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Abstract. In this paper our focus is to study certain covering prop-

erties in topological spaces by using semi-open covers. A part of this
article deals with Rothberger-type covering properties. The notions of
s-Rothberger, almost s-Rothberger, star s-Rothberger, almost star s-
Rothberger, strongly star s-Rothberger spaces are defined and corre-

sponding properties are investigated.
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1. Introduction

Our main focus in this paper is to study various covering properties, in
particular selection principles, by using semi-open covers. We will deal with
variations of the following classical selection principle:

Let A and B be sets whose elements are families of subsets of an infinite set
X. Then S1(A,B) denotes the selection hypothesis:

For each sequence (Un : n ∈ N) of elements of A there is a sequence (Un :
n ∈ N) such that for each n ∈ N, Un is a member of Un, and {Un : n ∈ N} is
an element of B (see [25]).

If O denotes the family of all open covers of a spaceX, the property S1(O,O)
is called the Rothberger (covering) property.

In 1963, N. Levine [19] defined semi-open sets in topological spaces. Since
then, many mathematicians generalized different concepts and explored their
properties in new setting. A set A in a topological space X is semi-open if
and only if there exists an open set O ⊂ X such that O ⊂ A ⊂ cl(O), where
cl(O) denotes the closure of the set O. Equivalently, A is semi-open if and
only if A ⊂ cl(int(A)) (int(A) is the interior of A). If A is semi-open, then its
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complement is called semi-closed [6]. Every open set is semi-open, whereas a
semi-open set may not be open. The union of any number of semi-open sets is
semi-open, but the intersection of two semi-open sets may not be semi-open.
The intersection of an open set and a semi-open set is always semi-open. The
collection of all semi-open subsets of X is denoted by SO(X). According to [6],
the semi-closure and semi-interior were defined analogously to the closure and
interior: the semi-interior sint(A) of a set A ⊂ X is the union of all semi-open
subsets of A); the semi-closure scl(A) of A ⊂ X is the intersection of all semi-
closed sets containing A. A set A is semi-open if and only if sint(A) = A, and
A is semi-closed if and only if scl(A) = A. Note that for any subset A of X

int(A) ⊂ sint(A) ⊂ A ⊂ scl(A) ⊂ cl(A).

The semi θ-closure [4] of a set A is the set of all points x ∈ X for which
A ∩ scl(V ) ̸= ϕ for every semi-open set V containing x. It is denoted as
sclθ(A).

A subset A of a topological space X is called a semi-regular set if it
is semi-open as well as semi-closed or equivalently, A = scl(sint(A)) or
A = sint(scl(A)). The collection of all semi-regular subsets of X is denoted
as SR(X).

A mapping f : (X, τX) → (Y, τY ) is called:

(1) semi-continuous if the preimage of every open set in Y is semi open;
(2) s-continuous if preimage of every semi-open set in Y is open in X;
(3) irresolute [7] if f−1(O) is semi-open in X for every semi-open O in Y ;
(4) semi-homeomorphism if f is a bijection and images and preimages of

semi-open sets are semi-open. Or f is irresolute and pre-semiopen;
(5) a quasi-irresolute if for every semi-regular set A in Y the set f−1(A) is

semi-regular in X [8].

For more details on semi-open sets and semi-continuity, we refer to [3,5–7,19].

2. Preliminaries

Throughout this paper a space X is an infinite topological space (X, τ) on
which no separation axioms are assumed unless otherwise stated. We use the
standard topological notation and terminology as in [12].

A semi-open cover U of a space X is called;

• an sω−cover if X does not belong to U and every finite subset of X is
contained in a member of U .

• an sγ−cover if it is infinite and each x ∈ X belongs to all but finitely
many elements of U .

• s-large if each x ∈ X belongs to infinitely many elements of U .
• s-groupable if it can be expressed as a countable union of finite, pairwise
disjoint subfamilies Un, n ∈ N, such that each x ∈ X belongs to ∪ Un

for all but finitely many n.
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For a topological space X we denote:

• sO−the family of covers of X by semi-open sets in X.
• D−the family of dense subsets of X.
• sΩ−the family of sω−covers of X.
• sΓ−the family of sγ−covers of X.
• sΛ−the family of s-large covers of X.
• sOgp−the family of s-groupable covers of X.

Definition 2.1. A space X is called:

• semi-compact [10] if every cover of X by semi open sets has a finite
subcover;

• semi-Lindelöf [13] if every cover ofX by semi-open sets has a countable
subcover.

Definition 2.2 ([11]). A space X is semi-regular if for each semi-closed set A
and x /∈ A there exist disjoint semi-open sets U and V such that x ∈ U and
A ⊂ V .

Lemma 2.3 ([11]). The following are equivalent in a space X:

(i) X is a semi-regular space;
(ii) For each x ∈ X and U ∈ SO(X) such that x ∈ U , there exists V ∈

SO(X) such that x ∈ V ⊂ scl(V ) ⊂ U ;
(iii) For each x ∈ X and each U ∈ SO(X) with x ∈ U , there is a semi-

regular set V ⊂ X such that x ∈ V ⊂ U .

3. Semi-Rothberger spaces

Definition 3.1. A space X is said to have the semi-Rothberger property (or
s-Rothberger property) if it satisfies S1(sO, sO).

Clearly, we have the following diagram:

s−Rothberger ⇒ semi−Lindelof

⇓ ⇓

Rothberger ⇒ Lindelof

Example 3.2. (1) A compact space may not be an s-Rothberger space. We
know that the closed unit interval [0,1] is compact (as well as Eberlein
compact), but it is not a Rothberger space as pointed out in [24]. This
implies that [0,1] is not s-Rothberger.

(2) Let the real line R be endowed with the topology τ = {∅, R, (−∞, x) :
x ∈ R}. Then, as it is easy to see, (R, τ) is a semi-Rothberger space, but
it is not semi-compact.
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(3) Every semi-Rothberger space is a Rothberger space, but the converse
is not true in general. The Lusin space is a Rothberger space but not
s-Rothberger space. It follows from the fact that Sierpiński pointed out
in [26] that Lusin sets have Rothberger property, but in [22], it is ob-
served that Lusin space space is not s-Menger and hence it is not an
s-Rothberger space.

(4) The Sorgenfrey line S is a (hereditarily) Lindelöf space which is not
semi-Menger [22] hence not semi-Rothberger. The space of irrationals
with the usual metric topology also is not semi-Menger [22] hence not
semi-Rothberger.

