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Abstract. It is shown that the knowledge of a surjective morphism

X → Y of complex curves can be effectively used to make explicit calcula-
tions. The method is demonstrated by the calculation of j(nτ) (for some
small n) in terms of j(τ) for the elliptic curve with period lattice (1, τ),
the period matrix for the Jacobian of a family of genus-2 curves comple-

menting the classic calculations of Bolza and explicit general formulae for
branched covers of an elliptic curve with exactly one ramification point.
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1. Introduction

In [8] it is shown how certain calculations on curves, for instance, construc-
tion of ramified coverings with prescribed ramifications, can be effectively im-
plemented by invoking the geometry of a class of dessins d’enfants (proper
dessins) and reducing the calculations to those on CP1. See also [11] and [12]
for other approaches such as degeneration techniques or the theory of origamis.
The essence of the method in [8] is that the additional structure of a proper
dessin provides a morphism of the curve X to the complex line that allows
one to reduce calculations on X to those on CP1 (descent) where one has stan-
dard coordinates. The principal purpose of this paper is to develop this idea
in a more general algebraic framework and in effect free the technique from
the geometry of dessins d’enfants. In this setting, one makes uses of surjective
morphisms X → Y of curves and exploits symmetries inherent in the morphism
(if they exist) to descend calculations to “simpler” curves, the calculations that
usually amount to solving a system of polynomial equations. This makes the
technique more flexible and wider applications become possible. The technique
is best demonstrated through applications to several special cases where in

Article electronically published on 30 November, 2017.

Received: 13 July 2016, Accepted: 15 December 2016.

c⃝2017 Iranian Mathematical Society

1989



A descent method for explicit computations on curves 1990

many of them X → Y is a morphism of hyperelliptic curves and the simpler
morphism is the map induced on CP1.

In Section 2 we consider isogenies f : E′ → E of elliptic curves of fixed
degrees. A period τ ∈ H (the upper half plane) of E and the parameter λ in a

Legendre form y2 = x(x− 1)(x− λ) of E are related by j(τ) = 256 (λ2−λ+1)3

(λ2−λ)2 .

Up to the action of SL2(Z), there are only finitely many τ ′’s that can serve as a
period for E′. On the other hand, finding the map h : CP1 → CP1 obtained by
factoring f through hyperelliptic involutions yields a Legendre representation
and hence the j-invariant of E′. This shows that j(τ ′) belongs to a finite list
of closed expressions in terms of λ. For example, when D := degf ∈ {2, 3} and
τ ′ = Dτ , one will get expressions for j(Dτ) in terms of λ. The rest of Section 2
concentrates on the case of self-isogenies f : E → E of degree D. The functions
h : CP1 → CP1 induced by these self-isogenies form a new class of meromor-
phic functions on CP1 with a very special ramification structure that will be
introduced and studied carefully. They correspond to certain systems with 2D
equations and 2D unknowns including λ. Solving such a system provides us
with an explicit formula for f : E → E along with j(E), cf. Examples 2.10,
2.11.

In the third section, we study covers of an elliptic curve E by genus-2 curves.
The literature on Riemann surfaces of genus 2 is very extensive and the works
of Bolza [2] or the seminal work of Igusa [6] on the moduli space of genus-2
curves are relevant to our discussion. In fact, as we shall see in Section 3 and
Section 5, the geometric point of view of looking at curves as ramified covers of
CP1 allows one to give a simple description of some moduli and Hurwitz spaces
by the invariant theory of finite groups.

The group action that arises in constructing the moduli space of genus-2
Riemann surfaces is the action outlined in (3.1) of ⟨σ1, σ2, σ3, σ4, σ5⟩ ∼= S6 on
certain domain D in C3. Finding invariants under this action amounts to clas-
sifying invariants of genus-2 Riemann surfaces or equivalently, binary sextics
over C. This has been accomplished completely over an algebraically closed
field of arbitrary characteristic in the paper [6] by Igusa. This paper is hard
to read as Igusa tries to formulate invariants that work for all characteris-
tics simultaneously, especially for characteristic 2 where the Rosenhain normal
form fails. If we exclude characteristics 2, 3, 5, the paper [9] presents a sim-
pler purely algebraic treatment of Igusa’s results based on the machinery of
invariant theory developed by Hilbert. The author has tried to compute gen-
erators for this invariant subfield over C by simpler methods. In fact, this is
not hard to achieve as long as one is concerned with the action of the subgroup
⟨σ1, σ2, σ3, σ4⟩ ∼= S5. This might lead to a simpler calculation of three desired
invariants of the Rosenhain form once one figures out how to complete the
picture by entering the last generator σ5. See the Remark 3.1 for more details.

The existence of a morphism C → E puts constraints on the periods of
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the Jacobian J(C) of the genus-2 curve C. Using our technique, we obtain
a normalized period matrix (as an element of the Siegel upper half plane of
degree 2) of a genus-2 curve C which admits degree-2 morphisms onto two
non-isomorphic elliptic curves E1, E2 in terms of periods τ1, τ2 ∈ H of those
elliptic curves. This clarifies the meaning of an unspecified parameter in the
work of Bolza and the corresponding entry in the table in [1, p. 340].

In Section 4 we address the main problem of [11], i.e., constructing coverings
of an elliptic curve with a unique ramification point.

We finish with a short section on genus-3 curves to illustrate that, even in
non-hyperelliptic cases, one may descend the important computational prob-
lem of writing down an equation of a branched cover to solving an appropriate
system of polynomial equations.

2. Isogenies of elliptic curves

Consider an elliptic curve E in the Legendre form

Eλ =
{
y2 = x(x− 1)(x− λ)

}
(λ ∈ C− {0, 1})

and let τ ∈ H, where H denotes the upper half plane, be one of its periods:
E ∼= C

Z+Zτ . Recall that two numbers give rise to Legendre representations of
the same elliptic curve if and only if they are equivalent under the following
action of the symmetric group S3 on C− {0, 1}:

(2.1) λ 7→ λ,
1

λ
, 1− λ,

1

1− λ
,

λ

λ− 1
,
λ− 1

λ
.

Relative to the Legendre representation, j-function can be described as λ 7→
256 (λ2−λ+1)3

(λ2−λ)2 which up to scaling is the unique rational function invariant un-

der this action and parametrizes the moduli space M1,1 = (C− {0, 1}) /S3 of
elliptic curves. On the other hand, it is also a modular function for Γ(1) whose
q-expansion, q = e2πiτ , is:

j(τ) =
1

q
+744+196884q+21493760q2 +864299970q3 +20245856256q4 + · · · .

Let f : E′ → E be a degree-D isogeny of elliptic curves. Fixing D and with the
prior knowledge of the Legendre form y2 = x(x− 1)(x−λ) and a period τ ∈ H
for E, our goal is to compute a Legendre representation y2 = x(x− 1)(x− λ′)
for E′. Periods τ ′ of E′ are exactly images of τ under integer 2 × 2 matrices
of determinant D in the action of GL+

2 (R) on the upper half plane. This set,
i.e.

{
aτ+b
cτ+d | a, b, c, d ∈ Z, ad − bc = D

}
, decomposes as union of finitely many

SL2(Z)-orbits and provides us with a finite list of points (denoted by τ ′) in
the upper half plane whose corresponding Legendre form representations (that
is λ′) is going to be investigated by studying certain meromorphic function
h : CP1 → CP1 of degree D.

The degree-D homomorphism f : E′ → E is simply a degree-D unbranched
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cover of the underlying compact Riemann surfaces of genus 1 which respects
the hyperelliptic involutions and maps the identity to identity. In each of E,
E′ one may assume that the identity element is the point at infinity where
x, y → ∞. This, together with the fact that f respects the hyperelliptic in-
volution (x, y) 7→ (x,−y), implies that f : E′ =

{
y2 = x(x− 1)(x− λ′)

}
→

E =
{
y2 = x(x− 1)(x− λ)

}
can be written as (x, y) 7→

(
h(x), g(x)y

)
where

h, g ∈ C(x) with h the meromorphic function of the same degree D induced
by f on CP1. Note that h(∞) = ∞. Considering ramifications of maps in the
commutative diagram:

(⋆) E′ f //

(x,y)7→x
��

E

(x,y) 7→x
��

CP1 h // CP1

we deduce the following constraints on h and hence on λ′:

• h(∞) = ∞;
• the multiplicity of h at each ramification point is two and hence there
are 2D − 2 ramification points according to the Riemann-Hurwitz for-
mula;

• the branch values of h belong to the set {0, 1, λ,∞};
• the multiplicity of h at points 0, 1, λ′,∞ is one and its value at any of
them lies in {0, 1, λ,∞}.

The plan is to start with D, τ, λ, form a finite list of SL2(Z)-orbits of τ ′’s
by exhibiting representatives, determine available λ′’s –at which the value of
j : C − {0, 1} → C may be easily calculated –by studying the preceding func-
tions h and finally use q-expansion to find out a τ ′ from our first list corresponds
to which of the values j(λ′) just obtained.

It should be mentioned that since the map f from the elliptic curve
y2 = x(x−1)(x−λ′) to y2 = x(x−1)(x−λ) is given by (x, y) 7→

(
h(x), g(x)y

)
, in

the field C(x) the element h(x)(h(x)−1)(h(x)−λ)
x(x−1)(x−λ′) is a perfect square, namely g(x)2.

Conversely, any h with this property determines an isogeny f : take g(x) ∈ C(x)
to be a square root of the above function and then f : (x, y) 7→

(
h(x), g(x)y

)
is a well-defined isogeny E′ → E.

