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Abstract. In this paper, we investigate the number of 1-factors of a

generalized Petersen graph P (N, k) and get a lower bound for the number
of 1-factors of P (N, k) when k is odd, which shows that the number of
1-factors of P (N, k) is exponential in this case and confirms a conjecture

of Lovász and Plummer (Ann. New York Acad. Sci. 576 (2006), no. 1,
389–398).
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1. Introduction

Let G = (V (G), E(G)) be a graph. Hereafter, all graphs are, finite, simple
and connected. Also, for the basic terminology not defined here one may refer
to [1].

A matching in a graph G is a set of pairwise non-adjacent edges. If M is a
matching, the two ends of each edge ofM are said to be matched underM , and
each vertex incident with an edge of M is said to be covered by M . A perfect
matching of a graph G is one which covers every vertex of G, where a perfect
matching is also called a 1-factor of G. Let Φ(G) be the number of 1-factors of
G. Two graphs G and H are isomorphic, written G ∼= H, if there are bijections
ϕ : V (G) → V (H) and φ : E(G) → E(H) such that ψG(e) = uv if and only
if ψH(φ(e)) = ϕ(u)ϕ(v); such a pair of mappings is called an isomorphism
between G and H. A graph G is n-extendable if G has a matching of size n,
and every such matching extends to (i.e., is contained in) a perfect matching in
G. A graph is factorizable if it contains a 1-factor. A graph G is called bicritical
if removing any two vertices of G, there remains a factorizable subgraph. Odd
(even) path (cycle) represents a path (cycle) of odd (even) length.
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One of the topics in matching theory is to determine the function Φ(G).
Kasteleyn [6] first introduced Pfaffian method to give the exact value for the
number of 1-factors of planar graphs. However, there may exist no uniform
formula or efficient algorithm to compute (G) for some graphs G. In particular,
Valiant [10] proved that the problem of determining Φ(G) is NP-hard, even
when G is bipartite. This left very little room for finding the exact value of
Φ(G). Naturally, the next move is to find a lower bound for Φ(G). Up to now,
it has obtained many important results for the lower bound (G) of some special
graphs G. We present a few classical results in this direction.

Theorem 1.1 ([7]). Let G be a Halin graph. Then Φ(G) ⩾ 2
3 (|V (G)| − 1).

Theorem 1.2 ([12]). Let G = (X,Y ) be a bipartite graph with a 1-factor and
dG(x) ⩾ k for every x ∈ X. Then Φ(G) ⩾ k!.

Theorem 1.3 ( [2, 9]). Let G be a k-regular bipartite graph on 2n vertices.
Then

(
(k − 1)k−1

kk−2
)n ⩽ Φ(G) ⩽ (k!)

n
k .

Theorem 1.3 implies that the number of 1-factors of a k-regular bipartite
graph is exponential. In addition, some non-bipartite cubic graphs may not
have 1-factors. For instance, Sylvester graph has this property.

Theorem 1.4 ( [12]). Let G be a k-connected graph with a 1-factor. Then
Φ(G) ⩾ k!!. In particular, Φ(Kn) = (n− 1)!!. These bounds are sharp when k
is odd.

Theorem 1.5 ([7]). Let G be a k-connected graph with a 1-factor and assume
that G is not bicritical. Then Φ(G) ⩾ k!.

Došlić [4] used ear decomposition theory of 2-connected graphs to establish
lower bounds on the number of 1-factors in k-extendable graphs.

Theorem 1.6 ([4]). Let G be a k-extendable graph of n vertices and m edges
with maximum degree ∆, where k ⩾ 1. Then

Φ(G) ⩾ ⌈ (k + 1)!

4
(m− n− (k − 1)(2∆− 3) + 4)⌉.

In 2006, Lovász and Plummer [8] posed a conjecture on the lower bound of
1-factors of 2-edge-connected cubic graphs.

Conjecture 1.7 ([8]). Let G be a 2-edge-connected cubic graph. Then there
exists a constant number c > 1 such that Φ(G) ⩾ cn.

Some partial results are known with regard to this conjecture. For example,
Voorhoeve [11] showed that if G is a cubic bipartite graph on 2n vertices, then
Φ(G) ⩾ ( 43 )

n. Chudnovsky and Seymour [3] proved that if G is a cubic planar

graph with no cut edges, then Φ(G) ⩾ 2
|V (G)|

655978752 .
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Let us fix some notations before presenting the main results.
Let Fn+1 be the number of the subsets of {1, 2, . . . , n} containing no consec-

utive integers in {1, 2, . . . , n}. Then Fn+1 is called the Fibonacci number. The
Fibonacci sequence {Fn} satisfies the following recurrence relation

F1 = F2 = 1,

Fn+1 = Fn + Fn−1.