Proposition 3.3. The following statements are true:

(1) An irresolute image of a semi-Rothberger space is semi-Rothberger; in
particular, continuous open images of semi-Rothberger spaces are semi-
Rothberger;

(2) An s-continuous image of a Rothberger space is semi-Rothberger;
(3) A semi-continuous (in particular, continuous) image of a semi-Roth-

berger space is Rothberger;
(4) A semi-regular subspace of a semi-Rothberger space is also semi-

Rothberger.

Proof. By applying definitions, we can easily prove the statements (1) -(3). We
prove only (4). Let S be a semi-regular subspace of X and let (Un : n ∈ N)
be a sequence of semi-open covers of S. As S ∈ SO(X), thus each Un is a
collection of semi-open sets in X. On the other hand, since S is also semi-
closed, we conclude that each Un ∪ {X \ S} = Gn is a semi-open cover of X.
Semi-Rothbergerness of X implies the existence of sets Gn ∈ Gn, n ∈ N, such
that

∪
n∈N{Gn} is a semi-open cover of X. Let W = {Gn ∈ Gn, n ∈ N}. It

follows that the set V = W \ {X \ S} witness for (Un : n ∈ N) that S is
semi-Rothberger. □

A property which is preserved by semi-homeomorphisms is called a semi-
topological property [6].

Remark 3.4. From the previous proposition we see that the semi-Roth-
bergerness is a semi-topological property.

Let X = {(x, y) ∈ R2 : y ≥ 0} be the upper half-plane. Endow X with
the following two topologies: τ1 is the subspace topology of the usual metric
topology on R2, and τ2 is the Niemytzki tangent disc topology (called also the
Niemytzki plane) [12]. (X, τ2) is not s-Rothberger because it is not Lindelöf.
On the other hand, SO(X, τ1) = SO(X, τ2) [7]. Therefore, the mapping idX :
(X, τ1) → (X, τ2) is semi-homeomorphism. Hence, by Proposition 3.3, we
conclude that (X, τ1) is not s-Rothberger.
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A mapping f : X → Y is called s-perfect if for each semi-closed set A ⊂ X
the set f(A) is semi-closed in Y and for each y ∈ Y its preimage f−1(y) is
semi-compact relative to X.

Theorem 3.5. If f is an s-perfect mapping from a space X onto a semi-
Rothberger space Y , then X is also semi-Rothberger.

Proof. Let (Un : n ∈ N) be a sequence of semi-open covers of X. For each n
and each y ∈ Y there is a finite subcollection Gy

n of Un covering f−1(y). Set
Gy

n = ∪Gy
n and W y

n = Y \f(X \Gy
n). Then y ∈ W y

n , and Wn = {W y
n : y ∈ Y } is

a semi-open cover of Y for each n ∈ N. Since Y is semi-Rothberger for each n,
there is a set Hn ∈ Wn such that Y =

∪
n∈N Hn. To each Hn associate the set

Gy
n which occur in the representation of Gy

n for which H = Y \ f(X \Gy
n). In

this way for each n we have chosen a set Un of Un. Evidently, X =
∪

n∈N Un,
so that X is semi-Rothberger. □

Theorem 3.6. For a space X the following are equivalent:

(1) X is s-Rothberger;
(2) X satisfies S1(sΩ, sO).

Proof. (1) ⇒ (2): It follows from the fact that every semi-ω-cover of X is a
semi-open cover for X.

(2) ⇒ (1): Let (Un : n ∈ N) be a sequence of semi-open covers of X.
Partition N into pairwise disjoint infinite subsets Ni: N = N1∪N2∪· · ·∪Nm∪
· · · . For each n let Vn be the set of all elements of the form

Un1 ∪ Un2 ∪ · · · ∪ Unk
, n1 ≤ · · · ≤ nk, ni ∈ Nn, Uni ∈ Un, i ≤ k, k ∈ N

which are not equal to X. Then every Vn is a semi-ω-cover of X. Applying
(2) to the sequence (Vn : n ∈ N) we can choose a sequence W = {Wn : n ∈ N}
of sets such that for each n, Wn ∈ Vn and

∪
n∈N

∪
W∈W W = X. By the

construction, each W i
n = U

ni1
n ∪ · · · ∪ U

nik
n , so that in this way we get a

member of Up for some p ∈ N and these elements cover X. If there are no
elements from some Uq chosen in this way we put Wq = ∅. This gives that X
is semi-Rothberger. □

It is known that Rothberger’s covering property can be characterized game-
theoretically and Ramsey-theoretically [25]. We do not know if it is the case
for the semi-Rothberger property.

Problem 3.7. Can semi-Rothbergerness be characterized game-theoretically or
Ramsey-theoretically?

In [16], the notion of almost Rothberger spaces was introduced, and in [14]
this class of spaces has been studied. We make use of this concept and define
analogously spaces with the help of semi-open covers.
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Definition 3.8. A space X is almost semi-Rothberger if for each sequence
(Un : n ∈ N) of semi-open covers of X there exists a sequence (Un : n ∈ N) such
that for every n ∈ N, Un is a member of Un and

∪
n∈N{scl(Un) : Un ∈ Un} = X.

Proposition 3.9. If a space X contains a dense subset which is semi-
Rothberger in X, then X is almost semi-Rothberger.

Proof. Let D be a dense subset of X and let (Un : n ∈ N) be a sequence of semi-
open covers of X. Since D is semi-Rothberger in X, there are sets Vn ⊂ Un,
n ∈ N such that D ⊂

∪
n∈N Vn ⊂

∪
n∈N scl(Vn). Since D is dense in X and

scl(D) = cl(D), we have X =
∪

n∈N scl(Vn). □
The following two theorems show when an almost s-Rothberger space be-

comes s-Rothberger.

Theorem 3.10. Let X be a semi-regular space. If X is an almost s-Rothberger
space, then X is an s-Rothberger space.