Let us apply this to D = 2. Any integer 2× 2 matrix of determinant 2 may
be written as an element of SL2(Z) multiplied from right by one of matrices[
2 0
0 1

]
,

[
1 0
0 2

]
or

[
1 1
0 2

]
. Consequently, having τ ∈ H and a correspond-

ing λ ∈ C − {0, 1} in hand, we are going to derive values of j : H → C at
points 2τ, τ

2 ,
τ+1
2 from its value at τ . From these constraints, the degree-2 map

h : CP1 → CP1 has two ramification points each of multiplicity two where ram-
ification values are two members of {0, 1, λ} and moreover, the fiber over the
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remaining value in this set consists of two points in {0, 1, λ′}. The point left in
this set is mapped to ∞. It must be mentioned that these conditions on h(x)

are also sufficient in the sense that they guarantee h(x)(h(x)−1)(h(x)−λ)
x(x−1)(x−λ′) ∈ C(x)

is a perfect square so any such a h(x) fits in the bottom of a diagram like (⋆)
whose top row is a degree-2 isogeny f from E′ =

{
y2 = x(x− 1)(x− λ′)

}
to

E =
{
y2 = x(x− 1)(x− λ)

}
. Substituting λ, λ′ with the other points in their

S3-orbit via combining h from the left with one of Möbius transformations
x 7→ 1 − x or 1 − x

λ and from the right with one of Möbius transformations
x 7→ 1− x orλ′(1− x) (which all fix ∞), without any loss of generality we may
concentrate only on the case where under h: λ′,∞ 7→ ∞, 0, 1 7→ 0 and the set of
branch values is {1, λ}. Note that λ̃ 7→ 1− λ̃ and λ̃ 7→ 1

λ̃
generate the action of

the symmetric group S3 on C−{0, 1} that remains j : C−{0, 1} → C –in which

we are interested –invariant, cf. (2.1). Hence, h(x) = kx(x−1)
x−λ′ and since 1, λ are

branch values, discriminant of the quadratic polynomials kx(x−1)−(x−λ′) and
kx(x− 1)−λ(x−λ′) must vanish. This leads to a very simple system of equa-

tions with unknowns k, λ′ whose solutions are k =
√
λ, λ′ = 1

4

(√
λ+ 1√

λ
+ 2
)
.

Thus, the j-invariant of E′ is in the form of:

256

[(
1
4

(√
λ+ 1√

λ
+ 2
))2

− 1
4

(√
λ+ 1√

λ
+ 2
)
+ 1

]3
[(

1
4

(√
λ+ 1√

λ
+ 2
))2

− 1
4

(√
λ+ 1√

λ
+ 2
)]2 = 16

(
λ+ 1

λ + 14
)3(

λ+ 1
λ − 2

)2 ,

where λ varies in its S3 orbit
{
λ, 1− λ, 1

λ ,
1

1−λ ,
λ−1
λ , λ

λ−1

}
. Consequently:

Theorem 2.1. Let τ ∈ H and λ ∈ C−{0, 1} be such that j(τ) = 256 (λ2−λ+1)3

(λ2−λ)2
.

Then:{
j (2τ) , j

(τ
2

)
, j

(
τ + 1

2

)}
=

{
16

(
u+ 1

u + 14
)3(

u+ 1
u − 2

)2
∣∣∣∣∣u ∈

{
λ, 1− λ,

λ− 1

λ

}}
.

The same procedure can be repeated when the degree D of rows in (⋆) is 3
although expressions are much more tedious. First, note that any 2× 2 integer
matrix of determinant 3 has a description as a product of an element of SL2(Z)

by one of matrices

[
3 0
0 1

]
,

[
1 0
0 3

]
,

[
1 1
0 3

]
or

[
1 −1
0 3

]
. So we hope to recover

some numbers among j(3τ), j
(
τ
3

)
, j
(
τ+1
3

)
, j
(
τ−1
3

)
with the assumption that

τ is specified along with j(τ) in the form of j(λ) = 256 (λ2−λ+1)3

(λ2−λ)2 . Secondly,

we are going to accomplish this via studying certain types of meromorphic
functions of degree 3. These meromorphic functions h : CP1 → CP1 obey
the constraints explained before in the case of D = 2. Again, by composing
with suitable Möbius maps, without changing the S3 orbits of λ or λ′, we may
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assume that 0 7→ 0, 1 7→ 1, λ′ 7→ λ,∞ 7→ ∞. Therefore, branch values of h
are exactly 0, 1, λ,∞, where over each h precisely has one ramification point
of multiplicity two and one point of multiplicity one. These non-critical points
are 0, 1, λ′,∞, respectively. Once more, these constraints are also sufficient,
that is any such a function h results in a degree-3 isogeny of elliptic curves
making (⋆) commutative. Hence, in order to get the value of j-invariant at
one of the four points of the upper half plane associated with τ above, we
will try to exhibit such a function in terms of λ. Since h(0) = 0, h(∞) = ∞
and 0,∞ are ramification values: h(x) = xP (x)

Q(x) where P (x) and Q(x) are

quadratic polynomials of discriminant zero. Equalities h(1) = 1, h(λ′) = λ

yield Q(1) = P (1), Q(λ′) = λ′

λ P (λ′). So after writing them in terms of the basis{
(x− 1)2, (x− 1)(x− λ′), (x− λ′)2

}
for the space of polynomials of degree less

than 3, we conclude that for some suitable t ∈ C− {0,−1}:

(2.2) h(x) =
x
(
(x− 1)2 + 2t(x− 1)(x− λ′) + t2(x− λ′)2

)
λ′

λ (x− 1)2 + 2t
√

λ′

λ (x− 1)(x− λ′) + t2(x− λ′)2
.

The only condition left is that 1, λ must be critical values of h(x), i.e. numer-
ators of h(x)− 1 and h(x)−λ have multiple roots, the polynomials which may
be written as:(x− 1)

[
(x− 1)(x− λ′

λ ) + 2t

(
x−

√
λ′

λ

)
(x− λ′) + t2(x− λ′)2)

]
,

(x− λ′)
[
(x− 1)2 + 2t

(
x−

√
λλ′
)
(x− 1) + t2(x− λ)(x− λ′)

]
.

Vanishing of discriminants of quadratic polynomials that appeared in brackets
yields a system with unknowns t, λ′:

(
1 + λ′

λ + 2t

(√
λ′

λ + λ′
)
+ 2t2λ′

)2

= 4(t+ 1)2
(√

λ′

λ + tλ′
)2

,(
2 + 2t

(√
λλ′ + 1

)
+ t2(λ+ λ′)

)2
= 4(t+ 1)2

(
1 + t

√
λλ′
)2

.

We are looking for solutions in terms of λ. Assuming λ ̸= λ′, the second

equation gives us the identity 4 + 4t
(√

λλ′ + 1
)
+ t2(

√
λ +

√
λ′)2 = 0 while

with dividing the first equation by the second one, we have:

1 + λ′

λ + 2t

(√
λ′

λ + λ′
)
+ 2t2λ′

2 + 2t
(√

λλ′ + 1
)
+ t2(λ+ λ′)

= ±
√
λ′

√
λ
.
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Choosing plus sign, this identity reduces to t2 = 1√
λλ′ . Combining it with

4 + 4t
(√

λλ′ + 1
)
+ t2

(√
λ+

√
λ′
)2

= 0 that appeared before gives us:(
λ+ λ′ + 6

√
λλ′
)2

= 16
(
1 +

√
λλ′
)2 √

λλ′.

Hence, fixing λ, for any λ′ satisfying this equation and t given by t2 = 1√
λλ′ ,

h(x) in (2.2) will be a degree-3 meromorphic function on CP1 with the desired
properties. This is reflected in:

Theorem 2.2. Let τ ∈ H and λ ∈ C−{0, 1} be such that j(τ) = 256 (λ2−λ+1)3

(λ2−λ)2 .

If λ′ ∈ C− {0, 1} satisfies(
λ+ λ′ + 6

√
λλ′
)2

= 16
(
1 +

√
λλ′
)2 √

λλ′,

then 256 (λ′2−λ′+1)3

(λ′2−λ′)2
belongs to the set

{
j(3τ), j

(
τ
3

)
, j
(
τ+1
3

)
, j
(
τ−1
3

)}
.

Note that Theorems 2.1, 2.2 essentially present explicit solutions of the modular
equations for Γ0(2), Γ0(3) which are obtained by geometric methods. These
explicit solutions may be used to derive modular equations of higher degrees.
For instance, Theorem 2.1 implies that the modular equation for Γ0(4), i.e.
the algebraic dependence relation between j (2τ) , j

(
τ
2

)
, is just the equation

that elements 16
(λ+ 1

λ+14)
3

(λ+ 1
λ−2)

2 , 16
(1−λ+ 1

1−λ+14)
3

(1−λ+ 1
1−λ−2)

2 of C (λ) satisfy which may be

calculated easily with aid of a computer algebra package.

Example 2.3. Suppose λ = −1 which corresponds to the square lattice, i.e.
τ = i, and elliptic curve y2 = x3 − x. Employing Theorem 2.2, our objective is
to derive closed forms for:

j(3i) ≈ e6π + 744 + 196884e−6π ≈ 153553679.3967,

j

(
±1 + i

3

)
≈ −e3π + 744− 196884e−3π + 21493760e−6π ≈ −11663.3962.

The complex number
√
λ′ should be a root of

(x2 + 6ix− 1)2 − 16ix(1 + ix)2 = x4 + 28ix3 − 6x2 − 28ix+ 1.

Finding roots with help of some computer software implies that our choices for√
λ′ are −i

(
2 +

√
3
) (√

2± 4
√
3
)2

and −i
(
2−

√
3
) (√

2± i 4
√
3
)2

which give us:

λ′ = −
(
2 +

√
3
)2 (√

2± 4
√
3
)4

or λ′ = −
(
2−

√
3
)2 (√

2± i
4
√
3
)4

.

In each of them, numbers are reciprocal. So let us only concentrate on

λ′ = −
(
2 +

√
3
)2 (√

2 + 4
√
3
)4

and λ′ = −
(
2−

√
3
)2 (√

2− i 4
√
3
)4
. They

satisfy quadratic equations λ′2 + 2
(
193 + 112

√
3
)
λ′ + 1 = 0 and λ′2 +
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2
(
193− 112

√
3
)
λ′+1 = 0 respectively, the fact that extremely simplifies eval-

uating j(λ) = 256 (λ2−λ+1)3

(λ2−λ)2 at them (see the footnote to Example 2.10):j (λ)
∣∣
−(2+

√
3)2(

√
2+ 4√3)4

= 64
(
387 + 224

√
3
)3 (

97− 56
√
3
)
≈ 153553679.3967,

j (λ)
∣∣
−(2−

√
3)2(

√
2+i 4√3)4

= 64
(
387− 224

√
3
)3 (

97 + 56
√
3
)
≈ −11663.3967.

