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Abstract. Let M(X,A, µ) be the ring of real-valued measurable func-
tions on a measure space (X,A, µ). In this paper, we characterize the
maximal ideals in the rings of real measurable functions and as a conse-

quence, we determine when M(X,A, µ) is a hereditary ring.
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1. Introduction

A collection A of subsets of a set X is said to be a σ − algebra in X if A has
the following properties:

(a) ∅ ∈ A,
(b) if B ∈ A, then its complement Bc is also in A,
(c) if B1, B2, . . . is a countable collection of sets in A, then

∪∞
i=1Bi ∈ A.

If A is a σ-algebra in X, then (X,A) is called a measurable space and the
members of A are called the measurable sets in X.

A positive measure is a function µ, defined on a σ-algebra A, whose range
is in [0,∞] and which is countably additive. This means that if {Ai}∞i=1 is a
disjoint countable collection of members of A, then µ(

∑∞
i=1Ai) =

∑∞
i=1 µ(Ai).

To avoid trivialities, we shall also assume that µ(A) < ∞ for at least one
A ∈ A. Henceforth, all measures in this paper are positive.

A measure space is a triple (X,A, µ), where X is a set, A a σ-algebra in X,
and µ a (positive) measure on A. If Y is a topological space and f : X −→ Y is
a function, then f is said to bemeasurable provided that f−1(V ) is a measurable
set in X for every open set V in Y . For notational convenience, we assume that
M(X,A, µ) is the space of measurable functions from X to R with arbitrary
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σ-algebra A in X and arbitrary measure µ on A. The space M(X,A, µ) with
pointwise addition and multiplication is a ring. It is easy to check that the
rings of real valued measurable functions are commutative with identity. For
more information about this ring, see for example [1, 10,15].

The statement “P holds almost everywhere on (X,A, µ)” (abbreviated to
“P holds a.e. on (X,A, µ)”) means that

µ({x ∈ X : P does not hold on x}) = 0.

A ring R is called hereditary if every ideal in R is projective. Equivalently,
a ring R is hereditary if all submodules of projective modules over R are again
projective, see [16, Theorem 4.23].

The following standard lemma ([16, Lemma 3.15]) is very important in this
paper.

Lemma 1.1 (Projective basis lemma). Let R be a ring. An R module M is
projective if and only if there are elements {aα : α ∈ K} of M and homomor-
phisms φα :M −→ R such that

(a) If x ∈M , φα(x) = 0 for all but finitely many α ∈ K,
(b) If x ∈M , x = Σα(φα(x))aα.

For every f ∈ M(X,A, µ), the zero set and the cozero set of f are Z(f) :=
{x ∈ X : f(x) = 0} and coz(f) := X \Z(f), respectively. A covering of a space
is called star -finite if every element of it intersects at most finite elements of
it. The reader is referred to [7, 9, 11,17] for undefined terms and concepts.

W.V. Vasconcelos in [18] shows that every projective prime ideal in a self-
injective commutative ring is generated by an idempotent. Later, O.A.S.
Karamzadeh in [13,14] and [12] extended this result to non-commutative rings
by replacing the self-injectivity by right self-injectivity and prime ideal by max-
imal right ideal. In [6] J.G. Brookshear shows the above result of Vasconcelos
is true in C(X) without the assumption of the self-injectivity. In this article,
using the method of Brookshear, we prove the counterpart of this result for the
ring of real measurable functions and answer to our question that “when is the
rings of real measurable functions, M(X,A, µ), a hereditary ring?”.

2. Main Results

To enter the discussion, first we need some features of projective ideals in
the rings of real measurable functions. In the following two lemmas, we study
the relationships between the projective basis of the projective ideals and the
cozero sets of the functions in M(X,A, µ).

Lemma 2.1. Let I be a projective ideal in M(X,A, µ) with projective basis
{fα, φα}α∈K . Then the following hold:

(a) coz(φα(f)) ⊆ coz(f) for each α ∈ K and f ∈ I,
(b) {coz(φα(fα))}α∈K is a cover of

∪
f∈I coz(f),
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(c) {coz(φα(fα))}α∈K is a star-finite cover of
∪
f∈I coz(f),

(d)
∪
α∈K coz(φα(fα)) =

∪
f∈I coz(f).