Proof. Let (Un : n ∈ N) be a sequence of semi-open covers of X. Since X
is a semi-regular space, using the equivalence condition there exists for each
n a semi-open cover Vn of X such that V ′

n = {scl(V ) : V ∈ Vn} forms a
refinement of Un. By assumption, there exists W ={Wn : n ∈ N} such that
for each n, Wn is a member of Vn and ∪(W ′ : n ∈ N) is a cover of X, where
W ′ = {scl(W ) : W ∈ W}. For every n ∈ N and every W ∈ W we can choose
UW ∈ Un such that scl(W ) ⊂ UW . Let U ′ = {UW : W ∈ W}. We shall prove
that ∪(U ′ : n ∈ N) is a semi-open cover of X. Let x ∈ X. There exists n ∈ N
and scl(W ) ∈ W ′ such that x ∈ scl(W ). By construction, there exists UW ∈ U ′

such that scl(W ) ⊂ UW . Hence, x ∈ UW . □
Theorem 3.11. A space X is almost s-Rothberger if and only if for each
sequence (Un : n ∈ N) of covers of X by semi-regular sets, there exists a
sequence (Vn : n ∈ N) such that for every n ∈ N, Vn is a member of Un and∪

n∈N Vn is a cover of X.

Proof. Let X be an almost s-Rothberger space. Let (Un : n ∈ N) be a sequence
of covers of X by semi-regular sets. Since every semi-regular set is semi-open
(as well as semi-closed), (Un : n ∈ N) is a sequence of semi-open covers of X.
By assumption, there exists a sequence (Vn : n ∈ N) such that for every n ∈ N,
Vn is a member of Un and

∪
n∈N Vn is a cover of X, where scl(Vn) = Vn for all

n ∈ N.
Conversely, let (Un : n ∈ N) be a sequence of semi-open covers of X. Let

(U ′
n : n ∈ N) be a sequence defined by U ′

n = {scl(U) : U ∈ Un}. Then each U ′
n

is a cover of X by semi-regular sets. Thus there exists a sequence (Vn : n ∈ N)
such that for every n ∈ N, Vn is a member of U ′

n and
∪

n∈N Vn is a cover of X.
Let V ={Vn : n ∈ N}. By construction, for each n ∈ N and V ∈ V, there exists
UV ∈ Un such that V = scl(UV ). Hence,

∪
n∈N{scl(UV ) : V ∈ V} = X. So, X

is an almost s-Rothberger space. □
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Theorem 3.12. Let X be an almost s-Rothberger space, and Y be a topological
space. If f : X → Y is a quasi-irresolute surjection, then Y is an almost s-
Rothberger space.

Proof. Let (Un : n ∈ N) be a sequence of covers of Y by semi-regular sets. Let
U ′
n = {f−1(U) : U ∈ Un} for each n ∈ N. Then (U ′

n : n ∈ N) is a sequence of
semi-regular covers of X, since f is a quasi-irresolute surjection. Since X is an
almost s-Rothberger space, there exists a sequence (Vn : n ∈ N) such that for
every n ∈ N, Vn ∈ U ′

n and
∪

n∈N Vn is a cover of X. Let V ={Vn : n ∈ N}. For
each n ∈ N and V ∈ V we can choose UV ∈ Un such that V = f−1(UV ). Let
W = {scl(UV ) = UV : V ∈ V}. We will show that

∪
W is a cover of Y .

If y = f(x) ∈ Y , then there exists n ∈ N and V ∈ V such that x ∈ V . Since
V = f−1(UV ), y = f(x) ∈ UV ∈ W. □

A subset A of space X is called semi Gδ subset of X if it is a countable
intersection of semi-open sets ofX. A topological spaceX is called semi P-space
if every intersection of countably many semi-open subsets of X is semi-open.
Equivalently X is semi P-space if every semi Gδ subset of X is semi-open.

A space X is called weakly s-Rothberger space if it satisfies S1(sO,D). A
space X is called almost semi-Lindelöf [22] if there is for each semi-open cover
U of X a countable subset V such that {scl(V ) : V ∈ V} is a cover of X.

The following diagram shows relation between Rothberger type spaces and
Lindelöf type spaces.

s−Rothberger ⇒ almost s− Rothberger ⇒ weakly s− Rothberger

⇓ ⇓ ⇓
semi− Lindelöf ⇒ almost semi− Lindelöf ⇒ weakly semi− Lindelöf

⇓ ⇓ ⇓
Lindelöf ⇒ almost Lindelöf ⇒ weakly Lindelöf

Theorem 3.13. If a topological space (X, τ) is weakly s-Rothberger semi P-
space, then (X, τ) is almost s-Rothberger.

Proof. Let (Un : n ∈ N) be a sequence of semi-open covers of X. Since X is
weakly s-Rothberger, there exists a sequence (Un : n ∈ N) such that for every
n ∈ N, Un is an element of Un and ∪n∈NUn is dense in X. Let x ∈ X. By
the condition X is semi P-space, the intersection of every countable family of
semi-open subsets of X is semi-open and hence, every countable union of semi-
closed sets is semi-closed. So, scl(∪n∈NUn) = ∪n∈Nscl(Un) = X, which shows
that X is an almost s-Rothberger space. □

A space X is called almost semi-Lindelöf if there is for each semi-open cover
U of X a countable subset V such that {scl(V ) : V ∈ V} is a cover of X.
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Theorem 3.14. Every almost semi-Lindelöf semi P-space is almost s-Roth-
berger.

Proof. Let X be an almost semi-Lindelöf semi P-space and let (Un : n ∈ N) be
a sequence of semi-open covers of X. Assume that for each n ∈ N, Un is closed
under finite unions. Put U = {∩n∈NUn : Un ∈ Un}. Then U is semi-open cover
for X, since X is a semi P-space. As X is almost semi-Lindelöf, there exists a
countable subset {Vn : n ∈ N} of U such that ∪n∈Nscl(Vn) = X. For all n ∈ N,
we can write Vn = ∩k∈NUnk

, where Unk
∈ Uk. But ∪n∈Nscl(Unn

) = X, since
Vn ⊂ Unn , for every n ∈ N. Hence, X is almost s-Rothberger. □

Corollary 3.15. Let X be a semi-regular semi P-space, then the following are
equivalent:

(1) X is s-Rothberger.
(2) X is almost s-Rothberger.
(3) X is weakly s-Rothberger.
(4) X is semi-Lindelöf.
(5) X is almost semi-Lindelöf.
(6) X is weakly semi-Lindelöf.

A topological space X is called d-paracompact space if every family of dense
subsets of X has a locally finite refinement.

Theorem 3.16. If X is weakly s-Rothberger and d-paracompact space, then X
is almost Rothberger.