Comparing with the approximations obtained from q-expansion before, we de-

duce that j(3i) = 64
(
387 + 224

√
3
)3 (

97− 56
√
3
)
and j

(±1+i
3

)
is its Galois

conjugate 64
(
387− 224

√
3
)3 (

97 + 56
√
3
)
.

Now, we begin studying self-isogenies f : E → E where E = C
Z+Zτ for

a τ ∈ H. The elliptic curve E has complex multiplication, or equivalently
τ satisfies a quadratic equation over the rationals, if and only if there exists
such a f which is not an obvious multiplication map P 7→ nP (n ∈ Z). In
particular, this is the case when D is not a perfect square. This is the content
of the following easy proposition whose proof is left to the reader.

Proposition 2.4. With the hypothesis just mentioned, τ and f should be in
the form of τ = 1

2b

(
u+

√
4D − a2i

)
[z] 7→

[(
a−u
2 + bτ

)
z
]
where u, b, a are

integers with | a |< 2
√
D and 4b|u2 + 4D − a2.

Next, we switch to our geometric point of view. Let y2 = x(x − 1)(x − λ)
be a Legendre representation of E. Again, since this self-isogeny respects
the hyperelliptic involution we can decompose f :

{
y2 = x(x− 1)(x− λ)

}
→{

y2 = x(x− 1)(x− λ)
}
as (x, y) 7→ (h(x), yg(x)) and form a commutative di-

agram similar to (⋆):

(⋆⋆) E
f //

(x,y)7→x
��

E

(x,y) 7→x
��

CP1 h // CP1.

There are analogous constraints as before but with λ′ replaced with λ:

• h(∞) = ∞;
• the function h has 2D − 2 ramification points each with multiplicity
two;

• the branch values of h belong to the set {0, 1, λ,∞};
• the multiplicity of h at each of points 0, 1, λ,∞ is one and its value at
any of them lies in {0, 1, λ,∞}.

Suppose D > 2 is a non-square and the degree-D meromorphic function h
satisfies our constraints. It has 2D−2 ramification points each with multiplicity
two, and at most four ramification values, namely 0, 1, λ,∞, with at most
⌊D

2 ⌋ ramification points above any of them. We conclude that all of them are

branch values as otherwise there will be at most 3⌊D
2 ⌋ ramification points. But
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3⌊D
2 ⌋ < 2D − 2 for any D ∈ N except for D = 1, 2, 4 which were excluded.

Thus, branch values of h : CP1 → CP1 are precisely 0, 1, λ,∞.
When D is odd, 4⌊D

2 ⌋ = 2D − 2 and therefore over each branch value

0, 1, λ or ∞, h has one non-critical and D−1
2 critical points of multiplicity two.

But points 0, 1, λ and ∞ ∈ h−1(∞) are non-critical points in critical fibers.
Hence, from the previous discussion, there is a permutation σ of {0, 1, λ} such
that h(x) = σ(x) ∀x ∈ {0, 1, λ}. We have three different situations: σ is
either identity, a transposition or a three cycle. Because of the aforementioned
symmetries between 0, 1, λ, two former cases –without any change in the value
of j(λ) –reduce to σ(0) = 0, σ(1) = λ, σ(λ) = 1 and σ(0) = 1, σ(1) = λ, σ(λ) =
0, respectively. In conclusion:

Corollary 2.5. For an odd non-square D, the degree-D meromorphic function
h : CP1 → CP1, which is the CP1-component of f in Proposition 2.4, may be
assumed to satisfy:

• Branch values of h are precisely 0, 1, λ,∞. Over each h possesses D−1
2

points of multiplicity two and a point of multiplicity one from the set
{0, 1, λ,∞};

• h(∞) = ∞ and either


h(0) = 0

h(1) = 1

h(λ) = λ

or


h(0) = 0

h(1) = λ

h(λ) = 1

or


h(0) = 1

h(1) = λ

h(λ) = 0

.

When D is even, there are at most ⌊D
2 ⌋ = D

2 ramification points in any of
four critical fibers. The fiber above ∞ contains the point ∞ of multiplicity
one which yields the upper bound 3D

2 + (D2 − 1) = 2D − 1 for the number of
ramification points of h albeit this number is actually 2D− 2. We deduce that
there are only two possibilities: either h has D

2 − 2 ramification points above
∞ whereas the number of its ramification points above any of ramification
values 0, 1, λ achieves the maximum D

2 , or, h has D
2 − 1 ramification points

in the fiber above ∞ and also in the fiber above one of 0, 1, λ while possesses
D
2 ramification points above the remaining two values in {0, 1, λ,∞}. In the

latter case, there are four branch values 0, 1, λ,∞ where there are D
2 −1 points

of multiplicity two and two points of multiplicity one over two of 0, 1, λ and D
2

points of multiplicity two over any of two remaining branch values. Employing
the symmetries in (2.1), we may assume that the branch value other than ∞
whose fiber contains a non-critical point is 0. Constraints on h imply that
0, 1, λ,∞ constitute the set of points of multiplicity one in the critical fibers
h−1(0), h−1(∞) and besides, ∞ ∈ h−1(∞). Therefore, either 0, λ ∈ h−1(0), 1 ∈
h−1(∞) or 0, 1 ∈ h−1(0), λ ∈ h−1(∞) or 1, λ ∈ h−1(0), 0 ∈ h−1(∞). Replacing(
h(x), λ

)
with

(h(λx)
λ , 1

λ

)
, the first case transforms to the second one. We

conclude that essentially there are only three different cases for even D’s:
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Corollary 2.6. For an even non-square D > 2, the degree-D meromorphic
function h : CP1 → CP1, which is the CP1-component of f in Proposition 2.4,
may be assumed to satisfy:

• Branch values of h are precisely 0, 1, λ,∞. Either h possesses two
points of multiplicity one from {0, 1, λ,∞} and D

2 − 1 points of mul-

tiplicity two over each of 0,∞ and D
2 points of multiplicity two over

each of 1, λ, or, it has D
2 points of multiplicity two over each of 0, 1, λ

and D
2 −2 points of multiplicity two along with four points 0, 1, λ,∞ of

multiplicity one over the value ∞;

• either h(0) = h(1) = h(λ) = h(∞) = ∞ or

{
h(1) = h(λ) = 0

h(0) = h(∞) = ∞

or

{
h(0) = h(1) = 0

h(λ) = h(∞) = ∞
.

For any of three possibilities outlined in either of Corollaries 2.5 or 2.6 for

odd and even D’s respectively, it is easy to verify h(x)(h(x)−1)(h(x)−λ)
x(x−1)(x−λ) is square

of another meromorphic function. Thus, exhibiting such a pair
(
h(x), λ

)
and

then computing j(λ) = 256 (λ2−λ+1)3

(λ2−λ)2 always leads to a j-invariant of an elliptic

curve which admits an endomorphism of degree D which is to say, the value
of the modular j-function at one point from our finite list of representatives of
those τ ’s in the upper half plane that are associated with D in Proposition 2.4.
In each of six cases that appeared in 2.5 and 2.6, in order to determine

(
h(x), λ

)
there is a polynomial system of equations to solve which arises from comparing
coefficients in different sides of some polynomial identities. These identities

hold because of properties of h. For instance, assuming h(x) = k
x
∏D−1

2
i=1 (x−αi)

2∏D−1
2

i=1 (x−βi)2

in the first set of conditions in Corollary 2.5, there are constraints on numerators
of h(x)− 1 and h(x)− λ which are reflected in system (2.3) below.

Theorem 2.7. Let D > 2 be non-square. Associate three systems of equations
with D by equating the coefficients in the following three groups of polynomial
identities for odd D’s:

(2.3)

kx
∏D−1

2
i=1 (x− αi)

2 −
∏D−1

2
i=1 (x− βi)

2 = k(x− 1)
∏D−1

2
i=1 (x− γi)

2,

kx
∏D−1

2
i=1 (x− αi)

2 − λ
∏D−1

2
i=1 (x− βi)

2 = k(x− λ)
∏D−1

2
i=1 (x− δi)

2;

(2.4)

kx
∏D−1

2
i=1 (x− αi)

2 −
∏D−1

2
i=1 (x− βi)

2 = k(x− λ)
∏D−1

2
i=1 (x− γi)

2,

kx
∏D−1

2
i=1 (x− αi)

2 − λ
∏D−1

2
i=1 (x− βi)

2 = k(x− 1)
∏D−1

2
i=1 (x− δi)

2;
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(2.5)k(x− λ)
∏D−1

2
i=1 (x− αi)

2 −
∏D−1

2
i=1 (x− βi)

2 = kx
∏D−1

2
i=1 (x− γi)

2,

k(x− λ)
∏D−1

2
i=1 (x− αi)

2 − λ
∏D−1

2
i=1 (x− βi)

2 = k(x− 1)
∏D−1

2
i=1 (x− δi)

2;

or the following three group of polynomial identities for even D’s:
(2.6){

k
∏D

2
i=1(x− αi)

2 − x(x− 1)(x− λ)
∏D

2 −2
i=1 (x− βi)

2 = k
∏D

2
i=1(x− γi)

2,

k
∏D

2
i=1(x− αi)

2 − λx(x− 1)(x− λ)
∏D

2 −2
i=1 (x− βi)

2 = k
∏D

2
i=1(x− δi)

2;

(2.7){
k(x− 1)(x− λ)

∏D
2 −1
i=1 (x− αi)

2 − x
∏D

2 −1
i=1 (x− βi)

2 = k
∏D

2
i=1(x− γi)

2,

k(x− 1)(x− λ)
∏D

2 −1
i=1 (x− αi)

2 − λx
∏D

2 −1
i=1 (x− βi)

2 = k
∏D

2
i=1(x− δi)

2;

(2.8){
kx(x− 1)

∏D
2 −1
i=1 (x− αi)

2 − (x− λ)
∏D

2 −1
i=1 (x− βi)

2 = k
∏D

2
i=1(x− γi)

2,

kx(x− 1)
∏D

2 −1
i=1 (x− αi)

2 − λ(x− λ)
∏D

2 −1
i=1 (x− βi)

2 = k
∏D

2
i=1(x− δi)

2;

where each system has 2D equations and 2D unknowns which are k ̸= 0 along
with pairwise distinct numbers λ, αi’s, βi’s, γi’s, δi’s in C−{0, 1}. The values

that j(λ) = 256 (λ2−λ+1)3

(λ2−λ)2 achieves over the solutions to the systems associated

with D are exactly the values of the modular function j : H → C at points
τ = 1

2b

(
u+

√
4D − a2i

)
where u, a, b are integers with | a |< 2

√
D and 4b |

u2 + 4D − a2.

