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1. Introduction and preliminaries

The theory of actions of semigroups on sets is applied in many branches of
mathematical sciences, such as algebra, dynamical systems, computer science,
automata, and computational mathematics. The book [3] is a good reference
for most of we know about acts from an abstract point of view.

Recall that by Birkhoff’s Representation Theorem (see [3, Theorem II.2.36])
for a semigroup S, any nontrivial S-act is a subdirect product of subdirectly
irreducible S-acts. Therefore, if we characterize subdirectly irreducible S-acts
then we get a description of S-acts in general. In [6], and [5], a characterization
of subdirectly irreducible acts, respectively over the monoid (N∪{∞},min,∞)
and over left zero semigroups is presented. In this paper, we consider subdi-
rectly irreducible acts over some other classes of semigroups, namely the classes
of zero semigroups, right zero semigroups, and strong chain of left zero semi-
groups, hoping to help the research on subdirectly irreducible acts over other
semigroups and over arbitrary ones.

In the following we go through some preliminaries which will be used in the
sequel.

Recall that, for a semigroup S, a (right) S-act (or S-system) A is a set A
together with a function λ : A×S → A, called the action of S (or the S-action)
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on A, such that for a ∈ A and s, t ∈ S (denoting λ(a, s) by as), a(st) = (as)t
and a1 = a if S is a monoid with 1 as its identity.

If there are more than one semigroup in a discussion, to prevent any confu-
sion, we denote an S-act A by AS .

An S-act A is called separated if for a ̸= b in A there exists s ∈ S \ {1} with
as ̸= bs. Also, we call a subset B of an S-act A separated if for a ̸= b in B
there exists s ∈ S \ {1} with as ̸= bs.

A homomorphism f : A → B between S-acts is a function such that for each
a ∈ A and s ∈ S we have f(as) = f(a)s.

An element a of an S-act A is called a fixed or zero element if as = a for all
s ∈ S. We denote the set of all fixed elements of an S-act A by FixA, which
is in fact a sub-act of A. This set plays an important role in our investigation.

An equivalence relation ρ on an S-act A is called a congruence on A, if aρa′

implies (as)ρ(a′s) for a, a′ ∈ A and s ∈ S. We denote the set of all congruences
on A by ConA. For a, b ∈ A, the symbol ρa,b denotes the smallest congruence
on A containing (a, b). It is in fact, the equivalence relation on A which is
generated by the set {(as, bs) : s ∈ S ∪ {1}}, and its elements are given by:

xρa,by ⇔ ∃s1, s2, . . . , sn ∈ S ∪ {1}, ∃p1, p2, . . . , pn, q1, q2, . . . , qn ∈ A :

x = p1s1 q2s2 = p3s3 · · · qnsn = y q1s1 = p2s2 q3s3 = p4s4 · · ·
where (pi, qi) = (a, b) or (pi, qi) = (b, a).

Recall from [3] that, a right S-act A is called subdirectly irreducible if
∩

ρ ̸=
∆, where ρ runs over ConA \ {∆}.

Note that for each semigroup S, every two element S-act A has exactly two
congruences ∆ and ▽, and so it is subdirectly irreducible. Also, we apply the
following remark and theorem about subdirectly irreducible and subdirectly
reducible acts.

Remark 1.1. Note that every S-act with at least three fixed elements is sub-
directly reducible. This is because, if a, b, c are distinct fixed elements of an
S-act A, then ρa,b ∩ ρa,c = △.

The above remark was also proved in [7].

Theorem 1.2. Let S be a semigroup. Then every subdirectly irreducible S-act
A with |A| > 2 and two fixed elements is separated.

Proof. Let FixA = {a0, b0}. On the contrary, assume that there exist x ̸=
y ∈ A such that xs = ys for all (non identity) element s ∈ S. Then, ρx,y =
△ ∪ {(x, y), (y, x)}. Now, (a0, b0) ̸∈ ρx,y, and so ρx,y ∩ ρa0,b0 = △ which is a
contradiction. □

Note that the converse of Theorem 1.2 is not generally true. For example,
every S-act A with identity actions, and |A| ≥ 3 is separated but it is not
subdirectly irreducible by Remark 1.1.
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2. Subdirectly irreducible acts over a strong chain of left zero
semigroups

A variety of semigroups can be decomposed into simpler types of semigroups
which simplifies their structural analysis. A couple of these are:
Archimedean semigroups, completely simple semigroups, Clifford semigroups,
and periodic semigroups.