Proof. Let (Un : n ∈ N) be a sequence of semi-open covers of X. Since X is
weakly s-Rothberger, there exists a sequence (Vn : n ∈ N) such that for every
n ∈ N, Vn is a member of Un and ∪n∈NVn is dense in X. Let x ∈ X. By the
assumption V = {Vn : n ∈ N} has a locally finite refinement W and therefore
cl(∪W) =cl(∪n∈NVn). As W is a locally finite family, cl(∪W) = ∪W∈Wcl(W ).
Since for every W ∈ W there exists n ∈ N and VW ∈ V, so that W ⊂ VW ,
we have that ∪n∈N{cl(V ) : V ∈ V} = X. Hence, it is shown that X is almost
Rothberger. □

Theorem 3.17. Every semi-regular subset of an almost s-Rothberger space is
almost s-Rothberger.

Proof. Let F be a semi-regular subset of an almost s-Rothberger space and let
(Un : n ∈ N) be a sequence of semi-open covers of F . Then Vn = Un ∪{X−F}
is a semi-open cover for X for every n ∈ N. Since X is an almost s-Rothberger
space, there exists V = {Vn : Vn ∈ Vn;n ∈ N} for which

∪n∈N{scl(V ) : V ∈ V} = X

for each n ∈ N. By semi-regularity of X − F, scl(X − F ) = X − F and
∪n∈N{scl(V ) : V ∈ V, V ̸= X − F} covers F . □
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Theorem 3.18. Every semi-regular subset of a weakly s-Rothberger space is
weakly s-Rothberger.

Proof. Let F be a semi-regular subset of a weakly s-Rothberger space and let
(Un : n ∈ N) be a sequence of semi-open covers of F . Then Vn = Un ∪{X−F}
is a semi-open cover for X for every n ∈ N. Since X is a weakly s-Rothberger
space, there exists a set V = {Vn : Vn ∈ Vn;n ∈ N} such that ∪n∈NVn is dense
in X. Put W = ∪n∈N{V : V ∈ V, V ̸= X − F}. Then scl(W) ∪ (X − F ) =X.
Since F = scl(sint(F )) we have sint(F )∩ scl(X−F ) = ϕ. So, sint(F ) ⊂ scl(W)
and F = scl(sint(F )) ⊂ scl(W). □

4. Star covering properties

In this section we consider some properties defined in terms of stars with
respect to semi-open covers.

The method of stars has been used quite extensively in recent years for
definition and investigations of several important classical topological notions.
For star covering properties we refer the reader to see [2, 21, 31]. Kočinac [15],
gave motivation for the study of star selection principles and consequently, a
substantial work on star covering properties appeared in [16–18,20,23,27–30].

Let A be a subset of X and U be a collection of subsets of X. Then

st(A,U) = st1(A,U) = ∪{U ∈ U : U ∩A ̸= ∅},
and for n = 1, 2, 3, . . .

stn+1(A,U) = st(stn(A,U),U).
We usually write st(x,U) for st({x},U).

4.1. Star semi-Rothberger spaces.

Definition 4.1 ([15]). S1
∗(A,B) denotes the selection hypothesis:

For each sequence (Un : n ∈ N) of elements of A there is a sequence (Un : n ∈
N) such that for each n ∈ N, Un is a member of Un, and {st(Un,Un) : n ∈ N}
is an element of B.

Definition 4.2 ([15]). SS1
∗(A,B) denotes the selection hypothesis:

For each sequence (Un : n ∈ N) of elements of A there is a sequence (xn :
n ∈ N) of elemens of X such that {st(xn,Un) : n ∈ N} is an element of B.

The symbols S1
∗(O,O) and SS1

∗(O,O) denotes the star-Rothberger property
and strongly star-Rothberger property, respectively.

In a similar way we introduce the following definition.

Definition 4.3. (1) A space X is said to have the star s-Rothberger property
if it satisfies S1

∗(sO, sO).
(2) X is strongly star s-Rothberger space if it satisfies SS1

∗(sO, sO).
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Definition 4.4. A space X is called star semi-Lindelöf if every cover U of
semi-open subsets of X has a countable subset V such that st(∪V,U) covers X.

Definition 4.5. A space X is called strongly star semi-Lindelöf if for every
cover U of semi-open subsets of X, there is a countable subset A of X such
that st(A,U) covers X.

It is understood that every star s-Rothberger space is star semi-Lindelöf, and
every strongly star s-Rothberger space is strongly star semi-Lindelöf. Every
semi-Rothberger space is strongly star s-Rothberger.

Example 4.6. There is a strongly star s-Rothberger space which is not semi-
Rothberger. Endow the real line R with the topology τ = {R, ∅, {p}}, where
p is a point in R. Each subset of R containing p is semi-open. Let U =
{{p, x} : x ∈ R} be the semi-open cover of R. This cover does not contain a
countable subcover, so that this space is not semi-Lindelöf and thus cannot be
semi-Rothberger. On the other hand, if U is any semi-open cover, then for the
finite set F = {p} we have st(F,U) = R, i.e., (R, τ) is strongly star compact,
hence strongly star s-Rothberger.

Definition 4.7. A space X is called meta semi-compact if every semi-open
cover U of X has a point-finite semi-open refinement V (that is, every point of
X belongs to at most finitely many members of V).

Theorem 4.8. A topological space X is star s-Rothberger if and only if for
every sequence (Un : n ∈ N) of covers of X by semi-open sets, there exist
On ∈ Un, n ∈ N, such that for every x ∈ X there exists n ∈ N such that
st({x},Un) ∩On ̸= ϕ.

Proof. Let X be star s-Rothberger space, then X satisfies S∗
1 (sO, sO). Let

(Un : n ∈ N) be a sequence of covers of X by semi-open sets. By definition
there exists On ∈ Un, n ∈ N, such that {st(On,Un) : n ∈ N} is a semi-open
cover of X. That is, ∪n∈Nst(On,Un) = X. Let x ∈ X, then x ∈ st(Ok,Uk) for
some k ∈ N. That is, there exists Ok ∈ Uk containing x such that Ok ∩Uk ̸= ϕ.
Also st({x},Uk) ∩Ok ̸= ϕ.