Remark 2.8. Any system from Theorem 2.7 consists of 2D unknowns and 2D
equations. Hence, solving these systems is not by any means an efficient algo-
rithm to calculate the j-invariant of elliptic curves with complex multiplication
when it is compared to the classical algorithm (cf. [3]) of solving a single equa-
tion obtained from the Hilbert class polynomial. We want to emphasize that
the significance of this point of view is not computing special values of the
modular function more easily but the fact that it enables us to write down ex-
plicit equations in terms of Legendre forms not only for self-isogenies but also
for isogenies (like what we did in order to derive Theorems 2.1, 2.2.) which
quickly provides us with the j-invariant as well.

We might add that the class of meromorphic functions introduced in Corol-
laries 2.5, 2.6 are interesting from the dynamical point of view too if one looks
at their iterations. They are examples of classical Lattès maps and are com-
pletely chaotic in the sense that the Julia set is the whole Riemann sphere as
their critical points are not periodic nevertheless eventually periodic. See [10]
for more details.

Remark 2.9. The conditions imposed on the number of branch values of
h : CP1 → CP1 and also the computations one has to handle in order to
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determine h(x) through solving a system of polynomial equations, resemble to
those of Belyi theory when a Belyi function on the Riemann sphere is needed
to be recovered from its dessin. But our desired functions h(x) are not Belyi
because they possess four critical values instead of three and also there are
restrictions on their fibers, the difference that makes this family of functions
much more rigid. In the Belyi case we get finitely many solutions over Q̄ only
after rigidifying the dessin with fixing three of its vertices whereas in our case,
any of systems (2.3) through (2.8) has finite number of solutions all of them
lying in Q̄, i.e. h(x) is actually defined over algebraic numbers in the sense of
h(x) ∈ Q̄(x). To see the reason, note that j(λ) and (therefore λ) is algebraic,
being the j-invariant of an elliptic curve with complex multiplication. So the
orbit of the set of branch values {0, 1, λ,∞} under Gal

(C
Q
)
is finite while the

number of isomorphism classes of degree-D maps CP1 → CP1 with a prescribed
set of branch values is also finite as they are determined by their monodromy
representation. So the Gal

(C
Q
)
-orbit of h is finite up to isomorphisms of maps

and therefore, invoking the criterion for arithmeticity mentioned in [5, p. 265],
the meromorphic function h has a model over Q̄. But in the family of functions
obeying the constraints for a fixed λ, there are only finitely many functions h′

isomorphic to h as the number of Möbius transformations which preserve the
set {0, 1, λ,∞} –which is simultaneously the set of critical values and the set
of non-critical points of critical fibers for both h and h′ –is finite. Thus, the
number of choices for such a degree-D map h is finite and now as Gal

(C
Q
)
acts

on them, they are defined over Q̄.

Example 2.10. Points below represent all of the SL2(Z)-orbits in Proposition
2.4 for D = 3:

1

2

√
4× 3i =

√
3i,

1

2

(
1 +

√
4× 3− 12i

)
=

1 +
√
11i

2
,

1

2

√
4× 3− 22i =

√
2i,

1

2

(
1 +

√
4× 3− 32i

)
=

1 +
√
3i

2
.

(2.9)

When D = 3, the solutions to system (2.3) consists the following set of poly-
nomial identities and its Galois conjugate− 1

3x
(
x− (1 + e

πi
3 )
)2 − (x− 1+e

πi
3

3

)2
= −1

3 (x− 1)(x− e
2πi
3 )2,

− 1
3x
(
x− (1 + e

πi
3 )
)2 − e

πi
3

(
x− 1+e

πi
3

3

)2
= −1

3 (x− e
πi
3 )(x+ e

2πi
3 )2,

where λ = e
±πi
3 . The function j(λ) = 256 (λ2−λ+1)3

(λ2−λ)2 vanishes at λ = e±
πi
3 . It is

a standard fact that the value zero of j-invariant corresponds to the hexagonal

lattice and therefore the period τ = 1+
√
3i

2 from the list (2.9).
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For system (2.4) we have:{
− 1

3
x
(
x− λ+1

2

)2 − (
x− 2λ

λ+1

)2
= − 1

3
(x− λ)(x+ 1)2,

− 1
3
x
(
x− λ+1

2

)2 − λ
(
x− 2λ

λ+1

)2
= − 1

3
(x− 1)(x+ λ)2,

λ = −7± 4
√
3;

{
λ(t+1)2

(λ−t)2
x
(
x− 1+tλ

1+t

)2 − (
x− λ(1−t)

λ−t

)2
= λ(t+1)2

(λ−t)2
(x− λ)(x− t)2,

λ(t+1)2

(λ−t)2
x
(
x− 1+tλ

1+t

)2 − λ
(
x− λ(1−t)

λ−t

)2
= λ(t+1)2

(λ−t)2
(x− 1)(x+ tλ)2,

{
t ∈ {±i},
λ ∈ {3± 2

√
2};

that leads to j-values:

256
(λ2 − λ+ 1)3

(λ2 − λ)2
|−7±4

√
3= 16× 153 = 54000, 256

(λ2 − λ+ 1)3

(λ2 − λ)2
|3±2

√
2= 203 = 8000.1

After writing down the q-expansion up to four terms: j
(√

2i
)
≈ 7999.9977 and

j
(√

3i
)
≈ 53999.9924. So we deduce that j

(√
2i
)
= 203 and j

(√
3i
)
= 16× 153.

Finally, the system (2.5) for D = 3 is the hardest to solve. Its solutions are polynomial
identities below

− 16(t+1)3

(t+2)(3t+2)3
(x− (t+2)3(3t+2)

16(t+1)3
)(x− (t+2)(3t+2)

4(t+1)
)2 − (x− (t+2)2

4(t+1)
)2

= − 16(t+1)3

(t+2)(3t+2)3
x(x− (t+2)(3t+2)

4(t+1)2
)2,

− 16(t+1)3

(t+2)(3t+2)3
(x− (t+2)3(3t+2)

16(t+1)3
)(x− (t+2)(3t+2)

4(t+1)
)2 − (t+2)3(3t+2)

16(t+1)3
(x− (t+2)2

4(t+1)
)2

= − 16(t+1)3

(t+2)(3t+2)3
(x− 1)(x+ t(3t+4)

4(t+1)2
− 1)2,

where λ = (t+2)3(3t+2)

16(t+1)3
and t is a root of (3t + 2)4(t + 2)4 − 16t(t + 1)3(3t + 4)3, a

polynomial that factors as:

(3t2 + 6t+ 4)
[
(3t2 + 6t+ 4)3 − 8t(3t2 + 6t+ 4)2 − 24t2(3t2 + 6t+ 4)− 16t3

]
.

So either t = −1± i
√
3

3
where λ = 1∓i

√
3i

2
, at which j(λ) vanishes and we are in the case

of hexagonal elliptic curve again, or, t satisfies the quadratic equation 3t2+6t+4 = ut
where u3 − 8u2 − 24u − 16 = 0. In the latter situation, with help of a numerical
software like MATLAB, one observes that for any of six t’s just mentioned, the value

of j(λ) = 256 (λ2−λ+1)3

(λ2−λ)2
at λ = (t+2)3(3t+2)

16(t+1)3
coincides with −32768 to six digits after

the decimal point. The only τ left in list (2.9) is 1+
√

11i
2

. It is well-known that

j
(

1+
√

11i
2

)
equals −32768 = −215 (for instance, check [3, p. 383], the fact that

moreover is confirmed by the q-expansion:

j

(
1 +

√
11i

2

)
≈ −eπ

√
11 + 744− 196884e−π

√
11 + 21493760e−2π

√
11 ≈ −32767.9999.

1Here a simple observation was employed stating that j(λ) = 256
(λ2−λ+1)3

(λ2−λ)2
is equal to

256
(µ+1)3

µ+2
at the roots of λ2 + µλ+ 1 = 0.
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Example 2.11. When D is a perfect square, careful analysis of the multipli-
cation by n ∈ Z map on an elliptic curve E = C

Λ shows that, even for such D’s,
any solution to one of our systems except systems (2.3) and (2.6) leads to a

j-invariant computation because f : P 7→ ±
√
DP either fixes all four critical

points of the Weierstrass elliptic function or maps them all to the identity ele-
ment 0 + Λ.
For D = 4 in Proposition 2.4, a complete set of representatives of SL2(Z)-orbits
is:

1

2

√
4× 4i = 2i,

1

4

√
4× 4i = i,

1

2

√
4× 4− 22i =

√
3i,

1

4

(
2 +

√
4× 4− 22i

)
=

1 +
√
3i

2
,
1

2

(
1 +

√
4× 4− 32

)
=

1 +
√
7i

2
,

1

2

(
1 +

√
4× 4− 12i

)
=

1 +
√
15i

2
,
1

4

(
1 +

√
4× 4− 12i

)
=

1 +
√
15i

4
.

(2.10)

System (2.7) is much easier to solve and yields:{
−1

4 (x− 1)(x− β2)(x+ β)2 − x(x− β)2 = − 1
4

(
x2 + (4β + 2)x+ β2

)2
,

−1
4 (x− 1)(x− β2)(x+ β)2 − β2x(x− β)2 = − 1

4

(
x2 − (8β + 2)x+ β2

)2
,

β ∈ {−3± 2
√
2}, λ = β2 ∈ {17± 12

√
2};{

β2−1
4(u+2β)

(x− 1)(x− β2)(x+ β)2 − x(x− β)2 = β2−1
4(u+2β)

(
x2 + ux+ β2

)2
,

β2−1
4(u+2β)

(x− 1)(x− β2)(x+ β)2 − β2x(x− β)2 = β2−1
4(u+2β)

(
x2 − (u+ 4β)x+ β2

)2
,

β ∈ {±i(2±
√
3)}, λ = β2 ∈ {−7± 4

√
3}, u = β + 1−

(β + 1
β
)(β − 1)

2
.