In this section, we specify subdirectly irreducible acts over a strong countable
chain of left zero semigroups. It is clear that each S-act A with |A| = 2 has
only two congruences, implying that such S-acts are subdirectly irreducible.
Therefore, in this section, we assume that all S-acts have at least three ele-
ments.

Recalling the notion of a strong semilattice of completely simple semigroups
from [2], we define a strong chain of left zero semigroups to be a semigroup
S =

∪
α∈Y Sα, where {Sα}α∈Y is a family of disjoint left zero semigroups and

Y is a chain with bottom element α1 such that for all α, β ∈ Y with α ≥ β
there exists a semigroup homomorphism φα,β : Sα → Sβ , and for α ≥ β ≥ γ,
φβ,γφα,β = φα,γ . Also, it is assumed that φα,α = idSα for all α ∈ Y . The
multiplication on S, for s ∈ Sα, t ∈ Sβ , with α ≥ β is then given by

st = φα,α∧β(s)φβ,α∧β(t) = φα,β(s)φβ,β(t) = φα,β(s)t = φα,β(s)

ts = φβ,α∧β(t)φα,α∧β(s) = φβ,β(t)φα,β(s) = tφα,β(s) = t,

where the last equalities are because of the assumption that Sβ is a left zero
semigroup.

Notation: For a strong countable chain S =
∪

α∈Y Sα of left zero semi-
groups, let T ⊆

∪
α∈Y Sα and A be an S-act. We denote the set of all elements

of A which are fixed under the action of all members of T by FixAT .

Remark 2.1. Note that for every S-act A on a strong chain of left zero semi-
groups S =

∪
α∈Y Sα, we have:

(1) FixA ⊆ FixASα ;
(2) if for some α ∈ Y , A as an Sα-act, which we denote it by ASα , is

separated then A as an S-act is separated;
(3) if α1 is the bottom element of Y and x ∈ FixA∪

α ̸=α1
Sα

then xSα1 = {∗},
where ∗ ∈ FixA. This is because, for s1, s2 ∈ Sα1 , and t ∈ Sα with α ̸= α1, we
have

xs1 = (xt)s1 = x(ts1) = xφα,α1(t) = x(ts2) = (xt)s2 = xs2.

Also for s1 ∈ Sα1 , r ∈ S, we have s1r = s1, and hence (xs1)r = x(s1r) = xs1.

Lemma 2.2. Let S =
∪

α∈Y Sα be a strong chain of left zero semigroups and
A be an S-act. Then for each x ∈ A and t ∈ Sβ, we have xt ∈ FixA∪

α≥β Sα
.

Proof. Let x ∈ A, t ∈ Sβ , and s ∈ Sα for some α ≥ β. Then by the definition
of the multiplication on S, we have ts = t and hence (xt)s = x(ts) = xt, as
required. □
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Lemma 2.3. Let S =
∪

α∈Y Sα be a strong chain of left zero semigroups and
α1 = minY and α2 = min(Y \ {α1}). Then each subdirectly irreducible S-act
A with |A| ≥ 3 is separated.

Proof. Let A be subdirectly irreducible. By Remark 1.1, |FixA| ≤ 2. If
|FixA| = 2 then by Theorem 1.2, A is separated. If FixA = {a0}, then
we consider three cases:

Case 1. If FixA∪
α≥α2

Sα
= 1, then for each x ∈ A and s ∈ S, xs = a0.

Therefore, for all a, b, c ∈ A, ρa,b ∩ ρb,c = △ which is a contradiction.
Case 2. If |FixA∪

α≥α2
Sα| ≥ 3, then there exist b, c ∈ A such that a0, b, c are

different and for all s ∈
∪

α≥α2
Sα, a0s = a0, bs = b, cs = c. But, by Lemma

2.2, for s ∈ Sα1 , a0s = bs = cs = a0. Thus

ρa0,b ∩ ρa0,c = (△∪ {(a0, b), (b, a0)}) ∩ (△∪ {(a0, c), (c, a0)}) = △
which is a contradiction.