Conversely, Let (Un : n ∈ N) be a sequence of covers of X by semi-open
sets. Then, there exist On ∈ Un, n ∈ N such that for every x ∈ X there exists
n ∈ N such that st({x},Un) ∩On ̸= ϕ. st({x},Un) contains the elements of Un

which contains x. This implies x ∈ st(On,Un). That is for every x ∈ X there
exists n ∈ N such that x ∈ st(On,Un). This implies that ∪n∈Nst(On,Un) = X.
Hence, X is star s-Rothberger. □

Theorem 4.9. A topological space X is strongly star s-Rothberger if and only
if for every sequence (Un : n ∈ N) of covers of X by semi-open sets, there exist
(xn : n ∈ N) of points of X such that for every x ∈ X there exists n ∈ N such
that x ∈ st(xn,Un).
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Proof. Let X be strongly star s-Rothberger space. Then X satisfies SS∗
1 (sO,-

sO). Let (Un : n ∈ N) be a sequence of covers of X by semi-open sets. Let
K be a collection of one-point subsets of X. Then, by definition there exists
a sequence (Kn : n ∈ N) of elements of K such that {st(Kn,Un) : n ∈ N} is a
semi-open cover of X. Let {xn} = Kn, n ∈ N, then (xn : n ∈ N) is a sequence
of points of X such that {st({xn},Un) : n ∈ N} is a semi-open cover of X. For
every x ∈ X there exists k ∈ N such that x ∈ st({xk},Uk).

Conversely, Let (Un : n ∈ N) be a sequence of covers of X by semi-open
sets. Then, there exist (xn : n ∈ N) of points of X such that for every x ∈ X
there exists n ∈ N such that xn ∈ st({x},Un). Let {xn} = Kn, n ∈ N. Then
we get the existence of the sequence (Kn : n ∈ N) of elements of K. Since
xn ∈ st({x},Un) for some n, then x ∈ st({xn},Un) = st(Kn,Un). This implies
that ∪n∈Nst(Kn,Un) = X. Hence, X is strongly star s-Rothberger. □

Theorem 4.10. A space X is an almost star s-Rothberger space if and only if
for each sequence (Un : n ∈ N) of covers of X by semi-regular sets, there exists
a sequence V ={Vn : n ∈ N} such that for every n ∈ N, Vn is a member of Un

and {scl(st(∪V,Un)) : n ∈ N} is a cover of X.

Proof. Since every semi-regular set is semi-open, therefore necessity follows.
Conversely, let (Un : n ∈ N) be the sequence of semi-open covers of X. Let

U ′
n = {scl(U) : U ∈ Un}. Then U ′

n is a cover of X by semi-regular sets. Then
by assumption there exists V ={Vn : n ∈ N} such that for every n ∈ N, Vn is a
member of U ′

n and {scl(st(∪V,U ′
n) : n ∈ N} is a cover of X.

First we shall prove that st(U,Un) = st(scl(U),Un) for all U ∈ Un. It is ob-
vious that st(U,Un) ⊂ st(scl(U),Un) since U ⊂ scl(U). Let x ∈ st(scl(U),Un).
Then there exists some U ′ ∈ Un such that x ∈ U ′ and U ′ ∩ scl(U) ̸= ϕ. Then
U ′ ∩ scl(U) ̸= ϕ which implies that x ∈ st(U,Un). Hence, st(scl(U),Un) ⊂
st(U,Un).

For each V ∈ V we can find UV ∈ Un such that V = scl(UV ). Let V ′ =
{UV : V ∈ V}.

Let x ∈ X. Then there exists n ∈ N such that x ∈ scl(st(∪V,U ′
n)). For

each semi-open set V of x, we have V ∩ st(∪V,U ′
n) ̸= ϕ. Then there exists

U ∈ Un such that (V ∩ scl(U) ̸= ϕ)∧ (∪Vn ∩ scl(U) ̸= ϕ) implies that (V ∩U ̸=
ϕ) ∧ (∪V ∩ scl(U) ̸= ϕ). We have that ∪V ′ ∩ U ̸= ϕ, so x ∈ scl(st(∪V ′,Un)).
Hence, {scl(st(∪V ′,Un) : n ∈ N} is a cover of X. □

Definition 4.11. A space X is an almost star s-Rothberger space if for each
sequence (Un : n ∈ N) of semi-open covers of X there exists a sequence (Un :
n ∈ N) such that for every n ∈ N, Un is an element of Un and {scl(st(Un,Un)) :
n ∈ N} is a cover of X.

Theorem 4.12. Quasi-irresolute surjective image of an almost star s-Roth-
berger space is an almost star s-Rothberger space.
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Proof. Let X be an almost star s-Rothberger space and Y be any topological
space. Let f : X → Y be a quasi irresolute surjection Let (Un : n ∈ N) be
a sequence of covers of Y by semi-regular sets. Let U ′

n = {f−1(U) : U ∈
Un}. Then each U ′

n is a cover of X by semi-regular sets since f is quasi-
irresolute. SinceX is an almost star s-Rothberger space, there exists a sequence
(V ′

n : n ∈ N) = V ′ such that for every n ∈ N, V ′
n is a member of U ′

n and
{scl(st(∪V ′

n,U ′
n)) : n ∈ N} is a cover of X.

Let V = {U ∈ Un : f−1(U) ∈ V ′} and x ∈ X. Then f−1(∪V) = ∪V ′ and
there is n ∈ N such that x ∈ scl(st(f−1(∪V,U ′

n)). For y = f(x) ∈ Y ,

y ∈ f(scl(st(f−1(∪V,U ′
n)))) ⊆ scl(f(st(f−1(∪V,U ′

n))))

⊆ sclθ(f(st(f
−1(∪V,U ′

n)))) = scl(st(∪V,Un)).

Now assume that f−1(∪V)∩ f−1(U) ̸= ϕ. Then f(f−1(∪V))∩ f(f−1(U)) ̸= ϕ,
hence ∪V ∩ U ̸= ϕ. So, it is shown that Y is an almost star s-Rothberger
space. □
Definition 4.13. A space X is said to be meta semi-Lindelöf if every semi-
open cover U of X has a point-countable semi-open refinement V.

Theorem 4.14. Every strongly star s-Rothberger meta semi-Lindelöf space is
a semi-Lindelöf space.

Proof. Let X be a strongly star s-Rothberger meta semi-Lindelöf space. Let U
be a semi-open cover of X and let V be a point-countable semi-open refinement
of U . Since X is strongly star s-Rothberger, there is a sequence (an : n ∈ N)
of elements of X such that

∪
n∈N st(an,Vn) = X.