Proof. (a) Let f ∈ I and x ̸∈ coz(f). Then χZ(f) is a measurable function and
χZ(f)f = 0. For all α ∈ K, χZ(f)φα(f) = ϕα(χZ(f)f) = 0 and so ϕα(f)(x) = 0.
This implies that x ̸∈ coz(φα(f)), for all α ∈ K.

(b) Suppose that f ∈ I. By Lemma 1.1, there exist α1, α2, . . . , αn ∈ K such
that f = Σni=1φαi(f)fαi = Σni=1φαi(fαi)f . This means that Σni=1φαi(fαi) = 1
on coz(f) and so {coz(φα(fα))}α∈K is a cover of

∪
f∈I coz(f).

(c) Let α ∈ K. Then by Lemma 1.1, there are at most finitely many β ∈ K
such that ϕα(fα)φβ(fβ) = φα(φβ(fα)fβ) ̸= 0 and hence {coz(φα(fα))}α∈K is
a star-finite cover of

∪
f∈I coz(f).

(d) The proof follows easily from the parts (a), (b) and (c). □

In the next lemma, a special projective basis is presented for every projective
ideal in the rings of real measurable functions.

Lemma 2.2. Every projective ideal I in M(X,A, µ) has a projective basis
{φα, fα}α∈K such that

(a) coz(fα) = coz(φα(fα)) for all α ∈ K,
(b) g ∈ I implies gfα = 0 for all but finitely many α ∈ K.

Proof. Suppose that I is a projective ideal and {ψα, gα}α∈K is a projective
basis for I. For every h ∈ I and every α ∈ K, we define fα := ψα(gα)gα and

hα(x) :=

{
ψα(h)(x)∑

β∈K(ψβ(gβ(x)))2
x ∈

∪
β∈K coz(gβ),

0 otherwise.

It is easy to check that for every α ∈ K, fα and hα are measurable functions.
Hence for every α ∈ K, the module homomorphism ϕα : I −→ M(X,A, µ)
defined by ϕα(h) := hα has the property that ϕα(h) = 0 for all but finitely
many α ∈ K. If r ∈ I, then

Σα∈Kϕα(r)fα = Σα∈Krαψα(gα)gα

=
Σα∈Kψα(r)ψα(gα)gα∑

β∈K(ψβ(gβ))2

= r

∑
α∈K(ψα(gα))

2∑
α∈K(ψβ(gβ))2

= r.

Therefore {ϕα, fα}α∈K is a projective basis for I.
Let α ∈ K and x ∈ coz(fα). Then fα(x) = ψα(gα(x))gα(x) ̸= 0. This means

that ψα(gα(x)) ̸= 0 and so φα(fα(x)) ̸= 0. Now by Lemma 2.1(a), {ϕα, fα}α∈K
satisfies condition (a). If q ∈ I, then q = Σα∈K(φα(q))fα = Σα∈K(φα(fα))q.
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Thus {fα}α∈K generates I. On the other hand {fα}α∈K is star finite, by
Lemma 2.1. This implies condition (b). □

In the following theorem, we characterize the projective prime ideals in the
rings of real measurable functions. In this theorem, without invoking the fact
that the ring of real measurable functions is a regular ring, we have proved
that every projective prime ideal in the ring of real measurable functions is a
maximal ideal generated by an idempotent. This theorem is a counterpart of
similar results in [6] and [3, Proposition 1.6]. First we need the next lemma:

Lemma 2.3. Let f be a measurable function. Then the following function is
measurable:

g(x) :=

{
1/f x ∈ coz(f),
0 x ∈ Z(f).

Proof. For every x ∈ coz(f), We define λ(x) := (1, f(x)). Then λ maps coz(f)
into the plane. If U is an open set in the plane, then U is a countable union of
such rectangles Ii × Ji, i ∈ N. For every open set W in R, we put:

τ(W ) :=

{
coz(f) 1 ∈W,
∅ 1 ̸∈W.