It is known that Fn can be stated as:

Fn =
1√
5
(σn+1 − τn+1),

where σ = 1+
√
5

2 , τ = 1−
√
5

2 .

Definition 1.8. A generalized Petersen graph P (N, k) for N ⩾ 3 and 1 ⩽ k <
N
2 is a graph on the vertex set

V = {ui|i = 1, 2, . . . , N} ∪ {wi|i = 1, 2, . . . , N},

and the edge set

E = {uiui+1, uiwi, wiwi+k|i = 1, 2, . . . , N},

where the subscripts are taken modulo N .

When N ≡ 0(mod 2) and k ≡ 1(mod 2), P (N, k) is a bipartite graph [5].
Hence, Φ(P (N, k)) is exponential. Neverthless, P (N, k) is non-planar and non-
bipartite when N ≡ 1(mod 2) and k ≡ 1(mod 2). In this paper, we prove that
the number of 1-factors of P (N, k) is exponential when k ≡ 1(mod 2), which
confirms Conjecture 1.7 in this case.

2. Lower bounds for Φ(G) in generalized Petersen graphs

Lemma 2.1. Let fm :=
∑m−1

i=0

(
m+i
2i+1

)
, gm :=

∑m
i=0

(
m+i
2i

)
. Then fm = F2m−1,

gm = F2m, where F2m−1 and F2m are odd items and even items of Fibonacci
sequence Fm, respectively.

Proof. Obviously, fm and gm satisfy the following initial condition{
f1 = F1 = 1,

g1 = F2 = 1.

Now we show that they satisfy the recurrence relations of Fibonacci sequence
Fm: {

fm + gm = F2m−1 + F2m = F2m+1 = fm+1;

gm + fm+1 = F2m + F2m+1 = F2m+2 = gm+1.
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In fact,

fm + gm =
m−1∑
i=0

(
m+ i

2i+ 1

)
+

m∑
i=0

(
m+ i

2i

)

=
m∑
i=0

(
m+ i+ 1

2i+ 1

)
= fm+1.

gm + fm+1 =
m∑
i=0

(
m+ i

2i

)
+

m∑
i=0

(
m+ i+ 1

2i+ 1

)
= gm+1.

The lemma is proved. □

For convenience, let n = ⌊N−1
k ⌋ and gcd(a, b) be the greatest common divisor

of two positive integers a and b.

Theorem 2.2. Let P (N, k) be a generalized Petersen graph with gcd(N, k) = 1
and k ≡ 1(mod 2). Then

Φ(P (N, k)) >

{
Fn, if gcd(N,n) ≡ 0(mod 2),
Fn−1, if gcd(N,n) ≡ 1(mod 2).

Proof. We construct a new graph H = H(V (H), E(H)):

V (H) = {ui|i = 1, 2, . . . , N} ∪ {vi|i = 0, 1, . . . , N − 1},
E(H) = {uiui+1|i = 1, 2, . . . , N}∪

{vivi+1|i = 0, 1, . . . , N − 1} ∪ {viu[ki+1]|i = 0, 1, . . . , N − 1},
where

[ki+ 1] =

{
ki+ 1, 1 ⩽ ki+ 1 ⩽ N,
l, N < ki+ 1 = Nr + l.

We construct a mapping (f, g) as follows: f : V (H) → V (G);
ui 7→ ui, i = 1, 2, , . . . , N,
vi 7→ w[ki+1], i = 0, 1, , . . . , N − 1

g : E(H) → E(G);
uiui+1 7→ uiui+1, i = 1, 2, , . . . , N,
vivi+1 7→ w[ki+1]w[k(i+1)+1], i = 0, 1, , . . . , N − 1,
viu[ki+1] 7→ w[ki+1]u[ki+1], i = 0, 1, , . . . , N − 1.

Note that P (10, 3) has two different drawings, (see Figure 1).
It is easy to see that (f, g) is an isomorphic between G and H when

gcd(N, k) = 1. Hence Φ(G) = Φ(H). In the following, we evaluate the lower
bound of Φ(H). Let E0 = {ei = viu[ki+1] ∈ E(H)|i = 0, 1, . . . , N − 1} and
F ∈ E0, denote M0(F ) to be the set of 1-factors of H containing F . Two cases
must be considered based on the parity of N .