For every n ∈ N denote by Wn the collection of all members of V which
intersects an. Since V is point-countable, Wn is countable. So, the collection
W =

∪
n∈N Wn is a countable subfamily of V and is a cover of X. For every

W ∈ W pick a member UW ∈ U such that W ∈ UW . Then {UW : W ∈ W} is
a countable subcover of U . Hence, X is a semi-Lindelöf space. □
Definition 4.15. A space X is said to be semi neighborhood star s-Rothberger
if for every sequence (Un : n ∈ N) of covers of X by semi-open sets, for each
n ∈ N, there exists xn ∈ X such that for every semi-open set On containing
xn, {st(On,Un) : n ∈ N} ∈ sO.

Theorem 4.16. A topological space X is semi neighborhood star s-Rothberger
if and only if for every sequence (Un : n ∈ N) of covers of X by semi-open sets,
there exist a sequence (xn : n ∈ N) of points of X such that for every x ∈ X
there exists n ∈ N such that xn ∈ scl(st({x},Un)).

Proof. LetX be a semi neighborhood star s-Rothberger space. Let (Un : n ∈ N)
be a sequence of covers of X by semi-open sets. For each n ∈ N, there exist
xn ∈ X such that for every semi-open setOn containing xn, n ∈ N, {st(On,Un) :
n ∈ N} ∈ sO. This implies ∪n∈Nst(On,Un) = X. Let x ∈ X there exists k ∈ N
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such that x ∈ st(Ok,Uk). Now, it can be easily seen that st({x},Uk)∩Ok ̸= ϕ.
This implies that xk ∈ scl(st({x},Uk)).

Conversely, let (Un : n ∈ N) be a sequence of covers of X by semi-open sets.
Then there exists a sequence (xn : n ∈ N) of points of X such that for every
x ∈ X there exists n ∈ N such that xn ∈ scl(st({x},Un)). This implies that
for every semi-open set On containing xn, n ∈ N, st({x},Un) ∩ On ̸= ϕ. This
implies that x ∈ st(On,Un). Hence, {st(On,Un) : n ∈ N} ∈ sO. □

Theorem 4.17. Let a space X satisfies the following condition: For each
sequence (Un : n ∈ N) of semi-open covers of X there is a sequence (Fn : n ∈ N)
of subsets of X such that for each n, |Fn| ≤ n and {st(Fn,Un) : n ∈ N)} is an
sγ−cover of X. Then X satisfies SS∗

1(sO, sOgp).

Proof. Let (Un : n ∈ N) be a sequence of semi-open covers of X. Let M be a
clopen subset of X. For each n let

Vn = {M ∩ Ui :
(n− 1)n

2
< i ≤ n(n+ 1)

2
;Ui ∈ Ui}.

(Vn : n ∈ N) is a sequence of semi-open covers of M . Let Wn = Vn∪{X−M},
then (Wn : n ∈ N) is a sequence of semi-open covers of X. Now applying the
assumption of the theorem we find a sequence (Fn : n ∈ N) of subsets of X
such that for each n, |Fn| ≤ n and {st(Fn,Wn) : n ∈ N} is an sγ−cover of X.
For each x ∈ X there exists n0 such that x ∈ st(Fn,Wn) for all n > n0. For
each n we can write Fn as

Fn =
{
xi :

(n− 1)n

2
< i ≤ n(n+ 1)

2

}
.

Then {st(xi,Ui) : i ∈ N} is a semi-open groupable cover of X. Consider the

sequence n1 < n2 < · · · < nt < · · · of natural numbers defined by nt =
(t−1)t

2 .
Then for each point x ∈ X we have x ∈ ∪nt<nt+1st(xi,Ui) for all but finitely
many t. Thus X satisfies SS∗

1(sO, sOgp).
□

In topology, an Fσ-set is a countable union of closed sets.

Theorem 4.18. A semi-open Fσ-subset of a strongly star s-Rothberger space
is strongly star s-Rothberger.

Proof. Let X be a strongly star s-Rothberger space and let A = ∪{Mn : n ∈ N}
be a semi-open Fσ-subset of X, where each Mn is closed in X for each n ∈ N.
Without loss of generality, we can assume that Mn ⊆ Mn+1 for each n ∈ N.
Now we show that A is strongly star s-Rothberger space. Let (Un : n ∈ N) be a
sequence of semi-open covers of A. We need to find a set K = {an : n ∈ N} of
elements of A such that {st(an,Un) : n ∈ N} is a cover for A. For each n ∈ N,
let

Vn = Un ∪ {X −Mn}.
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Then (Vn : n ∈ N) is a sequence of semi-open covers of X. There exists a set
T = {xn : n ∈ N) of elements of X such that {st(xn,Vn) : n ∈ N} is a cover
for X, since X is a strongly star s-Rothberger space. Let K = T ∩A. Thus K
is a subset of A. For every a ∈ A, there exists k ∈ N such that a ∈ st(T,Vk).
Hence a ∈ st(K,Uk), which shows that A is strongly star s-Rothberger. □

A cozero-set in a space X is a set of the form f−1(R − {0}) for some real
valued continuous function f on X. Since a cozero-set is a semi-open Fσ-set,
we have:

Corollary 4.19. A cozero-set of a strongly star s-Rothberger space is strongly
star s-Rothberger

Theorem 4.20. Every strongly star-s-Rothberger space is strongly star-semi
Lindelöf.

Proof. Let X be a strongly star-s-Rothberger space. This implies that X sat-
isfies SS∗

1 (sO, sO). Let U be a semi-open cover of X. Let (Un : n ∈ N) be a se-
quence such that each Un = U . Let K is the collection of all singleton subsets of
X. Then, by definition, there is a sequence (Kn : n ∈ N) of elements of K such
that ∪n∈N(st(Kn,Un)) = X. Let A = ∪n∈NKn; then A is a countable set being
countable union of finite sets. Also, ∪n∈Nst(Kn,Un)=∪n∈N (st(∪n∈NKn,Un)) =
st(A,Un) = X. Hence, X is strongly star-semiLindelöf space. □

Theorem 4.21. Every strongly star s-Rothberger meta semicompact space is
s-Menger space.