Since coz(f) and empty set are measurable, τ(W ) is a measurable set. Now

λ−1(U) = λ−1(

∞∪
i=1

(Ii × Ji)) =

∞∪
i=1

λ−1(Ii × Ji) =

∞∪
i=1

(τ(Ii) ∩ f−1(Ji)).

This implies that λ−1(U) is a measurable set and so λ is a measurable function.
We define ρ : R×R\{0} −→ R by ρ(x, y) = x/y. The function ρ is continuous
and so h := λoρ is a measurable function in its domain coz(f).

Suppose that V be an open set in R. We consider three cases:
Case 1: If f−1(V ) ⊆ coz(f). Then g−1(V ) = h−1(V ) is a measurable set.
Case 2: If f−1(V ) ⊆ Z(f). Then g−1(V ) = Z(f) is measurable.
Case 3: If f−1(V ) ∩ coz(f) and f−1(V ) ∩ Z(f) are not empty sets. Then

g−1(V ) = g−1((V ∩ R\{0}) ∪ {0}) = h−1((V ∩ R\{0}))) ∪ Z(f)

and so g−1(V ) is a measurable set. □

Theorem 2.4. Every projective prime ideal in the rings of real measurable
functions, M(X,A, µ), is generated by an idempotent.

Proof. Suppose that P is a non finitely generated projective prime ideal in
M(X,A, µ). By Lemma 2.1 and Lemma 2.2, P is generated by a family
{fα}α∈K such that {coz(fα)}α∈K is star-finite. Since P is non finitely gen-
erated, there is a countably infinite subset {coz(fi)}∞i=1 ⊆ {coz(fα)}α∈B such
that coz(fi) ∩ coz(fj) = ∅, where i ̸= j. For all i ∈ N, we define
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gi(x) :=

{
1/2i x ∈ coz(fi),
0 x ∈ Z(fi).

For every i ∈ N, coz(fi) and Z(fi) are measurable sets and so gi = 1/2iχcoz(fi)
is a measurable function. Since {coz(fα)}α K is star-finite, the functions
h1 = Σ∞

i=1g2i and h2 = Σ∞
i=1g2i+1 are measurable functions and so belong

to M(X,A, µ). Neither h1 nor h2 can be a finite linear combinations of ele-
ments of {fα}α∈B and so h1, h2 ̸∈ P . But h1h2 = 0 ∈ P which implies that P
is not prime, a contradiction.

Now suppose that P =< f1, f2, . . . , fn >. We put f :=
∑n
i=1 fi. It is

easy to check that f is a measurable function. Let g ∈ P . Then there exist
h1, h2, . . . , hn ∈M(X,A, µ) such that g = h1f1 +h2f2 + · · ·+hnfn. We define

h(x) :=



h1(x) x ∈ coz(f1),
h2(x) x ∈ coz(f2),
...

...
hn(x) x ∈ coz(fn),
0 otherwise.

Since h1, h2, . . . , hn are measurable functions and coz(f1), coz(f2), . . . , coz(fn)
are (disjoint) members in σ-algebra A, h is a measurable function. Now by
definition of h, g = fh and hence P is generated by f .

We define

r(x) :=

{
1/f2/3 x ∈ coz(f),
0 x ∈ Z(f),

By Lemma 2.3, r is a measurable function and hence f1/3 = rf ∈ P . Thus
χcoz(f) = r(f1/3)2 ∈ P is an idempotent and so P =< χcoz(f) >. □

Let C(X) be the ring of all real valued continuous functions on a topological
space X. The topological properties of X has played an important role in the
study of C(X) (see [2–6,8]). But in the study of M(X,A, µ), the properties of
σ-algebra A and its measure are essential keys. The concept of isolated points
in X which are related to the existence of maximal ideals in C(X), generated
by idempotents, play an important role in the context of C(X). Below, we
define special measurable sets as generalization of these points in X.

Definition 2.5. Suppose that E ∈ A and µ(E) ̸= 0. The set E is near -zero if
for every subset A ⊆ E such that µ(A) ̸= 0, A = E a.e. on (X,A, µ).