Case 1. N ≡ 1(mod 2).
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Figure 1. Two drawings of P (10, 3)

Then H − E0 contains two disjoint odd cycles, denoted by C1 and C2, re-
spectively, where

C1 = v0v1 . . . vN−1v0,

C2 = u1u2 . . . uNu1.

Then H has a 1-factor only for |M0(F )| ≡ 1(mod 2).
When |M0(F )| = 1, 1-factors of H contain precisely one edge ei of E0. Then

C1 − vi and C2 − u[ki+1] are two distinct odd paths and each of them has a
1-factor. Thus, H has a 1-factor. Since ei has N distinct selections, Φ(H) = N .

When |M0(F )| = 3, 1-factors of H contain three edges of E0. Assume that
M0(F ) = {ei1 , ei2 , ei3}, then the number of 1-factors of H containing M0(F )
equals to the number of choices of (i1, i2, i3). H − E0 is the set of odd paths
since H has a 1-factor in this case. Assume that C1−{vi1 , vi2 , vi3} are distinct
odd paths. It leads to the parity of i1, i2, i3 (0 ⩽ i1 < i2 < i3 ⩽ N − 1) are
alternate. Similar to the former, paths of C2 − {u[ki1+1], u[ki2+1], u[ki3+1]} are
of odd length, and hence the parity of [ki1 + 1], [ki2 + 1], [ki3 + 1] are also
alternate. [kij + 1] has k distinct values for j = 1, 2, 3 as follows:

[kij + 1] =


kij + 1, 1 ⩽ kij + 1 ⩽ N ;
kij + 1−N, N + 1 ⩽ kij + 1 ⩽ 2N ;
. . . . . .
kij + 1− (k − 1)N, (k − 1)N + 1 ⩽ kij + 1 ⩽ kN .

To guarantee u[ki1+1], u[ki2+1], u[ki3+1] on cycle C2 in this order, we only
consider the case that 0 ⩽ kij + 1 ⩽ N − 1. Since [kij + 1] = kij + 1 for
j = 1, 2, 3, we have [ki1 + 1], [ki2 + 1], [ki3 + 1] and i1, i2, i3 have the same
order, and the following three edges of 1-factors of H are chosen from E0:

ei1 = vi1uki1+1;

ei2 = vi2uki2+1;

ei3 = vi3uki3+1,
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where the order of ei1 , ei2 , ei3 is given in Figure 2.

Figure 2. The case of |M0(F )| = 3

u

v

u u u u u u u1 2 3 N 1- N

v v v v v vv0 1 2 N 2-

[ + ]ki1 1 [ + ]ki2 1 [ + ]ki3 1

i1 i2 i3 N 1-

ei1
ei3

ei2

Thus,

0 ⩽ i1 < i2 < i3 ⩽ ⌊N − 1

k
⌋ = n.

It is clear that the number of 1-factors of H with |M0(F )| = 3 equals to the
number of the selections of (i1, i2, i3) in {0, 1, 2, . . . , n}. When n ≡ 1(mod 2),
we shall consider the parity of i1. If i1 ≡ 1(mod 2), then{

i1 ≡ i3 ≡ n ≡ 1(mod 2);

i2 ≡ 0(mod 2).

Let 
i1 − 0 = 2k1 + 1;

i2 − i1 = 2k2 + 1;

i3 − i2 = 2k3 + 1;

n− i3 = 2k4,

where ki (i = 1, 2, 3, 4) is a nonnegative integer. Then

k1 + k2 + k3 + k4 =
n− 3

2
.

Observe that the number of the selections of (i1, i2, i3) equals to the number

of solutions of the above equation. Therefore, (i1, i2, i3) has
(n+3

2
3

)
distinct

choices. And since i1 ≡ 0(mod 2), (i1, i2, i3) has
(n+3

2
3

)
distinct selections

analogously.
When n ≡ 0(mod 2), the number of selections of (i1, i2, i3) is

(n+2
2

3

)
, i1 ≡ 1(mod 2);(n+4

2

3

)
, i1 ≡ 0(mod 2).
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Since C1 − {vi1 , vi2 , vi3} and C2 − {u[ki1+1], u[ki2+1], u[ki3+1]} are distinct
union of odd paths, they have an unique 1-factor. Hence the number of 1-
factors of H containing F equals to the number of selections of (i1, i2, i3).
Therefore, when |M0(F )| = 3,

Φ(H) ⩾


(n+3

2

3

)
, n ≡ 1(mod 2);(n+2

2

3

)
, n ≡ 0(mod 2).