In the first solution, j(λ) = 256 (λ2−λ+1)3

(λ2−λ)2 |17±12
√
2= 663 = 287496 while for

τ = 2i in (2.10): j(2i) ≈ e4π+744+196884e−4π+21493760e−8π ≈ 287495.9999.

In the second solution to system (2.7) , λ = −7±4
√
3 corresponds to j

(√
3i
)
=

16× 153, just like what we saw in the previous example.
In the case of system (2.8), some rather cumbersome algebraic manipulations
culminate in the following identities as all of solutions to (2.8):

t(t2+1)
2

x(x− 1)
(
x− (t+1)2

2(t2+1)

)2 − (x− t4)
(
x− (t+1)2

4t

)2
=

t(t2+1)
2

(
x2−(1 + 1

t
)x+ t3

)2
,

t(t2+1)
2

x(x− 1)
(
x− (t+1)2

2(t2+1)

)2 − t4(x− t4)
(
x− (t+1)2

4t

)2
=

t(t2+1)
2

(
x2−(t+ 1)x+ t5

)2
,

t ∈
{

−1±
√
7i

4
,

√
5− 1

8

(
1±

(
2
√
3 +

√
15
)
i
)
,

√
5 + 1

8

(
−1±

(
2
√
3−

√
15
)
i
)}

, λ = t4.

Then we should evaluate j(λ) = 256 (λ2−λ+1)3

(λ2−λ)2 at λ = t4 for the aforementioned

values of t. When t = −1±
√
7i

4 , we have λ = t4 = 1±3
√
7i

32 at which the j-invariant

is −153. On the other hand, truncating the q-expansion up to five terms shows
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that j
(

1+
√
7i

2

)
≈ −3375 to four digits after the decimal point. Therefore

j
(

1+
√
7i

2

)
= −153. For the other four values of t: 2


j(λ)

∣∣∣(√
5−1
8 (1±(2

√
3+

√
15)i)

)4 = (7−3
√

5)2(−1+3
√

5)3(15+3
√

5)3

256
≈ 632.8334,

j(λ))
∣∣∣(√

5+1
8 (−1±(2

√
3−

√
15)i)

)4 = (7+3
√

5)2(−1−3
√

5)3(15−3
√

5)3

256
≈ −191657.8328.

Writing down the q-expansion implies that these are j-values at points 1+
√
15i

4

and 1+
√
15i

2 from (2.10):

j

(
1 +

√
15i

4

)
≈ 744− 21493760e−π

√
15 + 20245856256e−2π

√
15 ≈ 632.8334,

j

(
1 +

√
15i

2

)
≈ −eπ

√
15 + 744− 196884e−π

√
15 + 21493760e−2π

√
15 ≈ −191657.83286.

3. Covers by genus-2 curves

Consider a curve of genus 2 in its Rosenhain form:

Cλ1,λ2,λ3
= {y2 = x(x− 1)(x− λ1)(x− λ2)(x− λ3)},

with λ1, λ2, λ3 ∈ C− {0, 1} pairwise distinct. The complex structure of a Rie-
mann surface of genus 2 is uniquely determined by the positions of six branch
values of the degree-2 morphism C → CP1. Therefore, there is a bijection be-
tween isomorphism classes of Riemann surfaces of genus 2 and 6-element sub-
sets of CP1 modulo Möbius transformations. We can assume that these subsets
contain {0, 1,∞}, which is the case for the Rosenhain form. Then, one should
answer this question: if a Möbius transformation β carries {0, 1,∞, λ1, λ2, λ3}
to another set of cardinality six {0, 1,∞, λ′

1, λ
′
2, λ

′
3}, what are the choices for

λ′
i’s in terms of λi’s? This provides us with an action of a finite group on the

domain

D =
{
(λ1, λ2, λ3) ∈ (C− {0, 1})3

∣∣λi ̸= λj

}
which is the genus-2 analogue of the S3-action on C − {0, 1} in (2.1). Condi-
tioning on the size of β ({0, 1,∞})∩{0, 1,∞}, it is not hard to write down this

2We have to explain how these calculations have been carried out: in order to establish
these polynomial identities, t ̸= 0, 1 must be a root of 8t5(t2+1)−(t+1)4. A quadratic equa-
tion which has λ = t4 as a root is determined by factorizing this polynomial and then a simple

observation was employed which states that j(λ) = 256
(λ2−λ+1)3

(λ2−λ)2
is equal to 256

(µ−1)3

µ
at

the roots of λ2 − µλ+ µ = 0.
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action. We outline the generators and the corresponding isomorphisms:

σ1 : (λ1, λ2, λ3) 7→
(

1

λ1
,
λ2

λ1
,
λ3

λ1

)
,


Cλ1,λ2,λ3

∼=→ C 1
λ1

,
λ2
λ1

,
λ3
λ1

(x, y) 7→
(

x
λ1

, y

λ
5
2
1

)
;

σ2 : (λ1, λ2, λ3) 7→
(
λ1

λ2
,
1

λ2
,
λ3

λ2

)
,


Cλ1,λ2,λ3

∼=→ Cλ1
λ2

, 1
λ2

,
λ3
λ2

(x, y) 7→
(

x
λ2

, y

λ
5
2
2

)
;

σ3 : (λ1, λ2, λ3) 7→
(
λ1

λ3
,
λ2

λ3
,
1

λ3

)
,


Cλ1,λ2,λ3

∼=→ Cλ1
λ3

,
λ2
λ3

, 1
λ3

(x, y) 7→
(

x
λ3

, y

λ
5
2
3

)
;

σ4 : (λ1, λ2, λ3) 7→ (1− λ1, 1− λ2, 1− λ3) ,

{
Cλ1,λ2,λ3

∼=→ C1−λ1,1−λ2,1−λ3

(x, y) 7→ (1− x, iy)
;

σ5 : (λ1, λ2, λ3) 7→
(

1

λ1
,
1

λ2
,
1

λ3

)
,


Cλ1,λ2,λ3

∼=→ C 1
λ1

, 1
λ2

, 1
λ3

(x, y) 7→
(

1
x
, y

(λ1λ2λ3)
1
2 x3

) .

(3.1)

The reader may easily verify that any two of involutions σ1, σ2, σ3, σ4 sat-
isfy the braid relation whereas the involution σ5 commutes with σ1, σ2, σ3 and
satisfies the braid relation solely with σ4. So there is a group isomorphism

⟨σ1, σ2, σ3, σ4, σ5⟩
∼=→ S6 which maps σ1, σ2, σ3, σ4, σ5 to transpositions (1 2),

(1 3), (1 4), (1 5) and (5 6) respectively. Thus, the moduli space M2 of genus-2
Riemann surfaces can be thought of as the quotient of the domain D in C3 by
the action of S6 described in (3.1).

The subfield C (λ1, λ2, λ3)
S6 is the field of invariants of the Rosenhain form

over C. The results of the paper [6] indicate that this invariant subfield is a
rational function field. Thus, there are three algebraically independent rational
functions in λi’s that parametrize the moduli space M2 = D/S6 of Riemann
surfaces of genus 2. The interested reader can observe the complicated formu-
lae for these “j-invariants for genus 2” on pages 111,112 of [9] along with the
S6 action described in (3.1) although with different generators.

Remark 3.1. Projectivizing the first four generators in (3.1), we get an action
of S5 on the polynomial ring C[x0, x1, x2, x3]:

σ̃1 = (1 2) : (x0, x1, x2, x3) 7→ (x1, x0, x2, x3);

σ̃2 = (1 3) : (x0, x1, x2, x3) 7→ (x2, x1, x0, x3);

σ̃3 = (1 4) : (x0, x1, x2, x3) 7→ (x3, x1, x2, x0);

σ̃4 = (1 5) : (x0, x1, x2, x3) 7→ (−x0, x1 − x0, x2 − x0, x3 − x0).
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One should find the invariant subring under this action and then invariant

rational functions in C (λ1, λ2, λ3)
S5 are precisely ratios of two invariant ho-

mogeneous polynomials of the same degree. The generators described above
are all “pseudo-reflection”s, i.e. linear transformations with exactly one eigen-
value different from one. Thus, the classical Chevalley-Shephard-Todd theorem
implies that the invariant subring C[x0, x1, x2, x3]

S5 is generated by four alge-
braically independent homogeneous polynomials where the product of their
degrees is |S5| = 120. See [16] for the background material on the invariant
theory of finite groups. One can write a computer program that finds a basis
for homogeneous invariant polynomials of a given degree by averaging over the
orbits of monomials of that degree. Using this idea, the author has computed
homogeneous polynomials of degrees 2, 3, 4, 5 which generate the invariant sub-

ring. So the field C (λ1, λ2, λ3)
S5=⟨σ1,σ2,σ3,σ4⟩ is generated over C with three

algebraically independent rational functions that are ratios of suitable powers
of these polynomial generators evaluated at (x0, x1, x2, x3) = (1, λ1, λ2, λ3).

After this brief digression, let us go back to the unifying theme of this
article which is to descend things via morphisms of algebraic curves. Suppose
that f is a degree-2 morphism from the genus-2 curve C = Cλ1,λ2,λ3 onto the
elliptic curve E = Eλ = {y2 = x(x − 1)(x − λ)} which respects hyperelliptic
involutions. This is precisely the situation where the genus-2 curve C has
an order-2 automorphism σ other than the hyperelliptic involution and thus
there is a degree 2 map from it onto the elliptic curve C/⟨σ⟩. Now, form the
commutative diagram:

(⋆ ⋆ ⋆) Cλ1,λ2,λ3

f //

(x,y)7→x
��

Eλ

(x,y)7→x
��

CP1 h // CP1.