Case 3. If |FixA∪
α≥α2

Sα| = 2, then FixA∪
α≥α2

Sα = {a0, a} where a0s =

a0 for all s ∈ S, at = a0 for all t ∈
∪

α≥α2
Sα, ar = a for all r ∈

∪
α≥α2

Sα.
Now, on the contrary, assume that there exist x ̸= y ∈ A such that xs = ys
for all s ∈ S. Since x, y /∈ {a0, a} and xs, ys ∈ {a0, a} for all s ∈ S, we get
ρx,y ∩ ρa0,a = (∆ ∪ {(x, y), (y, x)}) ∩ (∆ ∪ {(a0, a), (a, a0)}) = ∆ which is a
contradiction. Therefore A is separated. □

In the following, we characterize subdirectly irreducible acts over the two
element strong chain of left zero semigroups, and then over an arbitrary strong
chain of left zero semigroups.

Theorem 2.4. Let S = Sα1 ∪ Sα2 , α1 < α2, be a strong chain of left zero
semigroups. Then an S-act A is subdirectly irreducible if and only if A is
separated and |FixASα2

| = 2.

Proof. Let A be subdirectly irreducible. Then |FixA| ≤ 2. Two cases may
occur:

Case 1. FixA = {a0}. Then by Lemma 2.2, for each s ∈ Sα1 and each
x ∈ A, xs = a0. Now if |FixASα2

| = 1 then for each x ∈ A and each s ∈ Sα2 ,
xs = a0. Therefore, for all a, b, c ∈ A, ρa,b ∩ ρb,c = △ which is a contradiction.
If |FixASα2

| ≥ 3, then there exist elements b, c ∈ A such that a0, b, c are
different and for all s ∈ Sα2 , a0s = a0, bs = b, cs = c. But, by Lemma 2.2,
for s ∈ Sα1 , a0s = bs = cs = a0. Thus

ρa0,b ∩ ρa0,c = (△∪ {(a0, b), (b, a0)}) ∩ (△∪ {(a0, c), (c, a0)}) = △
which is a contradiction. Therefore |FixASα2

| = 2. Also, A is separated by
Lemma 2.3.

Case 2. FixA = {a0, b0}. Then |FixASα2
| ≥ 2. Let FixASα2

= {a0, b0, c,
· · · }. Then by Remark 2.1(3), for all s ∈ Sα1 , cs = a0 or for all s ∈ Sα1 ,
cs = b0. Let for all s ∈ Sα1 , cs = a0. Then for s ∈ Sα1 , (a0s, cs) = (a0, a0),
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and for t ∈ Sα2 , (a0t, ct) = (a0, c). Therefore, (a0, b0) ̸∈ ρc,a0 , and hence
ρa0,b0 ∩ ρc,a0 = △, which is a contradiction. If for all s ∈ S, cs = b0, it is
proved similarly that ρa0,b0 ∩ ρc,b0 = △ which is again a contradiction. Thus
|FixASα2

| = 2. Also, by Lemma 2.3, A is separated.
Conversely, let A be separated and FixASα2

= {a0, b0}. We claim that
each non trivial congruence θ on A contains (a0, b0). Let θ be a non trivial
congruence on A. Then there exist x ̸= y ∈ A such that (x, y) ∈ θ. Thus for
all s ∈ Sα2

, (xs, ys) ∈ θ. But, by Lemma 2.2, for all s ∈ Sα1
, xs, ys ∈ FixA

and for s ∈ Sα2 , xs, ys ∈ FixASα2
= {a0, b0}. On the other hand, since A is

separated, there exists s ∈ S such that xs ̸= ys. Now, since FixA ⊆ FixASα2
,

it is concluded that (a0, b0) ∈ θ, and so A is subdirectly irreducible. □

Corollary 2.5. Let S = Sα1 ∪Sα2 with α1 < α2, be a strong chain of left zero
semigroups. An S-act A with exactly two fixed elements and |FixASα2

| = 2 is
subdirectly irreducible if and only if A is separated.

Proof. Let FixA = {a0, b0} and A be subdirectly irreducible. By Theorem 1.2,
A is separated. The converse is true by the above theorem. □

Now, we recall a theorem of I.B. Kozhukhov and A.R. Haliullina from [4].

Theorem 2.6 ([4]). Let A be an S-act with two fixed elements θ1, θ2. Then
A is subdirectly irreducible if and only if for any a ̸= b of A, there exists s ∈ S
such that {as, bs} = {θ1, θ2}.

Here, we prove a similar result for the case of a strong countable chain of
left zero semigroups.

Lemma 2.7. Let S =
∪

α∈Y Sα be a strong chain of left zero semigroups. If
A is a subdirectly irreducible S-act with exactly two fixed elements a0, b0 then
FixA∪

α ̸=α1
Sα

= {a0, b0}, and for every different x, y ∈ A there exists s ∈ S

such that xs ̸= ys and xs, ys ∈ FixA∪
α ̸=α1

Sα
.