Similarly, when |M0(F )| = 5,

Φ(H) ⩾


(n+5

2

5

)
, n ≡ 1(mod 2);(n+4

2

5

)
, n ≡ 0(mod 2).

Repeat the above discussions again, we may find the lower bound of Φ(H)
for |M0(F )| = 7, 9, . . . , n + εn, where εn = 0 if n ≡ 1(mod 2) and εn=-1 for
otherwise. That is,

Φ(H) >


N +

n−1
2∑

i=1

(n+2i+1
2

2i+ 1

)
, if n ≡ 1(mod 2);

N +

n−2
2∑

i=1

( n+2i
2

2i+ 1

)
, if n ≡ 0(mod 2).

And hence,

(2.1) Φ(H) >



n−1
2∑

i=0

(n+2i+1
2

2i+ 1

)
, if n ≡ 1(mod 2);

n−2
2∑

i=0

( n+2i
2

2i+ 1

)
, if n ≡ 0(mod 2).

Case 2. N ≡ 0(mod 2).
Then H −E0 contains two even cycles, denoted by C1 and C2, respectively,

where

C1 = v0v1 . . . vN−1v0,

C2 = u1u2 . . . uNu1.

Therefore, H has a 1-factor when |M0(F )| ≡ 0(mod 2).
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When |M0(F )| = 0, 1-factors of H contain no edges of E0. Hence H − E0

is determined by two even cycles and each of them has two 1-factors. Thus,
Φ(H) = 4.

When |M0(F )| = 2, such 1-factors of H have two edges of E0. Suppose that

M0(F ) = {{ei1 , ei2}|0 ⩽ i1 < i2 ⩽ N − 1}.
Based on our reasoning so far, the number of 1-factors of H with |M0(F )| = 2
equals to the number of choices of (i1, i2). If H contains a 1-factor, then
C1−{vi1 , vi2} and C2−{u[ki1+1], u[ki2+1]} are distinct union of odd paths, and
hence gcd(i1, i2) ≡ 1(mod 2) and gcd([ki1+1], [ki2+1]) ≡ 1(mod 2). Therefore,
the parity of i1, i2 and [ki1 + 1], [ki2 + 1] are different. [kij + 1] has k distinct
values for j = 1, 2 as follows:

[kij + 1] =


kij + 1, 1 ⩽ kij + 1 ⩽ N ;
kij + 1−N, N + 1 ⩽ kij + 1 ⩽ 2N ;
. . . . . .
kij + 1− (k − 1)N, (k − 1)N + 1 ⩽ kij + 1 ⩽ kN .

Now we only consider the case that 0 ⩽ kij + 1 ⩽ N − 1, j = 1, 2, as shown
in Figure 3. Then ei1 = vi1uki1+1, ei2 = vi2uki2+1 with ei1 ∩ ei2 = ∅ and

0 ⩽ i1 < i2 ⩽ ⌊N − 1

k
⌋ = n.

Figure 3. The case of |M0(F )| = 2

u

v

u u u u u u1 2 3 N 1- N

v v v v vv0 1 2 N 2-

[ + ]ki1 1 [ + ]ki2 1

i1 i2 N 1-

Now, the number of 1-factors of H with |M0(F )| = 2 equals to the number
of the selections of (i1, i2). When n ≡ 1(mod 2), we consider the parity of i1.
If i1 ≡ 1(mod 2), then i2 ≡ 0(mod 2).

Let 
i1 − 0 = 2k1 + 1;

i2 − i1 = 2k2 + 1;

n− i2 = 2k3 + 1,

where each ki (i = 1, 2, 3) is a nonnegative integer. Then

k1 + k2 + k3 =
n− 3

2
.
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It is easy to see that the number of the selections of (i1, i2) equals to the

number of solutions of the above equation. Therefore, (i1, i2) has
(n+1

2
2

)
distinct

selections. And as i1 ≡ 0(mod 2), (i1, i2) has
(n+3

2
2

)
distinct choices.

When n ≡ 0(mod 2), the number of choices of (i1, i2) is
(n+2

2
2

)
. Therefore,

when |M0(F )| = 2,

Φ(H) ⩾


(n+1

2

2

)
, n ≡ 1(mod 2);(n+2

2

2

)
, n ≡ 0(mod 2).