Now we are in a position to present one of the main results in this paper.
We record Theorem 2.6 which gives a necessary and sufficient condition for an
ideal in M(X,A, µ) to be a projective prime ideal.
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Notation. Let E be a subset of X. We set:

ME := {f ∈M(X,A, µ) : f(E) = 0}.

Theorem 2.6. A proper ideal in M(X,A, µ) is a projective prime ideal if and
only if it has the form ME where E is a near-zero set in A.

Proof. Let E ∈ A be a near-zero set. It is easy to see that ME is an ideal.
Suppose that I is an ideal in M(X,A, µ) such that ME ⊆ I ⊆M(X,A, µ) and
ME ̸= I. Let f ∈ I \ME . We claim that

E ⊆ {x ∈ X : f(x) ̸= 0 a.e. on (X,A, µ)}.
Otherwise, µ(E ∩ Z(f)) ̸= 0. Since E is a near-zero set, E ∩ Z(f) = E a.e. on
(X,A, µ). Therefore µ(E\Z(f)) = 0, which is a contradiction.

We define

g(x) :=

{
f(x) + 1 x ∈ Ec,
0 x ∈ E.

Since E is a measurable set and f is a measurable function, g is measurable
and belongs to ME ⊆ I. Hence g−f ∈ I is a unit element of M(X,A, µ). This
means that ME is a maximal ideal in M(X,A, µ) and so it is a prime ideal.
Now suppose that f ∈ M(X,A, µ). For f1 := χcoz(f)f and f2 := χZ(f)f , f1
and f2 are measurable functions and f = f1 + f2. This means that ME is a
summand of M(X,A, µ) and so it is a projective ideal.

Conversely, suppose that P is a proper projective prime ideal inM(X,A, µ).
Since M(X,A, µ) is a commutative regular ring, P is a maximal ideal. By
Theorem 2.4, there exists E ∈ A such that P =< χE >. It is easy to check
that P =MEc . If Ec is not near-zero, then there exists a measurable setA ⊆ Ec

such that µ(A) ̸= 0 and Ec ̸= A a.e. on (XA, µ). This implies that P = MEc

is a proper subset of MA a.e. on (X,A, µ), which is a contradiction. □

In the next corollary, we characterize hereditary rings in the rings of real
measurable functions, M(X,A, µ), by the structure of maximal ideals in this
rings.

Corollary 2.7. The ring of real measurable functions, M(X,A, µ), is a hered-
itary ring if and only if every maximal ideal in M(X,A, µ) has the form ME

where E is a near-zero set in A.

Proof. Let M(X,A, µ) is a hereditary ring and M is a maximal ideal in
M(X,A,
µ). Then by Theorem 2.6, there exists a near-zero set E ∈ A such that
M =ME .

Conversely, suppose that every maximal ideal in M(X,A, µ) has the form
ME = {f ∈ M(X,A, µ) : f(E) = 0} such that E is a near-zero set. If I is
an ideal in M(X,A, µ), there exists a maximal ideal M and a near-zero set E
such that M =ME and I ⊆M . For f ∈ I, we define
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g(x) =

{
1/f(x) x ∈ coz(f),
0 x ∈ Z(f).

By Lemma 2.3, g is a measurable function and so belongs toM(X,A, µ). Hence
fg = χE ∈ I and so I = M = ME . Now by Theorem 2.6, I is a projective
ideal and M(X,A, µ) is a hereditary ring. □

Remark 2.8. It is well-known that if every maximal right ideal of an associative
ring is a direct summand, then the ring is Artin semisimple, see [12, Lemma 1].
This immediately shows that X is finite if and only if C(X) is hereditary, in
which case C(X) is Artin semisimple and it is, in fact, a finite direct product of
fields, each of which is isomorphic to R. In [14] and [13], O.A.S. Karamzadeh
has shown that a right self-injective ring R is right hereditary (in fact, Artin
semisimple) if and only if its right maximal ideals are projective. In Corollary
2.7, which is similar to the result of Karamzadeh [13, Corollary 2.8], we have
shown that the ring of measurable functions is hereditary if and only if every
maximal ideal is projective, in which case, this ring is Artin semisimple and
hence a finite direct product of fields.
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