Proof. Let FixA = {a0, b0} and (a0, b0 ̸=)c0 ∈ FixA∪
α ̸=α1

Sα
. Then by Re-

mark 2.1, for all s ∈ Sα1 , c0s = a0 or for all s ∈ Sα1 , c0s = b0. Now if
for all s ∈ Sα1 , c0s = a0 then ρa0,b0 ∩ ρa0,c0 = △, and if for all s ∈ Sα1 ,
c0s = b0 then ρa0,b0 ∩ ρb0,c0 = △, both of which are contradictions. Hence
|FixA∪

α̸=α1
Sα

| = 2. To prove the other part, on the contrary, let there exist

different x, y ∈ A such that for all s ∈ S, xs = ys for xs, ys ∈ FixA∪
α ̸=α1

Sα
.

Then ρx,y = △ ∪ {(x, y), (y, x)}. Thus {x, y} ̸= {a0, b0} which implies
(x, y) ̸∈ ρa0,b0 , and so (a0, b0) ̸∈ ρx,y. Thus ρx,y ∩ ρa0,b0 = △ which is a
contradiction. □

Theorem 2.8. Let S =
∪

α∈Y Sα be a strong finite chain of left zero semi-
groups. An S-act A is subdirectly irreducible if and only if there exists β ∈ Y
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such that |FixA∪
α>β Sα

| = 2, and for every different x, y of A there exists s ∈ S

such that xs ̸= ys and xs, ys ∈ FixA∪
α>β Sα

.

Proof. Let A be subdirectly irreducible. Then, by Remark 1.1, |FixA| ≤ 2. If
|FixA| = 2 then by Lemma 2.7 the result is true (take β = α1). If |FixA| = 1,
we prove the result by induction on |Y |. If |Y | = 2, then by Theorem 2.4, A is
separated, so for x ̸= y ∈ A there exists s ∈ S such that xs ̸= ys. Now s ∈ Sα1

or s ∈ Sα2 . If s ∈ Sα1 then xs, ys ∈ FixA, but |FixA| = 1 hence xs = ys
which is a contradiction therefore s ∈ Sα2 , hence xs, ys ∈ FixASα2

. Then by
the proof of Theorem 2.4 (case 1), we have the result (take β = α1). Now,
by induction we assume that the result is true for each subdirectly irreducible
T -act B, where T =

∪
α∈Y Sα with |Y | < n. Let A be a subdirectly irreducible

S-act, where S =
∪

α∈Y Sα, and |Y | = n. Then, by assumption 1 = |FixA| =
|FixA∪

α≥α1
Sα

|, we get |FixA∪
α ̸=α1

Sα
| ≤ 2. This is because, if on the contrary,

|FixA∪
α ̸=α1

Sα
| ≥ 3 then we have at least three different elements a0, b0, c0 ∈ A

such that for every s ∈
∪

α ̸=α1
Sα, a0s = a0, b0s = b0, c0s = c0. Also, since

|FixA∪
α≥α1

Sα
| = 1, for every s ∈ Sα1 we have a0s = b0s = c0s. Therefore,

ρa0,b0 ∩ ρa0,c0 = ∆, which contradicts the hypothesis that A is subdirectly
irreducible. Therefore, |FixA∪

α ̸=α1
Sα

| ≤ 2.

Let |FixA∪
α ̸=α1

Sα
| = 1, and consider T =

∪
α ̸=α1

Sα. Then T is a strong

chain of left zero semigroups (by the hypothesis that Y \ {α1} has a least
element), and A is subdirectly irreducible as a T -act, too. The latter is because
Con(AS) = Con(AT ). To see this, let ρ be a congruence on AT . Then for each
(a, b) ∈ ρ, and t ∈ Sα1

, by Lemma 2.2, at, bt ∈ FixA∪
α≥α1

Sα
= FixA. But,

by hypothesis |FixA| = 1, and hence (at, bt) ∈ ∆ ⊆ ρ. Therefore, Con(AT ) ⊆
Con(AS), the converse is clear. Now, by applying induction hypothesis for AT ,
we get the result for AS .

Also, if |FixA∪
α ̸=α1

Sα
| = 2 then by applying Lemma 2.7 for A as a T -act,

where T =
∪

α ̸=α1
Sα, we get the result.