Similar to the above procedure, we may obtain the lower bound of Φ(H) for
|M0(F )| = 4, 6, . . . , n + εn, where εn = 0 if n ≡ 0(mod 2) and εn = −1 for
otherwise, as follows:

(2.2) Φ(H) > 4 +

⌊n
2 ⌋∑

i=1

(
⌊n+2i

2 ⌋
2i

)
⩾

⌊n
2 ⌋∑

i=0

(
⌊n+2i

2 ⌋
2i

)
.

Set m = ⌈n
2 ⌉ in inequalities (2.1). Then

Φ(H) >

m−1∑
i=0

(
m+ i

2i+ 1

)
.

Set m = ⌊n
2 ⌋ in inequalities (2.2). Then

Φ(H) >
m∑
i=0

(
m+ i

2i

)
.

Note that 
fm =

m−1∑
i=0

(
m+ i

2i+ 1

)
;

gm =

m∑
i=0

(
m+ i

2i

)
,

by Lemma 2.1, fm and gm are odd terms and even terms of Fibonacci
sequence Fm, respectively. Then

Φ(H) >

{
fm, N ≡ 1(mod 2);

gm, N ≡ 0(mod 2).

Since the general form of Fibonacci sequence Fn is

Fn =
1√
5
(σn+1 − τn+1),
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where σ = 1+
√
5

2 , τ = 1−
√
5

2 , Fn increases exponentially. Hence Φ(H) also
increases exponentially. By the construction of H, Φ(H) = Φ(P (N, k)). When
gcd(N, k) = 1 and k ≡ 1(mod 2), the lower bound of Φ(P (N, k)) is some item
of Fibonacci sequence, and hence it increases exponentially with order N .

This completes the proof. □

Theorem 2.3. Let P (N, k) be a generalized Petersen graph. If gcd(N, k) ̸= 1,
N ≡ 0(mod 2) and k ≡ 1(mod 2), then

Φ(P (N, k)) >

{
2t−1Fn, if n ≡ 1(mod 2),
2t−1Fn−1, if n ≡ 0(mod 2),

where t = gcd(N, k).

Proof. For the proof, we construct a new graph H ′ such that H ′ ∼= P (N, k).
It is easy to see that t ≡ 1(mod 2) and N

k ≡ 0(mod 2). Let 2m = N
k . Then

P (N, k) can be restated as the union of a long cycle of length N , t short cycles
of length 2m and N edges joining these cycles.

We define a new graph H ′ = H ′(V (H ′), E(H ′)) as follows:

V (H ′) = {ui|i = 1, 2, . . . , N} ∪ {vi|i = 0, 1, . . . , N − 1},

E(H ′) = {vivi+1|i = 2(j − 1)m, . . . , 2jm− 2, j = 1, 2, . . . , t}

∪{v2m−1v0, v4m−1v2m, . . . , vN−1v2(t−1)m}

∪{viu[ki+j]|i = 0, 1, . . . , N − 1, j = 1, 2, . . . , t}.
An isomorphic mapping (ϕ, φ) between H ′ and P (N, k) is defined as:

 ϕ : V (H ′) → V (G);
ui 7→ ui, i = 1, 2, . . . , N ;
vi 7→ w[ki+j], i = 2(j − 1)m, . . . , 2jm− 1, j = 1, 2, . . . , t.

φ : E(H ′) → E(G);
uiui+1 7→ uiui+1, i = 1, 2, . . . , N ;
vivi+1 7→ w[ki+1]w[k(i+1)+1], i = 0, 1, . . . , 2m− 2;
v2m−1v0 7→ w[k(2m−1)+1]w1;
. . .
vivi+1 7→ w[ki+2]w[k(i+1)+2], i = 2m, 2m+ 1, . . . , 4m− 2;
v4m−1v2m 7→ w[k(4m−1)+2]w2;
vivi+1 7→ w[ki+t]w[k(i+1)+t], i = 2(t− 1)m, , . . . , 2tm− 2;
vN−1v2(t−1)m 7→ w[k(N−1)+t]w2;
viu[ki+j] 7→ w[ki+j]u[ki+j], i = 0, 1, , . . . , N − 1, j = 1, 2, . . . , t.

Then P (12, 3) has two distinct drawings as shown in Figure 4.
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Figure 4. Two drawings of P (12, 3)

Since (ϕ, φ) is an isomorphic mapping between G and H ′, we have Φ(G) =
Φ(H ′). Now we start to compute the lower bound of Φ(H ′). Let

E0 = {ei = viu[ki+j]|i = 0, 1, . . . , N − 1, j = 1, 2, . . . , t}.

