g@gmail.com


	1. Introduction
	2. Connectedness
	3. Forbidden structures
	Acknowledgements
	References