Conversely, let β be as in the statement. By Lemma 2.2, for each x ∈ A, and
s ∈ Sβ , xs ∈ FixA∪

α≥β Sα
. Let FixA∪

α>β Sα
= {a0, b0}. We claim that each

non trivial congruence ρ on A contains (a0, b0). Let ρ be a nontrivial congruence
on A, and (x, y) ∈ ρ, where x ̸= y. By hypothesis, for some s ∈ S, xs ̸= ys and
xs, ys ∈ FixA∪

α>β Sα
. Thus (a0, b0) = (xs, ys) ∈ ρ or (a0, b0) = (ys, xs) ∈ ρ,

and hence A is subdirectly irreducible. □

3. Subdirectly irreducible acts over a zero semigroup

Another class of semigroups over which we characterize the subdirectly ir-
reducible acts is the class of zero semigroups. Recall that a semigroup S is a
zero semigroup, if st = 0 for all s, t ∈ S, where 0 is the zero element of S.
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Lemma 3.1. Let S be a zero semigroup. Then every S-act A with |A| ≥ 3 and
|FixA| = 2 is subdirectly reducible.

Proof. Let FixA = {a0, b0} and c ∈ A \ FixA. We know that c0 ∈ FixA.
Let c0 = a0. Then for each s ∈ S, cs ̸= b0. This is because, if cs = b0 for
some s ∈ S, then c0 = c(ss) = (cs)s = b0s = b0 which is a contradiction. Let
s ∈ S and cs = x. Then for each t ∈ S, xt = (cs)t = c(st) = c0 = a0. Now,
if x = a0 then (a0, b0) /∈ ρa0,c, that is ρa0,b0 ∩ ρa0,c = ∆, and if x ̸= a0 then
ρa0,b0 ∩ ρa0,x = ∆. Therefore, A is subdirectly reducible. □

By the above lemma and Remark 1.1, we get the following fact.

Corollary 3.2. Let S be a zero semigroup. Then every S-act A with |A| ≥ 3
and |FixA| ≥ 2 is subdirectly reducible.

Lemma 3.3. Let S be a zero semigroup. If A is a separated S-act with
|FixA| = 1, then |A| = 1 and is subdirectly irreducible.

Proof. Let FixA = {a0}. If |A| ≥ 2 then there exists a non fixed element
b ∈ A such that b0 = a0. Since A is separated, there exists t ∈ S such that
bt ̸= a0t (= a0), let bt = c. Now, for every s ∈ S, cs = (bt)s = b(ts) = b0 =
a0 = a0s, which is a contradiction, and so |A| = 1. The fact that such an A is
subdirectly irreducible is then clear. □

The following results describe subdirectly irreducible S-acts over a zero semi-
group S.

Theorem 3.4. Let S be a zero semigroup. An S-act A with |A| ≥ 3 is subdi-
rectly irreducible if and only if |FixA| = 1 and A \ FixA is separated.

Proof. Let FixA = {a0} and A \ FixA be separated. Then for all x ∈ A,
x0 = a0. Now, for every (0 ̸=)s ∈ S and (a0 ̸=)x ∈ A, xs ̸= x, since otherwise
x = xss = x0 = a0, which is a contradiction. Thus, for x ∈ A \ FixA, two
cases may occur:

Case 1. For all s ∈ S, xs = a0. Note that since A \ FixA is separated, such
an x (if exists) is unique.

Case 2. There exists s ∈ S such that xs = c ̸= a0. Then for all t ∈ S,
ct = (xs)t = x(st) = x0 = a0, and such a c is unique, as we explained in case
(1).

Therefore, there exists a unique element c ∈ A such that cs = a0 for all
s ∈ S and xS ⊆ {a0, c}, for all x ∈ A. Note that if xs = d ̸= a0, c for some
s ∈ S, then similar to the discussion of case (2), dt = a0 = ct for all t ∈ S,
which contradicts the fact that A \ FixA is separated.

Now, we claim that each (∆ ̸=)θ ∈ ConA contains {(a0, c), (c, a0)}. Let
(∆ ̸=)θ ∈ ConA. Then, there exist x ̸= y ∈ A such that (x, y) ∈ θ. Now, two
cases may occur:
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Case 1. One of x or y is equal to a0, say x = a0. Then (a0, y) ∈ θ. Now,
if for each s ∈ S, ys = a0 then y = c, and hence (a0, c) = (ys, a0s) ∈ θ. If
ys ̸= a0 for some s ∈ S, then ys = c, and hence (a0, c) = (a0s, ys) ∈ θ.