Then H ′−E0 contains t distinct short cycles (C1j , j = 1, 2, . . . , t) of length 2m
and a long cycle C2 of length N , where

C1j = v2(j−1)m . . . v2jm−1v2(j−1)m, j = 1, 2, . . . , t;

C2 = u1u2 . . . uNu1.

We still use the definition of F and M0(F ) as before. If a 1-factor of H ′

contains F , then |M0(F )| is even. We consider the case that the above edges
lying on both C2 and C11.

When |M0(F )| = 0, 1-factors of H ′ of this type are from t + 1 long cycles,
and each of them has two independent 1-factors. Then Φ(H ′) = 2t+1.

When |M0(F )| = 2, 1-factors of H ′ of this type contain two edges of E0.
Suppose that M0(F ) = {e0, ei} (1 ⩽ i ⩽ 2m − 1). If i ≡ 1( mod 2), then
C11 − {v0, vi} contains a 1-factor. And C2 − {u1, u[ki+1]} also has a 1-factor
for [ki + 1] ≡ 0(mod 2). Then [ki + 1] = ki + 1 and i have distinct parity for
1 ⩽ ki + 1 ⩽ N (i.e., 1 ⩽ i ⩽ ⌊N−1

k ⌋). Thus we may only consider the case
that i ≡ 1(mod 2), 1 ⩽ i ⩽ n.

When n ≡ 1(mod 2) (or n ≡ 0(mod 2)), similar to the discussions we used
before, the choices of i are n+1

2 (or n
2 ). If e0 is not fixed, then the first edge e0

has exactly n+ 1 choices and once repeated, hence the two edges have (n+1)n
2

selections. Since the subgraphs determined by the left t − 1 short cycles have
2t−1 distinct 1-factors,

Φ(H ′) ⩾
{

2t−1 n+1
2

n+1
2 , n ≡ 1(mod 2);

2t−1 n+1
2

n
2 , n ≡ 0(mod 2).

When |M0(F )| = 4, let M0(F ) = {{e0, ei1 , ei2 , ei3}|1 ⩽ i1 ⩽ i2 ⩽ i3 ⩽
2m − 1}. Then both of C11 − {v0, vi1 , vi2 , vi3} and C2 − {u1, u[ki1+1], u[ki2+1],
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u[ki3+1]} have 1-factors if i1 ≡ 1(mod 2), i2 ≡ 0(mod 2), i3 ≡ 1(mod 2) and
[ki1 +1] ≡ 0(mod 2), [ki2+1] ≡ 1(mod 2), [ki3 +1] ≡ 0(mod 2) (see Figure 5).

Figure 5. The case of |M0(F )| = 4

u u u1 2 3

v0

u u u u u
N 1- N

v v v

[ + ]ki1 1 [ + ]ki2 1 [ + ]ki3 1

i1 i2 i3

C2

C11 C12 C1t

As we have shown before, if 1 ⩽ i ⩽ n, [ki+ 1] = ki+ 1 and i have distinct
parity, then the selections of {e0, ei1 , ei2 , ei3} equal to the choices of (i1, i2, i3).
If e0 is also not fixed, then it has n+1 choices and four times repeated. Hence
the contribution of M0(F ) is at least{

n+1
4

(n+1
2 +1
3

)
, n ≡ 1(mod 2);

n+1
4

(n
2 +1
3

)
, n ≡ 0(mod 2).

Since the remaining t− 1 cycles have 2t−1 distinct 1-factors,

Φ(H ′) ⩾
{

2t−1 n+1
4

(n+1
2 +1
3

)
, n ≡ 1(mod 2);

2t−1 n+1
4

(n
2 +1
3

)
, n ≡ 0(mod 2).

By the same method as above, the lower bound for Φ(H ′) with |M0(F )| =
6, 8, . . . , 2m is

2t+1 + 2t−1 n+ 1

2

n+ 1

2
+ 2t−1

n−1
2∑

i=1

n+ 1

2i+ 2

(
n+1
2

+ i

2i+ 1

)
, n ≡ 1(mod 2),

2t+1 + 2t−1

n
2∑

i=1

n+ 1

2i

(
n
2
+ i− 1

2i− 1

)
, n ≡ 0(mod 2).

Therefore,

Φ(H ′) >


2t−1

n−1
2∑

i=1

(
n+1
2

+ i

2i+ 1

)
= 2t−1Fn, n ≡ 1(mod 2),

2t−1

n
2
−1∑

i=1

(
n
2
+ i

2i+ 1

)
= 2t−1Fn−1, n ≡ 0(mod 2),
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which completes the proof. □
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