The fact that the top row is a morphism of hyperelliptic curves implies that f
maps any of six Weierstrass points of Cλ1,λ2,λ3 to one of four ramification points
of the right column and thus the values of h at points 0, 1,∞, λ1, λ2, λ3 lie in
{0, 1,∞, λ}. None of the Weierstrass points of Cλ1,λ2,λ3 can be a ramification
point of f : otherwise, for any arbitrary 0 ̸= ω ∈ Ω1(Eλ), the non-zero holomor-
phic 1-form f∗ω on Cλ1,λ2,λ3

vanishes at a Weierstrass point p. But since 2p
is a canonical divisor, the divisor of f∗ω is precisely 2p. This is absurd as f∗ω
vanishes at the other ramification point of f as well. Therefore, the degree-2
map h : CP1 → CP1 has multiplicity one at all of points 0, 1,∞, λ1, λ2, λ3 and
maps each of them to one of the values 0, 1,∞, λ. Its fiber above any of these
values cannot contain only one of these points as otherwise (⋆⋆⋆) implies that f
has three points over the unique point of E over that value. Hence, except one
value in {0, 1,∞, λ} –which is necessarily ramified by diagram chasing –over
any other value there are two distinct members of {0, 1,∞, λ1, λ2, λ3}. Without
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any loss of generality or change in the analytic structures of either Cλ1,λ2,λ3 or
Eλ, one may assume that

0, 1 7→ 0, ∞, λ1 7→ ∞, λ2, λ3 7→ 1, λ a critical value of h.

So h can be described as h(x) = kx(x−1)
x−λ1

where kx(x−1)−λ(x−λ1) has a double

root, i.e. λ1 = (λ+k)2

4kλ and moreover λ2, λ3 satisfy: kλ2(λ2−1)
λ2−λ1

= kλ3(λ3−1)
λ3−λ1

= 1.
We conclude that all of λi’s may be written in terms of λ, k.

Proposition 3.2. Any degree-2 morphism Cλ1,λ2,λ3 → Eλ between a genus-
2 curve and an elliptic curve, after changing (λ1, λ2, λ3) and λ by suitable
elements of their orbits under the actions of S6 and S3 (and composing with a
translation of Eλ if necessary), fits in the following family:fλ,k : Cλ1(λ,k),λ2(λ,k),λ3(λ,k) → Eλ

(x, y) 7→
(

kx(x−1)
x−λ1(λ,k)

,
k

3
2 (x− k+λ

2k )
(x−λ1(λ,k))2

y

)
,

where λ1 = (λ+k)2

4kλ and λ2(λ, k), λ3(λ, k) are roots of kx(x−1)
x−λ1(λ,k)

= 1.

Remark 3.3. Classifying genus-2 curves that admit automorphisms other than
the hyperelliptic involution is a very old problem and is solved completely in
the classical paper [2] by careful study of binary sextics. According to this
paper, any such a curve can be described as:

(3.2) y2 = (x2 − 1)(x2 − a2)(x2 − b2) (a, b ∈ C− {0,±1}, a ̸= ±b) .

Thus, we should be able to transform the genus-2 curve Cλ1(λ,k),λ2(λ,k),λ3(λ,k) in
Proposition 3.2 to the form above. The deck transformation group of the map

x 7→ kx(x−1)
x−λ1

in the bottom row of (⋆ ⋆ ⋆) is generated with the order-2 Möbius

transformation x 7→ λ1(x−1)
x−λ1

that cannot fix any of simple points of h appeared

in {0, 1,∞, λ1(λ, k), λ2(λ, k), λ3(λ, k)}. But any Möbius transformation of or-
der 2 is conjugate with x 7→ −x. So after applying an appropriate Möbius
transformation to the previous set, one gets a set in the form of {±1,±a,±b}.

In the rest of this section we imitate arguments of Theorems 2.1, 2.2 in
order to extract information about periods of a genus-2 Riemann surface from
the knowledge of existence of a morphism from it onto some elliptic curve
whose period lattice is known. It is more convenient to work with the general
form (3.2) of a genus-2 curve with “many automorphisms”3 rather than that
of Proposition 3.2. We are going to fix C =

{
y2 = (x2 − 1)(x2 − a2)(x2 − b2)

}
and exhibit different morphisms from it onto two elliptic curves which are

3The term is adopted from [6] and it refers to existence of a non-trivial automorphism

other than the hyperelliptic involution.
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its quotients under automorphisms σ : (x, y) 7→ (−x, y) and σ′ : (x, y) 7→
(−x,−y).4 These morphisms are:f : C =

{
y2 = (x2 − 1)(x2 − a2)(x2 − b2)

}
→ E :=

{
y2 = (x − 1)(x − a2)(x − b2)

}
(x, y) 7→

(
x2, y

) ,

f ′ : C =
{
y2 = (x2 − 1)(x2 − a2)(x2 − b2)

}
→ E′ :=

{
y2 = (x − 1)

(
x − 1

a2

) (
x − 1

b2

)}
(x, y) 7→

(
1
x2 , iy

abx3

)
.

.

(3.3)

Our goal is to describe a normalized period matrix of C in the Siegel upper half
plane in terms of two periods τ, τ ′ ∈ H of E,E′. There is a classical method
due to Bolza in [2] for calculating periods of Riemann surfaces with sufficiently
large group of automorphisms. The reader may consult [1, Section 11.7], for
a modern treatment of his approach where the table in [1, p. 340] presents
several period matrices obtained in this way.

Let us think of C as two copies of CP1 which are glued together along three
cuts between a and b, −1 and 1, −a and −b as depicted in Figure 1. Cycles

Figure 1. Constructing C by cutting and pasting.

α1, α2, β1, β2 form a symplectic basis for H1 (C,Z) where the full arcs are in
the sheet we are working with and the dotted ones are in the other sheet. The
induced map σ∗ : H1 (C,Z) → H1 (C,Z) takes αi to α2−i and βi to and β2−i

whereas under σ′
∗ : H1 (C,Z) → H1 (C,Z): αi 7→ −α2−i and βi 7→ −β2−i. Fix

the basis
{
ω1 = dx

y , ω2 = xdx
y

}
for Ω1(C). The matrix

Z =

[∫
α1

ω1

∫
α2

ω1∫
α1

ω2

∫
α2

ω2

]−1 [∫
β1

ω1

∫
β2

ω1∫
β1

ω2

∫
β2

ω2

]
lies in the Siegel upper half plane of degree 2. Note that σ∗ω1 = −ω1, σ

∗ω2 = ω2

while σ′∗ω1 = ω1, σ
′∗ω2 = −ω2. Morphisms f : C → E and f ′ : C → E′

send the homology basis of H1 (C,Z) to symplectic bases {δ, γ} and {δ′, γ′} for
H1 (E,Z) and H1 (E

′,Z) respectively which are depicted in figures below.

4In terms of Cλ1(λ,k),λ2(λ,k),λ3(λ,k), just note that the transformation (λ, k) 7→(
k2

λ
,−k

)
changes λi to 1 − λi which is one of the transformations in (3.1). Hence

Cλ1(λ,k),λ2(λ,k),λ3(λ,k) admits morphisms to both of elliptic curves Eλ , E k2

λ

that are non-

isomorphic for generic values of k, λ.
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Figure 2. A symplectic homology basis for the elliptic curve E

Figure 3. A symplectic homology basis for the elliptic curve E′

Since f, f ′ are quotient maps under the actions of σ, σ′, due to the description
of their actions on homology explained before:

f∗α1 = f∗α2 = γ, f∗β1 = f∗β2 = δ, f ′
∗α1 = −f ′

∗α2 = γ′, f ′
∗β1 = −f ′

∗β2 = δ′.

For non-zero holomorphic 1-forms ω = dx
y
on E =

{
y2 = (x− 1)(x− a2)(x− b2)

}
and ω′ = dx

y
on E′ =

{
y2 = (x− 1)

(
x− 1

a2

) (
x− 1

b2

)}
, due to formulae of f, f ′ in

(3.3), we have f∗ω = 2xdx
y = 2ω2 and f ′∗ω′ = 2abidxy = (2abi)ω1. Combining

with above:∫
α1

ω1 = −
∫
α2

ω1 =
1

2abi

∫
γ′
ω′,

∫
β1

ω1 = −
∫
β2

ω1 =
1

2abi

∫
δ′
ω′,∫

α1

ω2 =

∫
α2

ω2 =
1

2

∫
γ

ω,

∫
β1

ω2 =

∫
β2

ω2 =
1

2

∫
δ

ω.

Plugging in Z =

[∫
α1

ω1

∫
α2

ω1∫
α1

ω2

∫
α2

ω2

]−1 [∫
β1

ω1

∫
β2

ω1∫
β1

ω2

∫
β2

ω2

]
:

Z =

[
1

2abi

∫
γ′ ω

′ − 1
2abi

∫
γ′ ω

′

1
2

∫
γ
ω 1

2

∫
γ
ω

]−1 [
1

2abi

∫
δ′
ω′ − 1

2abi

∫
δ′
ω′

1
2

∫
δ
ω 1

2

∫
δ
ω

]
=

[
τ+τ ′

2
τ−τ ′

2
τ−τ ′

2
τ+τ ′

2

]
,

where τ :=
∫
δ
ω∫

γ
ω

and τ ′ :=
∫
δ′ ω

′∫
γ′ ω′ from the upper half plane are periods for E

and E′. We have shown:
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Proposition 3.4. For a, b ∈ C − {0,±1} with a ̸= ±b, there are periods τ, τ ′

in the upper half plane for elliptic curves E =
{
y2 = (x− 1)(x− a2)(x− b2)

}
and E′ =

{
y2 = (x− 1)

(
x− 1

a2

) (
x− 1

b2

)}
respectively, such that the matrix[

τ+τ ′

2
τ−τ ′

2
τ−τ ′

2
τ+τ ′

2

]
from the Siegel upper half plane determines a period matrix for

the genus-2 curve C =
{
y2 = (x2 − 1)(x2 − a2)(x2 − b2)

}
.

Note that the period matrix above determines the Jacobian along with the
theta divisor, i.e. one gets J(C) as a principally polarized abelian variety.

Remark 3.5. In Section 2 we utilized the q-expansion approximation to find
out a Legendre form obtained from solving equations corresponds to which
of the periods we know beforehand. In principle, the same procedure can be
carried out in the genus 2 case to verify whether the period matrix we got is the
right choice for the hyperelliptic equation in hand, although the calculations are
extremely cumbersome. Instead of j-invariant of elliptic curves, one should deal
with three invariants of the Rosenhain form derived from the work of Igusa [6]
and then write down first few terms of their expansion as Siegel modular forms
of genus 2. This is the content of another paper by Igusa [7].