Case 2. x, y ̸= a0. Then x0 = y0 = a0. But, since A \ FixA is separated,
there exists t ∈ S such that xt ̸= yt. Let xt = c. Then yt = a0, and hence
(a0, c) = (yt, xt) ∈ θ. Therefore A is subdirectly irreducible.

Conversely, by Lemma 3.1, Remark 1.1, and the fact that each S-act (S
being a zero semigroup) has at least one fixed element, |FixA| = 1. Let
FixA = {a0}. To prove that A \ FixA is separated let, on the contrary that
there exist b ̸= c ∈ A \ FixA with bs = cs for every s ∈ S. Then, two cases
may happen:

Case 1. For some s ∈ S, bs = cs = x ̸= a0 (note that x ̸= b, c since if
bs = cs = b then for every t ∈ S, bt = a0, which is a contradiction). Then
for each s ∈ S, xs = b0 = a0. Now ρa0,x ∩ ρb,c = ∆, which means that A is
subdirectly reducible, which is a contradiction.

Case 2. For each s ∈ S, bs = cs = a0. Then ρb,c ∩ ρa0,c = ∆, which is again
a contradiction and so we get the result. □

Remark 3.5. For a zero semigroup S = {0, s, t, . . .} with 0 as the zero element,
the structure of a subdirectly irreducible S-act A with at least three elements
is as follow:

(1) FixA is a singleton set {a0}.
(2) There exists a unique element c0 ̸= a0 ∈ A such that c0S = {a0}.
(3) For all x ∈ A, x0 = a0 and xS ⊆ {a0, c0}.
(4) A \ FixA is separated.

Now, we find the number of all subdirectly irreducible S-acts over finite zero
semigroups.

Theorem 3.6. Let S be a zero semigroup with |S| = n. The number of non

isomorphic subdirectly irreducible S-acts is 22
n−1−1 + 2.

Proof. Let S = {0, s1, . . . , sn−1} and A be a subdirectly irreducible S-act with
at least three elements. Then, by Remark 3.5, there exist two elements a0, c0
in A, as described there. Also for every x ∈ A (distinct from a0, c0), taking
ρx : S → A, by ρx(s) = xs, we have ρ−1

x {a0} ⊆ S and |ρ−1
x {a0}| = 1 or 2 or · · ·

or n−1. (Note that, by the above remark the cases that |ρ−1
x {a0}| = 0 or n are

impossible). Also, note that since A \ FixA is separated, for x, y ∈ A \ FixA
we have

ρ−1
x {a0} = ρ−1

y {a0} ⇒ x = y.

This is because, for x ̸= y in A \ FixA there exists s ∈ S such that xs ̸= ys.
But xs, ys ⊆ {a0, c0}, and so xs = a0, ys = c0 or xs = c0, ys = a0 which
contradicts ρ−1

x {a0} = ρ−1
y {a0}.
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This shows that for each m ∈ {1, 2, . . . , n − 1}, the number of x ∈ A with
|ρ−1

x {a0}| = m is the same as the number of subsets T of S \ {s0} with |T | =
m− 1; that is

(
n−1
m−1

)
. Therefore A has at most 2+

∑n−2
k=0

(
n−1
k

)
= 2+ 2n−1 − 1

elements.
In fact, the largest subdirectly irreducible S-act is

A1 = {a0, c0, x1, x2, . . . , x2n−1−1},

where

x10 = a0, x1s1 = x1s2 = · · · = x1sn−1 = c0, and x2, . . . , xn

satisfy

x0 = xsi = a0, for some i = 1, · · · , n− 1, and xsj = c0 for all j ̸= i,

xn, · · · , x(n−1
2 ) satisfy x0 = xsi = xsj = a0, for some i, j ∈ {1, · · · , n− 1} and

xsk = c0 for all k ̸= i, j and so on to x(2n−1−1)−(n−1
n−2)

, · · · , x2n−1−1 which satisfy

xsi = c0, for some i = 1, · · · , n− 1, and x0 = xsj = a0 for all j ̸= i.