Proof. Let X be a strongly star s-Rothberger meta semicompact space. Let
(Un : n ∈ N) be a sequence of semi-open covers ofX. For each n ∈ N, let Vn be a
point-finite semi-open refinement of Un. Since X is strongly star s-Rothberger,
there is a sequence (an : n ∈ N) of points of X such that ∪n∈N(st(an,Vn)) = X.

Since Vn is a point-finite refinement, each an belongs to finite members
of Vn say Vn1 , Vn2 , Vn3 , . . . , Vnk

. Let V ′
n = {Vn1 , Vn2 , Vn3 , . . . , Vnk

}. Then
st(an,Vn) = ∪V ′

n for each n ∈ N. We have that ∪n∈N(∪V ′
n)=X. For ev-

ery V ∈ V ′
n choose UV ∈ Un such that V ⊂ UV . Then, for every n,

{UV : V ∈ V ′
n} = Wn is such that ∪n∈NWn = X, that is X is s-Menger

space. □

4.2. Finite Powers. All covers that we consider are infinite and countable.

Lemma 4.22 ( [9]). X is an extremely disconnected space if, and only if,
SO(X) is a topology.

Theorem 4.23. For an extremely disconnected space X,

S1(sΓ, sΓ) = Sfin(sΓ, sΓ).
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Proof. It is clear that S1(sΓ, sΓ) is contained in the class Sfin(sΓ, sΓ). We
show that these classes are infact equal.

Let us assume that X has the property Sfin(sΓ, sΓ), and for each n let Un

be an sγ−cover of X, enumerated bijectively as (Un
1 , U

n
2 , U

n
3 , . . .). For each n

define Vn to be {V n
1 , V n

2 , V n
3 , . . .}, where V n

k = U1
k ∩ U2

k ∩ . . . ∩ Un
k . For each

n, Vn is a sγ−cover. For each x, and for each i ∈ {1, . . . , n} there exists an Ni

such that x is in U i
m for all m > Ni. And x is in V n

m for all m > max{Ni : i =
1, 2, . . .}. Now since X is Sfin(sΓ, sΓ), for (Vn : n = 1, 2, . . .), we get a sequence

(Wn : n ∈ ω) such that Wn is a finite subset of Vn for each n, such that
∞∪

n=1
Wn

is an sγ−cover of X. Choose an increasing sequence n1 < nn < · · · such that
for each j, Wnj\ ∪i<j Wni . Then {V nk

mk
: k = 1, 2, . . .} is an sγ−cover of X.

For each n in (nk, nk+1] we define Un = Un
nk+1

. Then {Un : n = 1, 2, . . .} is an
sγ−cover of X. □
Theorem 4.24. If for each n ∈ N, Xn is an almost s-Rothberger space for a
topological space X, then X satisfies the selection hypothesis:

• For each sequence (Un : n ∈ N) of sω−covers of X there exists a
sequence (Vn : n ∈ N) such that for every n ∈ N, Vn is a singleton
subset of Un and for every F ⊂ X there exist n ∈ N and V ∈ Vn such
that F ⊂ scl(V ).

Proof. Let (Un : n ∈ N) be a sequence of sω-covers of X. Let N = N1 ∪N2 ∪
· · · ∪Nn∪ · · · be a partition of N into countably many pairwise disjoint infinite
subsets. For every i ∈ N and every j ∈ Ni let Vj = {U i : U ∈ Uj}. The
sequence {Vj : j ∈ Ni} is a sequence of semi-open covers of Xi. Since Xi is
an almost semi-Rotherger space, for every i ∈ N, we can choose a sequence
(Wj : j ∈ Ni) so that for each j, Wj = {U i

j1
, U i

j2
, . . . , U i

jk(j)
} is a finite subset

of Vj and
∪

j∈Ni
{scl(W ) : W ∈ Wj} is a cover of Xi. We shall show that

{scl(Ujp) : 1 ≤ p ≤ k(j), j ∈ N} is an sω-cover of X. Let F = {x1, x2, . . . , xt}
be a finite subset of X. Then (x1, x2, . . . , xt) ∈ Xt, so there is some l ∈ Nt

such that (x1, x2, . . . , xt) ∈ Wl. So, we can find 1 ≤ r ≤ k(l) such that
(x1, x2, . . . , xt) ∈ scl(U t

lk(l)
) = (scl(Ulk(l)

))t. It is clear that F ⊂ scl(Ulk(l)
). □

Lemma 4.25 ([1]). Let A1, A2, . . . , Am be subsets of X, then scl(
n=m∏
n=1

(An)) =

n=m∏
n=1

(scl(An)).

Lemma 4.26. Let U be a cover of X and let U be any subset of X, then
scl(st(U,U)) = st(scl(U),U).

Lemma 4.27. Let A be a semi-open set, then scl(A) is semi-open.

Lemma 4.28. cl(A) is semi-open if A is semi-open.
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Theorem 4.29. If Xn is an almost star s-Rothberger space for the topological
space X, then X satisfies the following selection hypothesis:

For each sequence (Un : n ∈ N) of sω-covers of X there exists a set V ={Un :
n ∈ N} such that for every n ∈ N, Un is a member of Un and for every finite
F ⊂ X, there exists U ∈ V such that F ⊂ scl(U).

Proof. Let (Un : n ∈ N) be a sequence of sω-covers of X where U1 = {U11, U12,
U13, . . .},U2 = {U21, U22, U23, . . .},U3 = {U31, U32, U33, . . .}, . . . ,Un = {Unk :
k ∈ Kn}, . . ., where Kn is an infinite countable index set. Let N = N1 ∪N2 ∪
· · · ∪Nn∪ · · · be a partition of N into countably many pairwise disjoint infinite
substes.

For every i ∈ N and every j ∈ Ni let Vj = {U i : U ∈ Uj}. We have U i

is semi open for each i because finite product of semi-open sets is semi-open.
Hence, the sequence {Vj : j ∈ Ni} is a sequence of semi-open covers of Xi.

Since Xi is an almost star s-Rothberger space, by the hypothesis, for every
i ∈ N, we can choose a sequence (Wj : j ∈ Ni) so that for each j there exists
U i
jk ∈ Vj such that Wj = scl(U i

jk) and W = {scl(st(U i
jk,Uj)) : j ∈ Ni} =

{st(scl(U i
jk),Uj) : j ∈ Ni} = {st(Wj ,Uj) : j ∈ Ni} is a cover of Xi.