Remark 3.6. In practice, we take elliptic curves E and E′ in Proposition 3.4 to
have complex multiplication so that we know precisely what the periods τ , τ ′

are. One can also use a theorem due to Shioda and Mitani in [15] asserting that
any abelian surface isogenous to a product of elliptic curves with complex multi-
plication, is itself isomorphic to a product of elliptic curves. So in the situation
that E and E′ are non-isogenous and both with complex multiplication, by the
universal property of the Jacobian, degree-2 morphisms f, f ′ : C → E,E′ in-
duce a degree-4 isogeny J(C) = Ẽ× Ẽ′ → E×E′ that is given by components

Ẽ → E and Ẽ′ → E′ which are degree-2 isogenies of elliptic curves. Using
Theorem 2.1, we get all possible choices for the periods of Ẽ and Ẽ′ in terms of
τ and τ ′, respectively (and so period matrices for the torus J(C)) along with
Legendre forms for these elliptic curves and thus a projective embedding of

J(C) via CP2 × CP2 Segre map
↪→ CP8. With the help of Theorem 2.2, this idea

can be generalized when we have morphisms of degrees 2 or 3 from C onto two
non-isogenous elliptic curves with complex multiplication.

Example 3.7. Let us apply this method to C =
{
y2 = (x2 − 1)(x2 − a2)

(
x2 − 1

a2

)}
where a = 1

b and elliptic curves E, E′ in (3.3) are identical. The homology
bases in Figures 2, 3 are related by γ′ = γ and δ′ = δ − γ. So (following

the same notations as before) τ ′ =
∫
δ′ ω∫
γ′ ω

is just
∫
δ
ω∫

γ
ω
− 1 = τ − 1. Therefore,

Proposition 3.4 states that Z =

[
τ − 1

2
1
2

1
2 τ − 1

2

]
is a normalized period matrix

for C provided that τ is some suitable period of E in the upper half plane H.



A descent method for explicit computations on curves 2010

Let us analyze a specific case: the Bolza surface y2 = x5 − x can be converted
to the form of (3.2) after applying an appropriate Möbius transformation to
roots of x5−x along with ∞ in order to get six points in the form of ±1,±a,±b.

By applying z 7→ z−e
πi
4

z+e
πi
4
, we arrive at a2 = 1

b2 =

(
1+e

πi
4

1−e
πi
4

)2

= −3 − 2
√
2 and

λ = −a2 = 3 + 2
√
2 in a Legendre form for the elliptic curve E = E′ ={

y2 = (x− 1)(x− a2)
(
x− 1

a2

)}
. Using what has been done in Example 2.10,√

2i ∈ H is a period. So τ and τ ′ = τ − 1 both belong to the SL2 (Z)-orbit of√
2i while the latter is the ratio:∫ 1

−3+2
√
2

dx√
(x−1)(x+3−2

√
2)(x+3+2

√
2)∫ −3+2

√
2

−3−2
√
2

dx√
(x−1)(x+3−2

√
2)(x+3+2

√
2)

≈ 0.7071i ≈
√
2

2
i.

We conclude that τ ′ =
√
2i
2 , τ = 1 +

√
2i
2 . Plugging them in the formula we

derived for Z results in Z =

[
1+

√
2i

2
1
2

1
2

1+
√
2i

2

]
as a normalized period matrix of

the Bolza curve.

4. Covers with a unique ramification point

Let f : C → E = {y2 = x(x− 1)(x− λ)} be a degree-n morphism from the
hyperelliptic curve C of genus g > 1 onto the elliptic curve E with exactly one
ramification point, namely p. The Riemann-Hurwitz formula indicates that the
multiplicity of p is 2g−1. We may assume that f(p) is the point at infinity and
p 7→ ∞ under the ramified 2-fold cover C → CP1.5 Furthermore, suppose that
f respects the hyperelliptic involutions. So once more we have a commutative
diagram:

(⋆ ⋆ ⋆ ⋆) C
f //

��

E

(x,y)7→x
��

CP1 h // CP1

By diagram chasing, the degree-n map h : CP1 → CP1 takes the value ∞ at
the point ∞ with multiplicity 2g− 1 and all of its other ramification points are
of multiplicity two. Moreover, its critical values are among those of the right
column, i.e. 0, 1, λ,∞, and the number of its non-critical points over these

5In what follows, ∞ is a critical value of C → CP1 and hence p must be a Weierstrass
point of the curve C. This is justified by looking at the divisor of f∗ω for an arbitrary
0 ̸= ω ∈ Ω1(E) which is (2g − 2)p. Hence this non-zero holomorphic 1-form on the genus-g

curve C vanishes at p with multiplicity 2g − 2 ≥ g. Extending f∗ω to a basis for the g-
dimensional space Ω1(C), it follows that the Wronskian of this basis vanishes at p and thus
p is a Weierstrass point.
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four values coincides with the number of critical values of the left column other
than ∞ which is 2g+1. This implies that there are exactly 4n−(2g+1)−(2g−1)

2 =

2(n− g) points of multiplicity two in h−1 ({0, 1, λ,∞}). In summary, the only
constraints on h are:

• The function h : CP1 → CP1 is of degree n and maps ∞ to ∞ with
multiplicity 2g−1. All other ramification points of h are of multiplicity
two.

• The branch values of h belong to the set {0, 1, λ,∞}.
• Let li denote the number of ramification points of multiplicity two
above i ∈ {0, 1, λ,∞}. Then l0, l1, lλ ≤ ⌊n

2 ⌋, l∞ ≤ ⌊n+1
2 ⌋ − g and

l0 + l1 + lλ + l∞ = 2(n− g).6

Such a function always determines a degree-n cover f : C → E with the desired
property: these conditions imply that the number of non-critical points of h
over the set {0, 1, λ,∞} is 2g + 1. Denoting them by λi (1 ≤ i ≤ 2g + 1),
h(x)(h(x)−1)(h(x)−λ)∏2g+1

i=1 (x−λi)
lies in C(x)2 and taking g(x) to be one of its square roots,

(x, y) 7→ (h(x), yg(x)) is an explicit formula of a degree-n morphism from the

hyperelliptic curve C = {y2 =
∏2g+1

i=1 (x−λi)} of genus g onto the elliptic curve
E = {y2 = x(x − 1)(x − λ)} whose only ramification point is the point at
infinity.

Assuming

h(x) =
k
∏l0

i=1(x− αi)
2.
∏n−2l0

j=1 (x− α′
j)∏l∞

i=1(x− βi)2.
∏n−2l∞−2g+1

j=1 (x− β′
j)
,

one may obtain these functions by solving systems of equations similar to those
of Theorem 2.7. Equations come from equating coefficients of the identities
in (4.1) and unknowns are pairwise distinct complex numbers αi’s, α

′
j ’s, βi’s,

β′
j ’s, γi’s, γ

′
j ’s, δi’s, δ

′
j ’s along with λ ∈ C− {0, 1} and k ̸= 0.

(4.1)



k

l0∏
i=1

(x− αi)
2.

n−2l0∏
j=1

(x− α′
j)−

l∞∏
i=1

(x− βi)
2.

n−2l∞−2g+1∏
j=1

(x− β′
j)

= k

l1∏
i=1

(x− γi)
2.

n−2l1∏
j=1

(x− γ′
j),

k

l0∏
i=1

(x− αi)
2.

n−2l0∏
j=1

(x− α′
j)− λ

l∞∏
i=1

(x− βi)
2.

n−2l∞−2g+1∏
j=1

(x− β′
j)

= k

lλ∏
i=1

(x− δi)
2.

n−2lλ∏
j=1

(x− δ′j).

6Note that in the main example of [12] where n = 5, g = 2 and λ = −1, l∞ vanishes

whereas all the other parameters l0, l1, lλ are 2
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The geometric point of view enables us to formulate a necessary and sufficient
combinatorial condition for the existence of a solution to this complicated alge-
braic system: thinking of the monodromy of h, the only constraint on li’s is the
existence of permutations τ1, τ2, τλ, τ∞ ∈ Sn with τ0τ1τλτ∞ = id that generate
a transitive subgroup of Sn and furthermore τ∞ is a product of l∞ transpo-
sitions and a 2g − 1-cycle which are disjoint while any other τi decomposes
to li disjoint transpositions. The number of equations is 2n while there are
2n+ 3 unknowns. But since the only point of the domain fixed in our discus-
sion was ∞, there are two degrees of freedom left which indicates that number
of unknowns can be reduced to 2n + 1. So in the case that the combinatorial
condition is satisfied, we expect to get a 1-parameter family

{
ft : Ct → Eλ(t)

}
t

of totally ramified maps as solutions to this system. Considering the action of

Gal
(

C
Q(λ)

)
on solutions h : CP1 → CP1 (where λ is fixed) shows that any such

a meromorphic function, and hence any cover of the elliptic curve Eλ with a
unique ramification point has a model over the field Q(λ). In particular, setting
two of unknowns to be 0, 1, solutions of (4.1) are defined over a finite extension
of Q(λ).

Next, we try to construct examples of such h’s. First, assuming that the
function h is also Belyi, that is lλ = 0, in the corresponding dessin all vertices
are of degree at most 2 except the one corresponding to the face associated
with the pole ∞ which is of degree 2g − 1. The only dessin on the Riemann
sphere with these properties is the path with n = 2g − 1 edges. It is a stan-

dard fact that the dessin of x 7→ Tm(x)+1
2 , where Tm(x) is the mth Chebyshev

polynomial, is the path with m edges. So we derive the following proposition.
Compare with [11, Theorem 3.2].

Proposition 4.1. For any g > 1 and t ̸= ±1 the genus-g curve y2 = (x2 −
1)(T2g−1(x)− t) admits a morphism of degree 2g − 1 to the elliptic curve y2 =
(x2 − 1)(x− t) given by

(x, y) 7→

(
T2g−1(x), 2

2g−2y

2g−2∏
k=1

(
x− cos

πk

2g − 1

))
.

The unique ramification point of this map is the point at infinity.