Note that, since A \ FixA is separated, the elements of A1 are distinct.
Now, we see that every B ≤ A1 with a0, c0 ∈ B is also subdirectly ir-

reducible. The number of nontrivial subdirectly irreducible subacts of A1 is
|{B : B ⊆ A1, a0, c0 ∈ B}| which is the same as |{C|C ⊆ {x1, . . . , x2n−1−1}}|
= 22

n−1−1. Finally, by a similar discussion as above, any other subdirectly
irreducible S-act with at least three elements is isomorphic to A1 or one of the
subacts of A1. Therefore, the number of all subdirectly irreducible S-acts is

22
n−1−1 + 2, where the added 2, comes by considering the trivial subdirectly

irreducible act {a0}, and the two elements (both fixed) subdirectly irreducible
act. □

Recall that an S-act A is called simple if ConA = {△,∇}. It is easy to
check that every S-act A with |A| ≤ 2 is simple, but there exists no simple
S-act A with trivial action and |A| > 2. We close this section, by generalizing
the latter fact for any S-act.

Theorem 3.7. For a zero semigroup S, there exists no simple S-act A with
|A| > 2.

Proof. First note that an S-act A with |A| > 2 and at least two fixed elements,
is not simple. Now, let FixA = {a0}. For b, c ∈ A we have b0 = c0 = a0.
Assume that for some s ∈ S, bs = x ̸= a0. Then for each t ∈ S, xt = bst =
b0 = a0. Therefore, ρa0,x ̸= △,∇, and so A can not be simple. □
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4. Subdirectly irreducible acts over a right zero semigroup

The last kind of semigroups over which we consider the subdirectly irre-
ducible acts, are right zero semigroups. Recall that a semigroup S is a right
zero semigroup, if st = t, for all s, t ∈ S.

Also Note that for a right zero semigroup S, the only separated S-acts are
S-acts with trivial actions. This is because if A is an S-act, and a, b ∈ A are
distinct elements with as = b for some s ∈ S, then at = bt for all t ∈ S which
means that A is not separated.

Definition 4.1. Let S be a right zero semigroup and A be an S-act. Define
the relation ∼ on A as follow:

a ∼ b ⇔ (a = bs or b = as for some s ∈ S).

We call each subset a∼ = {b ∈ A|b ∼ a} a ∼-part of A.

Remark 4.2. (1) Note that although ∼ is a symmetric relation, it is not neces-
sarily an equivalence relation. For example, take S = {s, t} be a two element
right zero semigroup, and consider the S-act A = {a, b, c} with the action given
by as = bs = cs = b, at = bt = ct = c. Then A has two ∼-parts: a∼ = {b, c}
and b∼ = c∼ = {a, b, c}. We further see that a ≁ a.

(2) Each element of A belongs to at least one ∼-part. In fact, for each a ∈ A
and s ∈ S, a ∈ (as)∼.

(3) If a ∼ b then at = bt for all t ∈ S. This is because, if a = bs or
b = as, for some s ∈ S, then for all t ∈ S, at = (bs)t = b(st) = bt or
bt = (as)t = a(st) = at.

Lemma 4.3. Let S be a right zero semigroup and A be an S-act. If A has a
∼-part with at least three elements then A is subdirectly reducible.

Proof. Let x∼ be a ∼-part of A and {a, b, c} ⊆ x∼. By Remark 4.2(3), for
all s ∈ S, as = bs = cs. Therefore ρa,b ∩ ρa,c = ∆. Thus A is subdirectly
reducible. □

Lemma 4.4. Let S be a right zero semigroup and A be an S-act. If A has
two ∼-parts with at least two elements in each ∼-part then A is subdirectly
reducible.

Proof. Let x∼ and y∼ be two ∼-parts and {a, a′} ⊆ x∼, {b, b′} ⊆ y∼. Then by
Remark 4.2(3), as = a′s and bs = b′s for every s ∈ S. Therefore ρa,a′ ∩ ρb,b′ =
∆. Thus A is subdirectly reducible. □

Lemma 4.5. Let S be a right zero semigroup and A be an S-act with |A| ≥ 3.
If A has only two fixed elements then A is subdirectly reducible.

Proof. Let FixA = {a, b} and c ∈ A \ FixA. Two cases may occur:

(1) c ∼ a or c ∼ b (2) c ≁ a and c ≁ b
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Let c ∼ a. Then cs = as, for all s ∈ S. Now ρa,b ∩ ρa,c = ∆. Thus A is
subdirectly reducible. Similarly, if c ∼ b then A is subdirectly reducible.