We show that W is an sω-cover of X. Let F = {x1, x2, . . . , xr} be a finite
subset of X. Then (x1, x2, . . . , xr) ∈ Xr, so there is some l ∈ Nr such that
(x1, x2, . . . , xr) ∈ st(Wl,Ul) ∈ W for some k such that (x1, x2, . . . , xr) ∈ V r

lk ⊆
scl(Vlk)

r = (scl(Vlk))
r, where scl(Vlk) ∩ Wl ̸= ϕ;V r

lk ∈ Ul. It is clear that
F ⊂ scl(Vlk). □

Corollary 4.30. If Xn is an almost star s-Rothberger space for the topological
space X, then X satisfies the following selection hypothesis:

For each sequence (Un : n ∈ N) of sω-covers of X there exists a set V ={Un :
n ∈ N} such that for every n ∈ N, Un is a member of Un and for every finite
F ⊂ X there exists U ∈ V such that F ⊂ cl(U).

Proof. Since, scl(U) ⊂ cl(U), for any subset U of X, the statement is true. □

Corollary 4.31. If Xn is an s-Rothberger space for the topological space X,
then X satisfies the following selection hypothesis:

For each sequence (Un : n ∈ N) of sω-covers of X there exists a set V ={Un :
n ∈ N} such that for every n ∈ N, Un is a member of Un and for every finite
F ⊂ X there exists U ∈ V such that F ⊂ scl(U).

Proof. The proof is similar to the previous result. □

Corollary 4.32. If Xn is an s-Rothberger space for a topological space X, then
X satisfies the following selection hypothesis:
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For each sequence (Un : n ∈ N) of sω-covers of X there exists a set V ={Un :
n ∈ N} such that for every n ∈ N, Un is a member of Un and for every finite
F ⊂ X there exists U ∈ V such that F ⊂ cl(U).

Corollary 4.33. If Xn is an s-Rothberger space for a topological space X, then
X satisfies the following selection hypothesis:

For each sequence (Un : n ∈ N) of sω-covers of X there exists a set V ={Un :
n ∈ N} such that for every n ∈ N, Un is a member of Un and for every finite
F ⊂ X there exists U ∈ V such that F ⊂ U.

Corollary 4.34. If Xn is a star s-Rothberger space for the topological space
X, then X satisfies the following selection hypothesis:

For each sequence (Un : n ∈ N) of sω-covers of X there exists a set V ={Un :
n ∈ N} such that for every n ∈ N, Un is a member of Un and for every F ⊂ X
there exists n ∈ N and U ∈ V such that F ⊂ scl(U).

Proof. Since, every s-Rothberger space is star s-Rothberger, the result holds.
□

Theorem 4.35. If each finite power of a space X is star s-Rothberger, then
X satisfies S1

∗(sO, sΩ).

Proof. Let (Un : n ∈ N) be a sequence of covers of X by semi-open sets. Let
N = N1 ∪ N2 ∪ · · · be a partition of N into infinitely many infinite pairwise
disjoint sets. For every k ∈ N and every t ∈ Nk let Wt = {U1 × U2 × · · · ×
Uk : U1, . . . Uk ∈ Ut} = Uk

t . Then (Wt : t ∈ Nk) is a sequence of semi-open
covers of Xk, and since Xk is a star s-Rothberger space, we can choose a
sequence (Ht : t ∈ Nk) such that for each t, Ht is a sigleton subset of Wt and∪

t∈Nk
{st(H,Wt) : H ∈ Ht} is a semi-open cover of Xk. For every t ∈ Nk and

H ∈ Ht we have H = U1(H) × U2(H) × · · · × Uk(H), where Ui(H) ∈ Ut for
every i ≤ k. Set Vt = {Ui(H) : i ≤ k,H ∈ Ht}. Then for each t ∈ Nk Vt is a
finite subset of Ut.

We claim that {st(∪Vn,Un) : n ∈ N} is an sω-cover of X. Let F =
{x1, . . . , xp} be a finite subset of X. Then y = (x1, . . . , xp) ∈ Xp so
that there is an n ∈ Np such that y ∈ st(H,Wn) for H ∈ Hn. But
H = U1(H) × U2(H) × · · · × Up(H), where U1(H), U2(H), . . . , Up(H) ∈ Vn.
The point y belongs to some W ∈ Wn of the form V1 × V2 × · · · × Vp, Vi ∈ Un

for each i ≤ p, which meets U1(H)×U2(H)×· · ·×Up(H). This implies that for
each i ≤ p, we have xi ∈ st(Ui(H),Un) ⊂ st(∪Vn,Un), that is, F ⊂ st(∪Vn,Un).
Hence, X satisfies S1

∗(sO, sΩ). □

Theorem 4.36. If all finite powers of a space X are strongly star s-Rothberger,
then X satisfies SS∗

1 (sO, sΩ).
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Proof. Let (Un : n ∈ N) be a sequence of covers of X by semi open sets.
Let N = N1 ∪ N2 ∪ · · · be a partition of N into infinite pairwise disjoint sets.
For every k ∈ N and every t ∈ Nk let Wt = Uk

t . Then (Wt : t ∈ Nk) is
a sequence of semi open covers of Xk. Applying strongly star s-Rothberger
property of Xk we can get a sequence (xt : t ∈ Nk) of elements of Xk such
that {st(xt,Wt) : t ∈ Nk} is a semi open cover of Xk. For each t consider At

a finite subset of X such that xt ∈ Ak
t .

We show that {st(xn,Un) : n ∈ N} is an sω-cover ofX. Let F = {x1, . . . , xp}
be a finite subset of X. Then (x1, . . . , xp) ∈ Xp such that there is n ∈ Np

and (x1, . . . , xp) ∈ st({x1, . . . , xp},Wn) ⊂ st(Ap
n,Wn). Consequently, F ⊂

∪st(An,Un). □
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[22] A. Sabah, M. ud Din Khan and L.D.R. Kočinac, Covering properties defined by semi-

open sets, J. Nonlinear Sci. Appl. 9 (2016) 4388–4398.
[23] M. Sakai, Star covering versions of the Menger property, Topology Appl. 176 (2014)

22–34.
[24] M. Sakai and M. Scheepers, Combinatorics of open covers, in: K.P. Hart, J. van Mill,

P. Simon (eds.), Recent Progress in General Topology III, pp. 751–799, Atlantis Press,
Paris, 2014.

[25] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996)
31–62.
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