Let us finish this section with another special case where n = 4, g = 2. The only
possible choice for li’s is l∞ = 0 and among l0, l1, lλ, one of them is 2 and the
remaining parameters are 1, say l0 = 2, l1 = lλ = 1. Consequently, the degree-4
meromorphic function h : CP1 → CP1 take ∞ to ∞ with multiplicity three and
possesses two points of multiplicity two above 0 which, by a linear change of

coordinates, may be assumed to be 0, 1. This amounts to h(x) = k(x2−x)2

x−t (t ̸=
0, 1). Moreover, h has a single point of multiplicity two above either of values 1
or λ. Thus, the numerators of h(x)−1 and h(x)−λ have multiple roots. But µ is
a multiple root of either of polynomials k(x2−x)2−(x−t) or k(x2−x)2−λ(x−t)
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only if µ2−µ
2(2µ−1) = µ − t. This shows that the multiple roots µ1(t), µ2(t) of

previous polynomials are the roots of 3µ2 − (4t+ 1)µ+ 2t = 0. Plugging µ1(t)
in the first polynomial results in a description k = k(t) of k in terms of t and
the fact that µ = µ2(t) satisfies the equation k(t)(µ2−µ)2−λ(µ− t) = 0 yields
an expression in the form of λ(t) for λ. To obtain the hyperelliptic equation
for C, one should compute the degree 2g + 1 = 5 polynomial whose roots are

non-critical points of h(x) = k(t)(x2−x)2

x−t above 0, 1, λ(t),∞. Over ∞ we only

have t while over critical values 1, λ(t) the roots are those of the quadratic
polynomials:

k(t)(x2 − x)2 − (x− t)

(x− µ1(t))2
= k(t)

(
x2 + (2µ1(t)− 2)x+

t

k(t)µ1(t)2

)
,

k(t)(x2 − x)2 − λ(t)(x− t)

(x− µ2(t))2
= k(t)

(
x2 + (2µ2(t)− 2)x+

tλ(t)

k(t)µ2(t)2

)
.

We deduce that:

Proposition 4.2. For any β ∈ C − {0, 1}, the following is an equation for a
4-fold branched cover of an elliptic curve by a curve of genus 2 with precisely
one ramification point which is the point at infinity.

{
y2 = (x− t)

(
x2 + (2µ1(t)− 2)x+ t

k(t)µ1(t)2

)(
x2 + (2µ2(t)− 2)x+

tλ(t)

k(t)µ2(t)2

)}
→
{
y2 = x(x− 1)(x− λ(t))

}
(x, y) 7→

(
k(t)(x2−x)2

x−t
,
k(t)

3
2 (x2−x)(3x2−(4t+1)x+2t)

3(x−t)2
y

) ,

where µ1(t), µ2(t) are the roots of 3µ2 − (4t+ 1)µ+ 2t = 0 and

k(t) =
µ1(t)− t

(µ1(t)2 − µ1(t))2
, λ(t) =

k(t)(µ2(t)
2 − µ2(t))

2

µ2(t)− t
.

5. An example of a non-hyperelliptic case

In all of examples worked out so far, descending calculations to a simpler
curve and then to a system of equations was done by factoring through hy-
perelliptic involutions. But this idea can still be pursued when we have other
normal forms for the family of curves in hand. We devote this last brief section
to an example of this kind.

A Riemann surface C of genus 3 is either hyperelliptic and thus determined
by a non-degenerate binary octavic, or, is non-hyperelliptic and therefore the
canonical embedding maps it to a smooth plane curve of degree 4 such that
isomorphism translates to projective equivalence of plane quartics. So one can
study the moduli spaces of hyperelliptic and non-hyperelliptic Riemann surfaces
of genus 3 by computing invariants for binary octavics and ternary quartics,
respectively. See [14] and [4] for such treatments.

We are going to look at a Riemann surface C of genus 3 and a morphism
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f : C → CP1 of degree 3 (which is the gonality in this genus). Having the po-
sitions of critical values and the monodromy in hand, can one descend writing
an equation for f to solving some system of equations?

Since C has a Weierstrass point, we may assume that f has a ramification
point of multiplicity three. Denoting the set of ramification values whose fibers
has a ramification point of multiplicity two (respectively, three) by {p1, . . . , pu}
(respectively, {q1, . . . , qv}), possible choices for (u, v) are (8, 1), (6, 2), (4, 3),
(2, 4), (0, 5). The monodromy (which determines the isomorphism class of
f : C → CP1 once the set of branch values {p1, . . . , pu, q1, . . . , qv} is fixed)
is specified by a u-tuple θu = (θ1, . . . , θu) of transpositions and a v-tuple
τv = (τ1, . . . , τv) of 3-cycles where components come from S3 and satisfy
θ1 . . . θuτ1 . . . τv = id. Let us denote the Hurwitz space of isomorphism classes
of degree-3 maps f : C → CP1 of monodromy type (θu, τv) with the ordering
(p1, . . . , pu, q1, . . . , qv) on their branch values by H(θu,τv). By the same geomet-
ric point of view that the isomorphism class of f (in particular, the complex
structure of C) is uniquely determined by the position of branch values and
the monodromy, we can describe these spaces as quotients of an affine open
set by the action of some finite group, just like what we did for moduli spaces
M1,1 and M2 in (2.1) and (3.1). Here, one should think of any H(θu,τv) as

ordered pairs ((p1, . . . , pu), (q1, . . . , qv)) ∈ (CP1)u × (CP1)v −∆ (∆: the divi-
sor of points with repeated components) modulo the component-wise action
of the Möbius transformations group. We can rigidify these sets by assuming
0, 1,∞ are among these u+ v points and then one gets action of a finite group
on some domain in Cu+v−3. Again, by invoking the invariant theory of finite
groups, computing invariants for this action gives us the coordinate ring of the
affine variety H(θu,τv) (and perhaps its equations if one can calculate the syzy-
gies). These actions are summarized in Table 1. Indeed, there are cases where,
precisely like the action of S5 in Remark 3.1, the action can be projectivized
to a linear action on a polynomial ring generated by pseudo-reflections and
so computing invariants is not difficult because the Chevalley-Shephard-Todd
theorem implies that there are no syzygies.

The space H(θu,τv) is of dimension u + v − 3 and so is of “full moduli di-
mension”, i.e. the same dimension as that of the moduli space M3, when
(u, v) = (8, 1). Let us address our computational problem in this generic case:
having sets {p1, . . . , p8}, {q1} in hand, can one specify an equation for a degree-
3 f : C → CP1 whose ramification points are precisely a point of multiplicity
three above q1 and one point of multiplicity two above each pi? Kill three
degrees of freedom by setting q1 = ∞, p7 = 0, p8 = 1. The paper [13] contains
an equation for a non-hyperelliptic genus-3 curve that depends on dimM3 = 6
parameters and is equipped with a degree-3 meromorphic function with a triple
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pole. This is given by a smooth curve of degree 4 in CP2 with the affine equa-
tion:

(5.1) y3(x+ a) + y2(bx+ c) + y(dx2 + ex) + x3 + fx2 + x = 0,

and with the meromorphic function (x, y) 7→ x which for generic values of
a, b, c, d, e, f has a unique point of multiplicity three (a triple pole) at one
of points at infinity. The discriminant of (5.1), regarded as an element of
C[a, b, c, d, e, f, x][y], is:

(bx+ c)2(dx2 + ex)2 − 4(x+ a)(dx2 + ex)3 − 4(bx+ c)3(x3 + fx2 + x)

− 27(x+ a)2(x3 + fx2 + x)2 + 18(x+ a)(bx+ c)(dx2 + ex)(x3 + fx2 + x).

This expression, considered as an element of C[a, b, c, d, e, f ][x], is of degree 8
and with the leading coefficient −27. Equating this with the known polynomial
−27x(x − 1)

∏6
i=1(x − pi) of x and then solving for a, b, c, d, e, f yields the

desired example. Once more we descend to a system obtained from equality of
two polynomials.

Table 1. Realizing the Hurwitz space Hθu,τv as (C − {0, 1})u+v−3−∆ modulo

a finite group that is the subgroup of those elements β ∈ Aut
(
CP1

)
for which

A∩{0, 1,∞} = β(A)∩{0, 1,∞} for any of subsets A appeared in the second column.
In each row, σi comes from some suitable transposition in the Sn-component and
γ is induced by the generator of the Z2-component. In the first, second and fourth
rows, the action of Sn can be projectivized to an action which satisfies the conditions
of Chevalley-Shephard-Todd theorem.

(u, v) branch points group generators of the action

(8, 1) {0, 1, z1, . . . , z6}, {∞} S8

{
σi : (z1, . . . , z6) 7→

(
z1
zi

, . . . ,
zi−1
zi

, 1
zi

,
zi+1
zi

, . . . ,
z6
zi

)
σ7 : (z1, . . . , z6) 7→ (1 − z1, . . . , 1 − z6)

(6, 2) {1, z1, . . . , z5}, {0,∞} S6 × Z2

σi : (z1, . . . , z5) 7→
(

z1
zi

, . . . ,
zi−1
zi

, 1
zi

,
zi+1
zi

, . . . ,
z5
zi

)
γ : (z1, . . . , z5) 7→

(
1
z1

, . . . , 1
z5

)
(4, 3) {z1, . . . , z4}, {0, 1,∞} S3

{
σ1 : (z1, . . . , z4) 7→

(
1
z1

, . . . , 1
z4

)
σ2 : (z1, . . . , z4) 7→ (1 − z1, . . . , 1 − z4)

(2, 4) {0,∞}, {1, z1, z2, z3} S4 × Z2

σi : (z1, z2, z3) 7→
(

z1
zi

, . . . ,
zi−1
zi

, 1
zi

,
zi+1
zi

, . . . ,
z3
zi

)
γ : (z1, z2, z3) 7→

(
1
z1

, 1
z2

, 1
z3

)

(0, 5) ∅, {0, 1,∞, z1, z2} S5



σ1 : (z1, z2) 7→
(

1
z1

,
z2
z1

)
σ2 : (z1, z2) 7→

(
z1
z2

, 1
z2

)
σ3 : (z1, z2) 7→

(
1
z1

, 1
z2

)
σ4 : (z1, z2) 7→ (1 − z1, 1 − z2)
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