Let c ≁ a and c ≁ b. Then there dose not exist t ∈ S with ct = a or
ct = b. So (a, b), (b, a) /∈ ρa,c, and hence ρa,b ∩ ρa,c = ∆. Thus A is subdirectly
reducible. □
Theorem 4.6. Let S be a right zero semigroup with |S| > 3. An S-act A
with at least three elements is subdirectly irreducible if and only if |A| = 3,
|FixA| = 1 and A has exactly two ∼-parts.

Proof. Let A be subdirectly irreducible. Then first we see that |A| = 3. On the
contrary, let |A| > 3. If A has only one ∼-part then it is subdirectly reducible,
by Lemma 4.3, which is a contradiction. If A has two ∼-parts then it is sub-
directly reducible, by Lemmas 4.3 and 4.4, which is again a contradiction. If
A has more than two ∼-parts then it clearly is subdirectly reducible, which is
again a contradiction. Therefore, |A| = 3. Now using this, by a similar discus-
sion to the above, we get that A has exactly two ∼-parts. Finally |FixA| = 1.
This is because, if |FixA| = 2 then by Lemma 4.5 it is subdirectly reducible.
Also, if |FixA| = 0 then A does not have a one element ∼-part, and hence each
∼-part has at least two elements. Therefore by Lemma 4.4, A is subdirectly
reducible, which is a contradiction.

Conversely, let |A| = 3, |FixA| = 1, and A have exactly two ∼-parts. Then
one ∼-part has one element which is a fixed element, and another ∼-part has
two elements which are not fixed elements. Let A = {a, b, c}, where a is a fixed
element and b ∼ c. Then, using the hypothesis that |FixA| = 1, there exist
t, s ∈ S such that bs = cs = b and ct = bt = c. Now, the only nontrivial
congruences on A are: ρa,b = ρa,c = ∇ and ρb,c. Also, (b, c) ∈ ρa,b ∩ ρa,c ∩ ρb,c.
Therefore, A is subdirectly irreducible. □

Since every S-act with one or two elements is subdirectly irreducible, the
above theorem gives a characterization of all subdirectly irreducible S-acts, for
a right zero semigroup S. Theorem 4.6 can be also obtained from [4], where a
characterization of subdirectly irreducible acts over a rectangular band is given.

Remark 4.7. For a right zero semigroup S, the structure of each subdirectly
irreducible S-act A with |A| ≥ 3 is as follow:

(1) |A| = 3, let A = {a0, b, c}
(2) FixA = {a0}
(3) There exist s, t ∈ S such that bs = cs = c and bt = ct = b, and for all

r ∈ S, br = cr ̸= a0.

Now we find the number of subdirectly irreducible S-acts over a right zero
semigroup S.

Theorem 4.8. Let S be a right zero semigroup with |S| = n. Then the number
of non-isomorphic subdirectly irreducible S-acts is n+ 2.
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Proof. Let S = {s1, s2, . . . , sn}. Consider the set X = {Ai| 1 ≤ i ≤ n − 1} in
which for all i, 1 ≤ i ≤ n−1, Ai = {a0, b, c} is the S-act given as FixAi = {a0},
for all j with 1 ≤ j ≤ i, bsj = csj = b, and for all l > i, bsl = csl = c. By
Remark 4.7, all Ai in X are subdirectly irreducible. On the other hand, if an
S-act A is subdirectly irreducible with at least three elements, then again by
the above remark, A is isomorphic to one of Ai in X . Therefore the number of
all subdirectly irreducible S-acts with at least three elements is |X | = n − 1.
Also, computing the number of subdirectly irreducible S-acts A with |A| ≤ 2,
we get that there are (up to isomorphism) only three such acts: the singleton
S-act {a}, the two fixed element act 2, and the two element act {a, b} with
only one fixed element. In all, the number of subdirectly irreducible S-acts is
(n− 1) + 3 = n+ 2. □
Theorem 4.9. For a right zero semigroup S, there exists no simple S-act with
at least three elements.

Proof. Let A be an S-act with |A| ≥ 3. Two cases may happen:
Case 1. A has exactly one ∼-part. Then we can take a, b, c ∈ A with

as = bs = cs, for all s ∈ S. Thereafter, ρa,b = △∪ {(a, b), (b, a)} ≠ ∇,△.
Case 2. A has more than one ∼-part. Let a∼, b∼ be two ∼-parts of A such

that c ∈ a∼. Then ρa,c = △ ∪ {(a, c), (c, a)} ̸= ∇,△. Therefore, A is not
simple. □
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